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decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs
boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to
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Introduction

This paper describes an algorithm for reconstructing vertices originating from decays of long-lived
particles to multiple charged and neutral particles in the ATLAS muon spectrometer (MS) [1]. Such
long-lived states are predicted to be produced at the LHC by a number of extensions [2—7] of the
Standard Model. The hidden valley scenario [6] is used as a benchmark to study and evaluate the
performance of the vertex reconstruction of long-lived particles decaying in the MS. Because of its

large volume, the ATLAS MS has good acceptance for a broad range of proper lifetimes and it also

has good tracking capabilities at the individual chamber level. A design feature of the MS is low
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Figure 1. Cross-sectional view of ATLAS in the r—z projection at ¢ = 7/2, from ref. [1]. The barrel MDT
chambers are shown in green, the endcap MDT chambers are blue. In the barrel (endcaps), the RPC (TGC)
chambers are shown outlined in black (solid purple).

multiple scattering of charged particles, which makes it an ideal instrument for multi-track vertex
reconstruction. The vertex-reconstruction technique described in this paper was a key element in a
search for a light Higgs boson decaying to long-lived neutral particles [8].

The paper is organized as follows: section 2 describes the muon spectrometer, section 3 dis-
cusses the benchmark model and the Monte Carlo (MC) samples, sections 4 and 5 describe the

tracking and vertex-finding algorithms and section 6 discusses the performance of the vertex-
finding algorithm.

2 Muon spectrometer

ATLAS is a multi-purpose detector [1], consisting of an inner tracking system (ID), electromagnetic
and hadronic calorimeters and a muon spectrometer. The ID is inserted inside a superconducting
solenoid, which provides a 2 T magnetic field parallel to the beam direction.! The electromagnetic
and hadronic calorimeters cover the region || < 4.9 and have a total combined thickness of 9.7
interaction lengths at 7 = 0. The MS, the outermost part of the detector, is designed to measure
the momentum of charged particles escaping the calorimeter in the region 1| < 2.7 and provide
trigger information for || < 2.4. It consists of one barrel and two endcaps, shown in figure 1, that
have fast detectors for triggering and precision chambers for track reconstruction. Three stations of
resistive plate chambers (RPCs) and thin gap chambers (TGCs) are used for triggering in the barrel

TATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of
the detector and the z-axis coinciding with the beam pipe axis. The x-axis points from the IP to the centre of the LHC
ring, and the y-axis points upward. Cylindrical coordinates (r,¢) are used in the transverse plane, ¢ being the azimuthal
angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle 6 as 11 = —In tan(6/2).
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Figure 2. Cross-sectional view of the barrel muon spectrometer perpendicular to the beam axis (non-bending
plane). The MDT chambers in the small sectors are shown in light blue, the MDT chambers in the large
sectors are shown in orange and the RPC chambers in red. The eight coils are also visible.

and endcap MS, respectively. The precision tracking measurements are provided by monitored
drift tube (MDT) chambers throughout the MS and cathode strip chambers (CSCs) in the innermost
layer of the endcaps (see figure 1). In the barrel, the precision chambers extend to || = 1 and are
arranged in three cylindrical shells, located at radii of » ~ 5.0 m, 7.5m, and 10.0 m, as shown in
figure 2. In the endcaps, the precision chambers cover the range 1 < |n| < 2.7 and are arranged in
three wheels with their faces perpendicular to the z-axis located at |z| ~7.4m, 14.0m, and 21.5 m.

A system of three superconducting toroids (one barrel and two endcap toroids) provides the
magnetic field for the MS. The barrel toroid is 25.0 m in length along the z-axis, and extends from
r =4.7m to 10.0m in radius; eight superconducting coils generate the field. The two endcap
toroids, each with eight superconducting coils, are inserted in the barrel at each end. They have
a length of 5.0 m, an inner bore of 1.65 m and an outer diameter of 10.7 m. The endcap coils are
rotated in ¢ by 22.5° with respect to the barrel coils. Although the MS uses “air core” toroid
magnets to minimize the amount of material traversed by particles, a non-negligible amount of
material is present in the form of support structures, magnet coils and muon chambers.

2.1 Monitored drift tubes

In the barrel MS, the MDT chambers are placed around the eight superconducting coils that form
the toroid magnet, as shown in figure 2. In the endcaps, MDT chambers are located either upstream
or downstream of the endcap toroids; therefore, all the endcap chambers are located outside the
magnetic field region. Because the toroidal magnetic field around the z-axis bends trajectories in
the r—z plane, the MDTs are oriented such that they measure 1) with high precision.
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Figure 3. Portion of a muon spectrometer barrel chamber (BIL) with two four-layer multilayers. The drift
circles are shown in dark gray and the charged particle trajectory is shown as the black line. The spacing
between the two multilayers is 170 mm.

The chambers are divided into two types, depending on their position in ¢. Those chambers
in the barrel (endcaps) that are located in between the magnet coils are referred to as large (small),
while those centred on the magnet coil are small (large). The chamber naming scheme uses a three-
letter acronym (e.g. BIL, EMS) to specify a chamber type. The first letter (B or E) refers to barrel
or endcap chambers, respectively. The second letter specifies the station (inner, middle or outer)
and the third letter refers to the sector (large or small).

