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Model organisms have been instrumental in advancing discoveries in plant biology. Tomato (Solanum lycopersicum)

is distinguished as a prominent model system due to its well-characterized genetics and economic significance

as a crop. Micro-Tom (MT), an ornamental dwarf tomato variety, was adopted by the tomato research community

as a model plant due to its short stature, fast life cycle, ease of genetic transformation, and ample genomic resources.
Over the last 30 years, the use of MT has illuminated various facets of plant development, including the control

of growth habit, glandular trichomes, leaf anatomy, and the formation of arbuscular mycorrhizal symbioses. We briefly
summarize these contributions and point to further potential advances in the future.

Introduction

Model organisms are a specific subgroup of species that
have been standardized to serve as research objects
(Ankeny and Leonelli 2011). Such model species have
been the keystone of fundamental research in all areas of
biology, and large research communities have been built
around them. The selection and adoption of specific spe-
cies to serve as models has frequently been serendipitous
(Leonelli and Ankeny 2013), but they generally conform
to a pattern that comprises common denominators
such as simplicity, prolificity, and brevity (both in time
and space). Conceptually, models are considered funda-
mental to translational science, as they function vicari-
ously in generating knowledge that can subsequently be
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extrapolated to other larger and more complex organisms
of economic importance.

The first bona fide model organism was the fruit fly
Drosophila melanogaster, and its establishment was
driven by the rapid growth of experimental research
during the 1910s (Kohler 1994). During the 1940s, the
dawn of molecular biology necessitated a reductionist
approach and fostered the use of microorganisms (bac-
teria and yeast). Prior to the advent of genomics, plants
had been widely utilized as genetic and physiological
model organisms, commencing with the forward genet-
ics research of Gregor Mendel on peas (Pisum sativum)
in 1865, followed by tissue culture techniques established
initially in tobacco (Nicotiana tabacum) (Murashige and
Skoog 1962), culminating in the pioneering genetic engi-
neering achievements in petunia (Petunia spp.) (Herrera-
Estrella et al. 1992).

The publication of the Arabidopsis genome was a land-
mark that bolstered its use as a model for reverse genetics
(The Arabidopsis Genome Initiative 2000). The small size
and short life cycle of Arabidopsis, in conjunction with
the generation of large collections of insertional mutants
(Alonso et al. 2003), facilitated the association of genes
with their respective functions (O’Malley and Ecker
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2010). Until the advent of next-generation sequencing
(NGS), efforts to sequence full genomes of plants were
hampered by financial, labor, and time constraints. Tech-
nical breakthroughs in the early 2000s, when NGS plat-
forms such as Roche 454 and Illumina were introduced,
significantly increased sequencing output, increasing
concomitantly the number of available genomes (Sun
et al. 2022). This has led to the multiplication and diver-
sification of plant model species and the expansion of the
scope of genetic analyses to dissect phenomena intracta-
ble in Arabidopsis. Such traits and processes include the
development and maturation of fleshy fruits, the impact
of sympodial flowering on growth habit, compound leaf
architecture, glandular trichome formation, and mycor-
rhizal symbioses. As a model plant, tomato (Solanum
lycopersicum) has been a critical contributor to generat-
ing new knowledge related to these areas of plant biology.

Tomato as a genetic model species

Tomato is a crop of global significance, distinguished by
two distinct production variants: fresh consumption and
processing varieties (Robbins et al. 2011). In addition,
it has a series of attributes that render it an outstand-
ing biological model for plant biology. The plants are
self-pollinating and self-compatible, enabling the estab-
lishment of true-breeding lines and the use of introgres-
sion as a breeding and research tool (Eshed and Zamir
1995). Tomatoes are also cross-compatible with a group
of wild relatives endemic to the Andes region in South
America (Gibson and Moyle 2020). They can thus be uti-
lized to access natural genetic variation (Alonso-Blanco
and Koornneef 2000). Furthermore, tomato has a com-
paratively small genome size (950 Mb) (Tomato Genome
Consortium 2012), extensive and well-curated germ-
plasm resources (https://tgrc.ucdavis.edu/), and compre-
hensive genomic sequences (https://solgenomics.net/). It
also exhibits high genomic synteny with other Solanaceae
species (Peters et al. 2012) and demonstrates high genetic
transformation efficiency across various protocols and
tissue explants used (Van Eck 2018), making it a versatile
subject for various plant research fields.