The MDT chambers consist of two multilayers separated by a distance ranging between 6.5 mm
(BIS chambers) and 317 mm (BOS, BOL and BML chambers). Each multilayer consists of three
or four layers of drift tubes. The individual drift tubes are 30 mm in diameter and have a length of
2-5 m depending on the location of the chamber inside the spectrometer. Each tube is able to mea-
sure the drift radius (corresponding to the distance of closest approach of the charged particle to the
central wire) with a resolution of approximately 80 um [1]. In each multilayer the charged particle
track segment can be reconstructed by finding the line that is tangent to the drift circles. These
segments are local measurements of the position and direction of the charged particle. Figure 3
shows a charged particle traversing a BIL chamber.

Because the tubes are 2—5 m in length, the MDT measurement provides only a very coarse ¢
position of the track hit. In order to reconstruct the ¢ position and direction, the MDT measure-
ments need to be combined with the ¢ coordinate measurements from the RPCs (TGCs) in the
barrel (endcaps).

2.2 Trigger chambers

The RPCs provide the trigger signals and measure the ¢ coordinate for segments in the barrel MS.
The chamber planes are located on both sides of the MDT middle stations and one of the two sides
of the MDT outer stations. Each chamber has four layers of 3-cm-wide strips, where two layers
measure 7] and two layers measure ¢, referred to as RPC-eta and RPC-phi planes, respectively.
Together, the two planes around the middle stations provide a low transverse momentum (pr)
trigger (up to 10 GeV), and the addition of the chambers in the outer stations allows for high-pr
triggers.



In the endcaps, the trigger signals and ¢ measurements are provided by the TGCs. Each TGC
layer consists of cathode strips that measure ¢ and anode wires that measure 17. Measurements from
the strips and wires are referred to TGC-phi and TGC-eta measurements, respectively. The strips
have a width of 2-3 mrad, as seen from the interaction point (IP), and the wire-to-wire distance is
1.8 mm. The middle stations of MDTs in the endcaps are surrounded by seven layers of TGCs,
three layers on the IP side and four layers on the opposite side.

2.3 Trigger system

The trigger system [9] has three levels called Level-1 (L1), Level-2 (L2) and the event filter (EF).
The L1 trigger is a hardware-based system using information from the MS trigger chambers, and
defines one or more regions-of-interest (Rols). These are geometrical regions of the detector, iden-
tified by (1, @) coordinates, containing potentially interesting physics objects. The L2 and EF
(globally called the high-level trigger, HLT) triggers are software-based systems and can access in-
formation from all sub-detectors. A L1 low-pr muon Rol is generated by requiring a coincidence
of hits in at least three of the four planes of the two inner RPC planes for the barrel and of the two
outer TGC planes for the endcaps. A high-pt muon Rol requires additional hits in at least one of
the two planes of the outer RPC plane for the barrel and in two of the three planes of the innermost
TGC layer for the endcaps. The muon Rols have a spatial extent in (AN X A¢) of 0.2x0.2 in the
barrel and 0.1x0.1 in the endcaps. At the HLT, the L1 Rol information seeds the reconstruction
using the precision chamber information, resulting in sharp trigger thresholds up to muon momenta
of pr =40GeV.

The Muon Rol Cluster trigger [10] is specially designed to select events characterized by a par-
ticle decaying to multiple hadrons inside the MS. This trigger is seeded by a L.1 multi-muon trigger
that requires at least two muon Rols with pt > 6 GeV. At L2, the trigger selects events that have at
least three muon Rols in the barrel clustered in a cone with a radius AR = /(An)? + (A¢)? = 0.6.
The Muon Rol Cluster trigger is also required to satisfy track- and jet-isolation criteria [10]. In
2011 data taking, this trigger was only active in the barrel (|n| < 1).

3 Monte Carlo samples

3.1 Benchmark model

A hidden valley model with a light Higgs boson communicator [6] is used to evaluate the ATLAS
detector response to highly displaced decays. In this model, a Higgs boson is produced via gluon
fusion and decays to a pair of long-lived neutral, weakly-interacting pseudoscalars, H — 7, 7,. Four
different MC simulation samples, each with 150k events, are used for this study, corresponding to
different choices of Higgs boson mass (120 GeV and 140 GeV) and 7, mass (20 GeV and 40 GeV).
Because the 7, is a pseudoscalar, it decays predominantly to heavy fermions, bb, c¢ and 757~ in
the ratio 85:5:8, as a result of the helicity suppression of the low-mass fermion-antifermion pairs.
The mean proper lifetime of the 7, (expressed throughout this paper as 7 times the speed of light ¢)
is a free parameter of the model. In the generated samples, ¢7 is chosen so that a sizeable fraction
of the decays occur inside the MS. The PYTHIA generator [11] is used to simulate the production
and decay of Higgs bosons and the MSTW 2008 leading-order parameterization [12] is used for the
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Figure 4. The probability for a 7, to decay inside the fiducial volume of the muon spectrometer as a function
of the 7, mean proper lifetime (c7).

parton distribution functions in the protons. The effect of multiple pp collisions occurring during
the same bunch crossing (pile-up) is simulated by superimposing several minimum bias events on
the signal event.” The generated events are then processed through the full simulation chain based
on GEANT4 [13, 14].

3.2 Displaced decays in the MS

For the purposes of triggering on 7, decays in the MS and reconstructing vertices, this study defines
the “MS fiducial volume” as the region in which 7, decays are detectable. This fiducial volume is
separated into barrel and endcap regions. The barrel MS fiducial volume is defined as the region
with [n| < 1, extending from approximately the outermost ~25 cm of the hadronic calorimeter to
slightly upstream of the middle station of the MS (3.5m < r < 7.5m). The endcap MS fiducial
volume is defined as the region with 1 < || < 2.2, extending from just upstream of the inner
endcap muon chambers to the outer edge of the endcap toroids (7m < |z| < 14 m). Figure 4 shows
the probability for a 7, to decay inside the MS fiducial volume as a function of the &, mean proper
lifetime (c7). This figure indicates that displaced vertices are detectable over a wide range of mean
proper lifetimes.

A decay of a m, occurring in the MS results in high multiplicity jets of low-pr particles (see
figure 5) produced in a narrow region of the spectrometer. Typically the decay of a &, produces a
bb pair that in turn produces approximately ten charged hadrons and five 7° mesons. Because of
these low-pr decay products, any decay occurring before the last sampling layer of the hadronic
calorimeter would not produce a significant number of tracks in the MS. Thus, detectable decay
vertices are located in the region between the end of the hadronic calorimeter and before the middle
station of the muon chambers. For decays at the end of the hadronic calorimeter, the charged

2The pile-up was simulated such that the distribution of the number of collision vertices in the MC simulation agrees
with the 2011 data.
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Figure 6. Distribution of the total number of (a) MDT and (b) trigger hits per event with a single 7, decay
occurring in the barrel (|| <1) and endcap (1 < |n| < 2.2) MS. Both plots show the MC mass point
mpy = 140 GeV, my, =20 GeV. Similar results are found using the other MC samples.

hadrons would traverse, on average, at least two stations (inner and middle); for decays after the
inner MDT stations, the charged hadrons would traverse the middle and possibly the outer stations.

As a consequence of the photons from the 7 decays and the non-negligible amount of material
in the MS, large electromagnetic (EM) showers are expected to accompany the charged particle
tracks from 7, decays in signal events. The effects of these EM showers can be seen in figure 6,
which shows the total number of (a) MDT and (b) RPC (TGC) hits per event with a single 7,
decay occurring inside the barrel (endcap) MS. As these plots show, the MS has an average of
~1000 hits in both the MDT and trigger systems. The hits are concentrated in a narrow region
of the spectrometer, with ~70% of the hits contained in a cone of radius AR = 0.6 around the 7,
line-of-flight. The average MDT chamber occupancy is approximately 35% in this cone.

A typical muon or 7* traversing the MS leaves a track with 20-25 MDT hits, while the av-
erage number of hits per charged particle in displaced decay events is ~100. This indicates that



on average, an event contains ~75% ‘“noise” hits resulting from the EM showers. These extra
hits cause problems for the standard muon-segment-finding routines, which are optimized to find
charged tracks in a relatively clean environment. In order to reconstruct vertices in the MS, effi-
cient tracking, especially at low pr, is required; therefore a new reconstruction algorithm, capable
of reconstructing low-momentum tracks in busy environments, is needed.

4 Tracklet finding and momentum reconstruction

4.1 Tracklet-finding technique

The spatial separation between the two multilayers inside a single MDT chamber provides a pow-
erful tool for pattern recognition. The specialized tracking algorithm presented here exploits this
separation by matching segments from multilayer 1 (ML1) with those from multilayer 2 (ML2).
The algorithm starts by reconstructing single-multilayer straight-line segments that contain three
or more MDT hits using a minimum J? fit. All segments that have a y? probability greater than
5% are kept.

In order to pair the segments belonging to the same charged particle, segments from ML1
are matched with those from ML2 using two parameters, Ab and A, as shown in figure 7(a). The
parameter Ab is taken to be the minimum of the two possible distances between the point where one
segment crosses the middle plane and the line defined by the other segment, as illustrated in figure 7
(b).3 For chambers in the magnetic field, Ab ~ 0 selects segments that are tangent to the same circle
and hence belong to the same charged particle. The second parameter, Aa = a; — &, is the angle
between the two segments. It can only be used for matching segments in the case of chambers
outside the magnetic field region. If the chamber is inside the magnetic field region, A« is the
bending angle of the track inside the chamber and can be used to measure the track momentum for
low-pr particles (see section 4.2). In the following, this paired set of single-multilayer segments
and corresponding track parameters is referred to as a tracklet. Because of the large number of
RPC (TGC) hits in signal events, the RPC-phi (TGC-phi) hits cannot be associated with the MDT
barrel (endcap) tracklets. Consequently the tracklets reconstructed using this method do not have
a precise ¢ coordinate or direction. Therefore, the tracklets are assigned the ¢ coordinate of the
MDT chamber centre and are assumed to be travelling radially outward.

The intrinsic angular resolution of the single-multilayer MDT segments is derived from a fully
simulated MC sample of high-momentum charged particles* that produce straight-line segments
in the MDT chambers. From this sample, the parameters Ao and Ab are determined to have RMS
values of 4.3 mrad and 1.0 mm, respectively, for segments containing three MDT hits.