Micro-Tom: a model cultivar

One of the limitations of traditional tomato genotypes in
comparison to other plant models, such as Arabidopsis,
Medicago truncatula, or Brachypodium distachyon, is
its large plant size and relatively long life cycle, primar-
ily due to the time required for fruit ripening to harvest
viable seeds. The Micro-Tom (MT) tomato cultivar, on
the other hand, is a miniature tomato genotype initially
developed for ornamental purposes. (Scott and Har-
baugh 1989). It has short stature, determinate growth
habit, and a fast life cycle (Campos et al. 2010). Its dwarf
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phenotype is caused by two main recessive mutations,
dwarf (d) and miniature (mnt), of which only the former
has been molecularly characterized (Bishop et al. 1999).
The wild-type D enzyme catalyzes a key step (C-6 oxida-
tion) in brassinosteroid biosynthesis. This reduction in
brassinosteroid biosynthesis leads to dwarfism, enabling
the cultivation of plants in small pots and large numbers
(Pino-Nunes et al. 2009). In addition to the d mutation,
MT is characterized by a determinate growth habit, as it
harbors a mutant allele of the SELF PRUNING (SP) gene
(Pnueli et al. 1998; Marti et al. 2006). Despite these muta-
tions in MT, the plant has served as an effective model
for investigating plant hormone interactions, as illus-
trated by the interaction between SP and auxin (Silva
et al. 2018) and by the introgression of additional muta-
tions in brassinosteroid biosynthesis or signaling pathway
genes leading to phenotypes with more severe dwarfism
(Fig. 1).

Another advantage of MT is its high in vitro regen-
eration rate and genetic transformation efficacy (Lima
et al. 2004). A plethora of MT transformation protocols
using Agrobacterium has been published, demonstrating
its versatility and high efficiency in transgenic explant
generation (Dan et al. 2006; Sun et al. 2006; Pino et al.
2010; Cruz-Mendivil et al. 2011; Guo et al. 2012; Chetty
et al. 2013; Khuong et al. 2013; Shikata and Ezura 2016;
Kaplanoglu et al. 2022; Téth et al. 2022; Jeong et al
2024). Likewise, genomics tools have been developed
for MT, encompassing a genome-wide analysis of SNPs
and InDels in comparison to the reference cultivar Heinz
1706 (Kobayashi et al. 2014), transcriptomic data reposi-
tories (Bae et al. 2021; Goytia Bertero et al. 2021; Lubis
et al. 2023) and, most recently, a near-complete assembly
of its nuclear genome (Shirasawa and Ariizumi 2024).

The beneficial attributes of M T, coupled with its poten-
tial for biotechnological manipulation, have led to the
establishment of a large research community and an
ever-growing number of peer-reviewed publications
and citations (Fig. 2). Key characteristics that differenti-
ate MT (and other tomato cultivars) from Arabidopsis
include: sympodial growth habit, heterobaric leaves, the
presence of glandular trichomes and the establishment of
arbuscular mycorrhizal symbioses in the roots. We next
provide a brief overview of the contributions that have
accrued from the use of MT to gain a deeper understand-
ing of these topics in plant biology.