The tracklet selection criteria are listed in table 1 for each of the muon chamber types. The
variable Aoy, refers to the maximum amount of bending that is allowed inside the chamber for
the two single-ML segments to be considered matched and corresponds to a minimum tracklet
momentum of 0.8 GeV for chambers that are located inside the magnetic field. Tracklets are refit
as a single straight-line segment spanning both multilayers if their |Ac/| is less than 12 mrad.

3For the purposes of plotting, the parameter Ab is signed according to a local coordinate system with an origin defined
as the point where the ML1 segment crosses the middle plane. In all other cases, Ab is a positive definite quantity.

4This sample contains single muons with p = 1 TeV, distributed evenly in the ranges —7 < ¢ < 7 and In| < 1andis
simulated using the full ATLAS simulation chain.
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Figure 7. Schematic of a MS barrel chamber with one segment in multilayer (ML) 1 and one in multilayer
2. Shown in (a), the two single-multilayer segments reconstructed in the respective multilayers and (b) a
close-up of the middle plane of the chamber. The variable o 5) is defined as the angle with respect to the
z-axis of the segment in multilayer 1 (2). The parameter A« is defined as Aot = o; — @ and Ab is defined to
be the distance of closest approach between the pair of segments at the middle plane of the MDT chamber.
The middle plane of the chamber is the plane equidistant from multilayers 1 and 2, represented here by the
dashed line.

Table 1. Relevant chamber parameters and the selection criteria for reconstructing tracklets in each of the
MDT chamber types. Tracklets are refit as a single straight-line segment spanning both multilayers if they
satisfy the criterion listed in the “Refit” column.

Chamber | Number of | ML Spacing | |AOmax| | |Abmax| Refit
Type Layers (mm) (mrad) (mm)
BIS 4 6.5 12 3 Always
BIL 4 170 36 3 if |Aat| < 12 mrad
BMS 3 170 67 3 if |Aa| < 12 mrad
BML 3 317 79 3 if |Aa| < 12 mrad
BOS 3 317 12 3 Always
BOL 3 317 36 3 if |Aa| < 12 mrad
Endcap 3 170 12 3 Always

In the endcaps, and in the BIS and BOS chambers in the barrel MS, the MDT chambers are
outside the magnetic field region; therefore, segment pairs from these chambers are combined and
refit as a single straight-line segment, containing at least six MDT hits. The combined segments
result in a 0.2 mrad angular resolution compared to the 4.3 mrad resolution obtained with the two
single-multilayer segments. This improvement in the angular resolution is due to the increased
lever arm and additional MDT hits when fitting the segments spanning the two MLs.
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Figure 8. Distributions of Ab vs Aa from MC signal events for segment combinations (a) in the barrel
MS region (|| < 1) and (b) in the endcap region (1 < |n| < 2.7). Both plots are normalized to unit area
and show the MC mass point mpy = 140 GeV, mz, =20 GeV. Similar results are found using the other MC
samples.

4.2 Momentum and charge measurements

For segments found in the MS barrel chambers in the magnetic field, the measurement of Aa can
be used to calculate the tracklet momentum. The tracklet momentum can be determined using a
relation of the form p = k/|Ax
is dependent upon the chamber spacing and average magnetic field inside the chamber. From the

, where the parameter k is derived for each muon chamber type and

uncertainty in Aa, calculated for each segment pair as Oaq = /(0 )? + (Cq, )?, the uncertainty
in the momentum measurement can be shown to be 0,/p ~ 0.06:p/GeV in the BML chambers,
0,/p =~ 0.08-p/GeV in the BMS chambers and 6,/p ~ 0.13-p/GeV in the BOL and BIL chambers.

The sign of the tracklet charge, g, is obtained from g = sign(Aa-z-p;), where A is the bending
angle, z is the position of the tracklet and p; is the direction of the tracklet as measured in ML1.
The charge of the particle can be identified with an efficiency greater than 90% for reconstructed
tracklets with momentum less than 7 GeV in the BML chambers, 5 GeV in the BMS chambers and
3 GeV in the BOL and BIL chambers.

4.3 Application of the tracking algorithm in MC signal events

The performance of the tracklet reconstruction algorithm has been be studied using the MC signal
events that have a displaced decay occurring inside the fiducial volume of the MS. Figure 8 shows
the two-dimensional distribution of Ab versus Ao for all possible single ML segment combinations
in the barrel and endcap regions. The segment combinations corresponding to real charged particles
can be seen in the central region, while the diffuse background comes from the incorrect pairing
of segments. This reconstruction method finds an average of nine (eight) tracklets per displaced
decay in the barrel (endcaps) fiducial volume. In the barrel MS an average of six tracklets have
an associated momentum measurement. Figure 9 shows the average number of tracklets with a
momentum measurement reconstructed as a function of the displaced decay position, in ¢, for one
octant of the barrel MS. The extra material present in the barrel small sectors creates large EM
showers that affect the reconstruction algorithm. As a result, near the centre of the small sectors

~-10-
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Figure 9. The average number of tracklets with a charge and momentum measurement reconstructed as a
function of the position, in ¢, of the displaced decay, for decays occurring in the barrel MS. All sectors have
been projected such that the centre of a large sector corresponds to ¢ = 0 and the centre of a small sector
corresponds to ¢ = /8.

(¢ ~ £0.4) there are approximately half as many tracklets reconstructed, on average, compared
to a displaced decay occurring near the centre of the large sectors (¢ ~ 0). In contrast, decays
occurring in the fiducial volume of the endcap MS produce an average of eight tracklets, without
momentum measurements, independent of the ¢ coordinate of the decay.

Figure 10(a) shows the distribution of Ab in the barrel MS region for all segment combinations
that satisfy the criteria for |Ac| listed in table 1. Figure 10(b) shows the distribution of Ab in the
endcap region for all segment combinations that have |Aa| < 12 mrad and have been successfully
refit as a single straight-line segment with y? probability greater than 5%. The fraction of fake
tracklets reconstructed can be estimated by using the side bands to measure the combinatorial
background. The side bands are fit to a straight-line that is extrapolated to the signal region. Taking
the ratio of the number of tracklets under the background fit to the total number of tracklets in the
signal region gives a fake rate of ~25% in the barrel and ~5% in the endcaps. The lower fake rate
in the endcap is due to the refit procedure, which selects only those combinations of single-ML
segments that can be fit as a single straight-line segment with )2 probability greater than 5%.

5 Vertex reconstruction

Most of the MS barrel chambers (|| < 1) are immersed in a magnetic field while the endcap
chambers (1 < |n| < 2.7) are all outside the field region. Thus, all tracklets reconstructed in the
endcaps have no associated momentum measurement, while in the barrel, most of the tracklets
reconstructed from two segments have a Ao measurement that provides an estimate of the momen-
tum. Due to this difference in tracklet reconstruction, different vertex-reconstruction algorithms are
employed in the MS barrel and endcaps. In both cases, the algorithms have been tuned to maximize
the vertex-finding efficiency at the expense of vertex-position resolution.
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Figure 10. Distributions of Ab for segment combinations in (a) the barrel MS region (|n| < 1) and (b) the
endcap MS region (1 < |n| < 2.7) for MC signal events. Segment combinations are required to satisfy the
appropriate Ao criterion listed in table 1. In the case of the endcap combinations, they are required to have
been successfully refit to a single straight-line with x? probability greater than 5%. Both plots show the MC
mass point mg = 140 GeV, my, = 20 GeV. Similar results are found using the other MC samples.

The barrel and endcap vertex-reconstruction algorithms, described in detail in the following
sections, proceed as follows:

1. Tracklets are reconstructed in individual chambers.
2. The tracklets from all chambers are grouped into clusters using a cone algorithm.

3. The lines-of-flight in i and ¢ of the long-lived particle are calculated using the tracklets and
RPC-phi (barrel) or TGC-phi (endcaps) hits, respectively.

4. The clustered tracklets are mapped onto a single r—z plane as defined by the ¢ line-of-flight.

5. The vertex position is reconstructed by back-extrapolating the tracklets; in the barrel the
tracklets are extrapolated through the magnetic field, while in the endcaps the tracklets are
extrapolated as straight lines.

The barrel and endcap vertex-reconstruction algorithms exclusively use the tracklets reconstructed
in the barrel and endcap, respectively. For displaced decays occurring near |n| = 1, both algorithms
can independently reconstruct vertices. In case there are two reconstructed vertices, it is left to the
analysis make the final vertex selection.

5.1 Vertex reconstruction in the barrel MS

The barrel vertex-reconstruction algorithm begins by finding the cluster of tracklets to be used
in the vertex routine. This is done by using a simple cone algorithm that has a cone of radius
AR = 0.6 and its apex at the IP.> Then the line-of-flight of the decaying particle in the 0 direction

5The cone algorithm uses the position of each tracklet as a seed, and the cone containing the most tracklets is chosen
as the optimal centre.
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Figure 11. Distributions of the flight direction residuals in the (a) 8 and (b) ¢ directions. Both plots show
the MC mass point my = 140 GeV, my, =20 GeV. Similar results are found using the other MC samples.

is reconstructed by drawing a line between the IP and the centroid of all tracklets in the cluster.
Figure 11(a) shows the difference between the reconstructed and true 7, line-of-flight in 6. This
method is able to reconstruct the 6 line-of-flight with an RMS of 21 mrad. The line-of-flight in the
¢ direction is computed in two steps. First an approximate ¢ line-of-flight is computed by using
the ¢ coordinate of each tracklet in the cluster to calculate an average ¢.% Then, using this ¢ value
and the 0 of the 7, line-of-flight, a cone of radius AR = 0.6 with its apex at the IP is constructed
and the average of all RPC-phi measurements within this cone is used to determine the ¢ line-of-
flight. Figure 11(b) shows the difference between the reconstructed and true line-of-flight in ¢.
This method is able to reconstruct the ¢ line-of-flight with a RMS of 50 mrad, which corresponds
to ~1/8 of a large MDT chamber.

Due to the lack of precise ¢ information for the tracklets and to the inhomogeneous magnetic
field [1] in the MS, it is necessary to perform the vertex reconstruction in a single r—z plane.
Therefore, the clustered tracklets are all mapped onto the r—z plane in which the reconstructed
line-of-flight lies. The tracklets are then back-extrapolated, using the full magnetic field map, in
this r—z plane to a series of lines parallel to the z-axis that are equally spaced along the line-of-flight.
The distance, along the line-of-flight, between two adjacent lines is 25 cm and the lines cover the
range from r = 3.5m to r = 7.0 m. This results in 15 lines of constant radius for a line-of-flight at
1 =0 and 22 lines at |n| = 1. Increasing the number of lines in this manner ensures that the vertex
routine treats the entire 1| range uniformly, by extrapolating each tracklet a constant distance
along the line-of-flight. Figure 12 illustrates how these lines of constant radius in the spectrometer
are used to back-extrapolate the tracklets and to reconstruct the vertex.

The uncertainty arising from the lack of precise ¢ information for each tracklet and hence
lack of precise knowledge of the magnetic field, is evaluated by rotating the r—z plane by 200 mrad
around the z-axis’ and again extrapolating the tracklets to the lines of constant radius. The differ-
ence in the z position of the rotated and nominal tracklet is calculated at each line, and taken to be

SFor each tracklet the ¢ coordinate is approximated using the centre of the associated MDT chamber, see section 4.1.
7Each large MDT chamber is ~400 mrad wide, thus the rotation of 200 mrad corresponds to the maximum variation
of position from the centre of the chamber.
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Figure 12. Diagram illustrating the reconstruction technique employed in the barrel muon spectrometer.
The display shows the simulated decay of a 7, from the MC mass point my = 140 GeV, mz, = 20 GeV.

the uncertainty associated with the imprecise knowledge of the magnetic field. This uncertainty is
added, in quadrature, to the position uncertainty arising from the uncertainty in the measured mo-
mentum of the tracklet. For tracklets that do not have a momentum measurement, the only source
of uncertainty arises from the uncertainty in the tracklet direction, &. Only those tracklets with a
total uncertainty o, < 20 cm are used by the vertex-finding algorithm.

At each line of constant radius, the average z position of the tracklets is computed by weighting
the extrapolated tracklet position by I/GZZ. The y? of this candidate vertex (whose z coordinate is
assumed to be the average z position) is computed, assuming that the tracklets originate from the
vertex point. If the 2 probability for the vertex point is less than 5%, the tracklet with the largest
contribution to the total vertex x> is dropped and the vertex point is recomputed. This is done
iteratively, until there is either an acceptable vertex, with 2 probability greater than 5%, or there
are fewer than three tracklets left to compute the vertex point.

The reconstructed vertex position is taken to be the radius and the z position on the line that
had the largest number of tracklets used to create the candidate vertex point. If there are two (or
more) lines of constant radius with the same number of tracklets, the line with the minimum y? is
selected as the reconstructed vertex position. The difference in position between the reconstructed
and true decay vertex are shown in figure 13. The slight asymmetry in these residual distributions
is due to vertices reconstructed from tracks without a momentum measurement and is discussed in
more detail in the endcap vertex reconstruction section.

5.2 Vertex reconstruction in the endcap MS

In the endcap region, the MDT chambers are located outside of the magnetic field. Therefore,
tracklets reconstructed in the endcap region (1 < |n| < 2.7) have no momentum or charge mea-
surements; thus a different approach to vertex finding is required. As discussed in section 3.2,
detectable decays occur just upstream of or inside the endcap toroid. As a consequence, measure-
ments of the charged particles’ trajectories are made after they have been bent by the magnetic field.
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Figure 13. Distributions of the vertex-reconstruction residuals in the (a) z coordinate and (b) r coordinate
for decays in the barrel MS. Both plots show the MC mass point my = 140 GeV, my, = 20GeV. Similar
results are found using the other MC samples.

This implies that the tracklets will need to be back-extrapolated as straight lines into the endcap
toroid. Therefore, in the endcap MS, a simple linear extrapolation and minimization routine is used
to reconstruct the decay vertices. The routine starts by grouping the tracklets that are clustered in
(n.,9), using the same cone algorithm that is employed in the barrel vertex-reconstruction routine.
The lines-of-flight in 8 and ¢ are calculated as in the barrel, except the TGC-phi measurements are
used instead of the RPC-phi measurements. The resolution in the lines-of-flight in both 6 and ¢ is
comparable to the resolution achieved in the barrel using the simulated signal samples.

The clustered tracklets provide constraining equations of the form 3; = —r tane; + z, where ;
is the z-intercept and ¢; the angle of the i-th tracklet, which are used in a least squares regression
fit of the vertex. The vertex position is then iterated, dropping the tracklet that is farthest from the
vertex until the distance of closest approach between the farthest tracklet and the vertex is less than
30cm. The vertex position is accepted if it is reconstructed using at least three tracklets, is within
the endcap MS fiducial volume, and is upstream of the middle station (|z| = 14 m). Figure 14 shows
the position of the reconstructed vertices with respect to the true decay point. The magnetic field in
the endcap toroid bends the charged tracks while preserving the line-of-flight of the neutral long-
lived particle. Because the tracklets are measured after the magnetic field and extrapolated back
into the magnetic field region as straight lines, the vertex position is systematically shifted to larger
values of |zreco| With respect to the true decay position. Due to the line-of-flight being preserved by
the magnetic field, the reconstructed vertices are also shifted to larger values of rco. This effect
lessens as the decay occurs closer to the outer edge of the endcap toroid (|z| ~ 12.5m) and the
charged particles experience less bending making the straight-line extrapolation used in the vertex
reconstruction a better approximation. Figure 15 illustrates this reconstruction technique and the
systematic shifts in both rreco and |zrecol-

6 Performance

The performance of the vertex-reconstruction algorithms has been evaluated on both data and MC
simulation. Data events corresponding to 1.94 fb~! collected in 2011 at /s = 7 TeV were analysed.
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for decays in the endcap MS for different ranges of z5, . Both plots show the MC mass point my = 140 GeV,
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Figure 15. Diagram illustrating the reconstruction technique employed in the endcap muon spectrometer.
The display shows the simulated decay of a 7, from the MC mass point my = 140 GeV, mz, = 20 GeV.

The events in both data and MC simulation were required to pass the Muon Rol Cluster trigger.
Additionally, the data events were required to have been collected during a period when all detector
elements were operational.

6.1 Good vertex selection

Events with vertices that originate from detector noise, cosmic ray showers or punch-through
hadronic jets® can be rejected by imposing a series of selection criteria. Vertices found in the barrel
MS are required to be consistent with the decay of a long-lived particle that originates at the IP.
Therefore the sum of the p, of all tracklets used in the vertex fit is required to point away from the

8 A punch-through hadronic jet occurs when particles from a hadronic jet escape the calorimeter volume.
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IP.? Because the MS tracklets in the endcaps do not have an associated momentum measurement, it
is not possible to extrapolate them through the endcap toroids. Therefore, the pointing requirement
is only applied to vertices reconstructed in the barrel MS. The vertex is required to be in a region
with high activity in the MDT and trigger chambers. To remove events with coherent noise in the
MDTs, the vertex is required to be in a region of the detector with fewer than 3000 MDT hits and
be reconstructed with tracklets from at least two different muon stations. Additionally, vertices can
be required to be isolated from ID tracks and/or hadronic jets to reduce backgrounds and punch-
through contamination. These isolation criteria are analysis dependent and therefore beyond the
scope of this paper.
In order for a vertex to be considered good, the following criteria must be satisfied:

e Tracklets: the vertex must contain tracklets reconstructed from at least two different muon
stations (i.e. inner + middle, middle + outer, inner + outer or small sector + large sector).

e Vertex Pointing (barrel MS only): the sum of the momenta of all tracklets used in the vertex
fit is required to point away from the IP (Y, plracklet.z oy > 0).

tracklets

e Nypr: the number of MDT hits contained in a cone of AR = 0.6 around the vertex is required
to be in the range 200 < Nypr < 3000.

® Nrpc(tGe): the number of RPC-eta (TGC-eta) hits contained in a cone of AR = 0.6 is required
to be Nrpc(tGe) > 100 for vertices reconstructed in the barrel (endcap) MS.

Figure 16 shows distributions of the position of the good vertices in the ATLAS coordinate system
for MC simulation. The depletion of vertices near = 0 is due to the limited coverage of the
RPC trigger chambers in this region and hence limited coverage of the Muon Rol Cluster trigger.
Figure 16(b) shows that in the barrel MS the algorithm has a much lower efficiency near the magnet
coils (¢ ~ +(2n+ 1)m/4). Decays occurring in the region near the coils produce a larger number of
noise hits, due to the large amount of material present in the magnet coil, which lowers the tracklet
reconstruction efficiency (see figure 9). The effects of the reduced MDT coverage and the extra
material present in the region of the feet supporting the detector is visible as a relative decrease in
the number of reconstructed vertices in the region between ¢ = —1 and ¢ = —2.

The tracklets reconstructed in the BIS and BOS chambers, which are located near the magnet
coils, do not have a momentum measurement, and these tracklets are extrapolated through the
magnetic field as straight lines. Therefore BIS and BOS tracklets may have a large uncertainty in
their extrapolation and are often rejected by the y? test described in section 5.1.

6.2 Vertex reconstruction efficiency

The efficiency for vertex reconstruction is defined as the fraction of simulated 7, decays occurring
in the MS fiducial volume that have a reconstructed vertex satisfying all of the criteria described
in section 6.1. Figure 17(a) shows the efficiency to reconstruct a vertex in the barrel MS for 7,
decays that satisfy the Muon Rol Cluster trigger requirements and figure 17(b) the efficiency for

9The pointing requirement is only applied to vertices in the region In| > 0.3 to avoid inefficiencies due to the
momentum resolution of the tracklets in the region where the sum of p, is expected to be ~0.
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Figure 16. Distribution of the (a) 7 and (b) ¢ positions of the good vertices in the barrel muon spectrometer
for the Monte Carlo signal samples. Both plots show the MC mass point my = 140 GeV, mz, = 20GeV.
Similar results are found using the other MC samples.
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Figure 17. Efficiency for reconstructing a vertex for 7, decays in the barrel muon spectrometer as a function
of the radial decay position of the 7, for (a) 7, decays that satisfy the Muon Rol Cluster trigger and (b) 7,
decays that do not satisfy the Muon Rol Cluster trigger.

those m, decays that do not satisfy the trigger. When a 7, satisfies the trigger requirements, the
vertex-reconstruction efficiency varies from ~50% near the calorimeter face (r ~ 4 m) to ~30%
for decays occurring close to the middle station (»r ~ 7m). The efficiency decreases as the decay
occurs closer to the middle station because the charged hadrons and photons (and their correspond-
ing EM showers) have not spatially separated and are overlapping when they traverse the middle
station. This reduces the reconstruction efficiency for tracklet reconstruction and consequently for
vertex reconstruction. Those 7, that do not satisfy the Muon Rol Cluster trigger requirements have
a lower reconstruction efficiency because these decays tend to have all of their decay products en-
tering a single sector. Therefore the tracks and EM showers are often overlapping and the tracklet
recontruction efficiency is lower, which in turn reduces the vertex reconstruction efficiency.
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Figure 18. Efficiency for reconstructing a vertex for m, decaying in the endcap MS as a function of the
absolute z position of the 7, decay.

The efficiency for reconstructing vertices in the endcaps as a function of |z|, shown in figure 18,
is roughly constant from 7m to 14 m and varies between 45% and 60% depending on the signal
model parameters.

6.3 Performance on 2011 collision data

In 2011, the Muon Rol Cluster trigger was only active in the barrel MS region; therefore, no events
with a vertex in the endcaps are found using this selection. The position of the vertices found in
n and ¢, after applying the criteria for a good vertex, are shown in figure 19 for those vertices
reconstructed in 1.94fb~! of 2011 data. The vertices found in data have 1 and ¢ distributions
similar to those in the simulation (figure 16). The asymmetry in 1 and excess of vertices at ¢ ~ 0
in data events are due to beam halo muons which predominately occur on one side of the detector
and in the ¢ = O plane.

The position in (r,z) of the good vertices reconstructed in data is shown in figure 20. The
vertices tend to group around |z| ~ 4 m and r ~ 4 m, near the gap region between the barrel and
extended barrel calorimeters where particles can escape the calorimeter volume. The few events
with a vertex in the endcap MS are due to events with activity in both the barrel and endcap MS. The
activity in the barrel MS satisfies the Muon Rol Cluster trigger, while the activity in the endcaps
produces the reconstructed vertex.

6.4 Data-Monte Carlo simulation comparison

To verify the performance of the MC simulation, collision data need to be compared with the MC
simulation. This data-MC simulation comparison is analysis dependent and needs to be done in
any analysis that makes use of this reconstruction algorithm. The systematic uncertainty associ-
ated with the vertex reconstruction algorithm will, in general, depend upon the event selection and
vertex criteria employed in the analysis. A 2011 analysis searching for pair production of particles
decaying in the MS [8] performed a study comparing the response of the MS to punch-through
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Figure 20. Distribution of the position, in (r,z), of all good vertices in the fiducial volume of the muon spec-
trometer in events that passed the barrel Muon Rol Cluster trigger from 1.94 fb—! of 7 TeV pp collision data.

jets in data and MC simulation. The punch-through events are similar to the signal events as they
both contain low-energy photons and charged hadrons in a narrow region of the MS. The candidate
punch-through jets were selected from a sample of events that passed a single-jet trigger. In addi-
tion, the punch-through jet was required to be in the barrel region of the calorimeter (|n| < 1.5),
satisfy p'Tet > 20GeV and contain a minimum of 300 MDT hits in a cone of AR = 0.6, centred
around the jet axis. To verify that the jet was produced in the collision and not related to machine
noise or cosmic rays, the jet was required to contain at least four tracks with pr > 1 GeV in the ID.
The analysis then compared the fraction of punch-through jets that produced a vertex in the barrel
MS as a function of the number of MDT hits in a cone of AR = 0.6 centred around the jet axis.
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Figure 21 shows the ratio of data to Monte Carlo simulation for the fraction of punch-through jets
that have a good vertex. The ratio, within uncertainty, is constant for all numbers of MDT hits in
the jet cone. A straight line fit to these data points yields a constant of 1.01 £ 0.15. Therefore,
the MC modelling is shown to reproduce data to within 15% and is independent of the number of
MDT hits in the jet cone. This comparison was performed only in the barrel region, where there
was trigger coverage during the 2011 data-taking period.

7 Conclusions

In this paper a new algorithm to reconstruct multi-particle vertices inside the ATLAS muon spec-
trometer has been presented. This algorithm is able to reconstruct vertices with good efficiency
in high-occupancy environments due to electromagnetic showers from 7° decays. It can be used
in searches for long-lived particles that decay to several charged and neutral particles in the muon
spectrometer. The algorithm has been evaluated on a sample of simulated Higgs boson events in
which the Higgs boson decays to long-lived neutral particles that in turn decay to bb final states.
Using this benchmark model, the algorithm is found to have an efficiency of ~30-50% in the bar-
rel muon spectrometer and ~45-60% in the endcap muon spectrometer. The performance of the
algorithm is also evaluated on 1.94fb~! of pp collision data at /s = 7 TeV collected in ATLAS
during the 2011 data-taking period at the LHC. A comparison between punch-through jets in data
and Monte Carlo simulation shows that the algorithm is performing as expected.
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