Molecular regulation of plant growth habit

Plant architecture is a key trait influencing productiv-
ity and agronomic management (Zsogén and Peres
2018). Plant architecture is defined by the growth habit,
shaped by the combination and alternation of deter-
minate and indeterminate meristems. In a determinate
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Fig. 1 The Micro-Tom (MT) tomato cultivar is deficient in brassinosteroids (BR) due to the dwarf mutation (a). However, double mutants with dumpy
(b) and curl3 (c), corresponding to BR biosynthesis and BR receptor genes, respectively, reveal that MT has a functional BR pathway and can be

utilized to dissect hormone functions. Scale bar=5 cm
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Fig. 2 Number of Micro-Tom publications and citations over a 30-year period from 1992 (the first year with a registered citation) to 2022 (the last

year with a full record). Source: Web of Science

apical meristem, the stem cell niche is eventually
expended toward the differentiation of a terminal struc-
ture, such as a flower or an inflorescence. Conversely,
in indeterminate genotypes, the persistence of the stem
cell niche in the apical meristem results in repetitive
vegetative growth (Périlleux et al. 2019). Additionally,
plant growth habits are classified as either monopodial

or sympodial. In genetic models such as Arabidopsis
and Antirrhinum, growth is monopodial, with the inde-
terminate apical meristem producing a sequence of
leaves until a photoperiodic signal transforms it into a
floral meristem, generating an inflorescence (Reinhardt
and Kuhlemeier 2002). This results in two distinct plant
growth stages: vegetative and reproductive. In contrast,



Gasparini et al. Horticulture Advances (2025) 3:8

Solanaceae species exhibit alternate vegetative and repro-
ductive phases, forming modular units called sympodia,
whose repetition characterizes sympodial growth (Péril-
leux et al. 2014; Vicente et al. 2015).

Wild tomatoes are perennial plants with indetermi-
nate growth, but the domesticated tomato is commonly
cultivated as an annual plant (Nakazato et al. 2010). A
recessive mutation that spontaneously emerged in 1914
in Florida, in the SELF PRUNING (SP) gene, resulted in
plants (sp/sp) with determinate growth (Yeager 1927).
The mutation also leads to compact stature and greater
uniformity in fruit ripening and was instrumental in
allowing mechanical harvesting in field-grown tomatoes
(Rick 1978). Subsequent studies have shown that SP is
a member of a large and highly conserved gene family,
CETS, named after its founding members CENTRORA-
DIALIS, TERMINAL FLOWER 1, and SP, also includ-
ing the “florigen” gene SINGLE FLOWER TRUSS (SFT),
whose Arabidopsis ortholog is FLOWERING LOCUS T
(FT) (Lifschitz and Eshed 2006). The SFT gene produces
a non-autonomous flowering signal that is transported
from the leaf to the vegetative apex of the shoot, prompt-
ing its conversion into a reproductive apex (Molinero-
Rosales et al. 2004; Shalit et al. 2009).

Tomato plants heterozygous for the mutant sft allele,
causing SFT gene loss of function, produce more inflo-
rescences, flowers, and larger fruits, resulting in a 60%
increase in productivity compared to control plants
(Krieger et al. 2010; Vicente et al. 2015). While the sft
mutant allele causes late flowering, the SP gene is asso-
ciated with determinate growth. SP and SFT interactions
influence the growth habit (determinate, semi-deter-
minate, and indeterminate) and the transition to the
flowering stage, depending on the relative expression
of these genes in the meristem. In this context, Vicente
et al. (2015) demonstrated that allelic variants of SP and
SFT, not only impact the growth habit, but also affect
fruit productivity and total soluble solids, which are
traits influenced by source-sink relationships (Vicente
et al. 2015). Furthermore, overexpression of the SFT gene
(SFT-o0x) in transgenic plants led to early flowering and
reduced water use efficiency (WUE) due to higher stoma-
tal conductance and thinner leaf laminae (Robledo et al.
2020).

The SELF-PRUNING 3C (SP3C) gene, a paralog of
the SP gene, was studied by Moreira et al. (2022a) in
CRISPR/Cas9 loss-of-function and 35S-overexpression
MT lines. Plants overexpressing the SP3C gene exhibited
delayed seed germination and flowering, more branched
root systems, and delayed wilting under soil water deficit.
In contrast, loss-of-function mutants displayed acceler-
ated seed germination and flowering, longer roots, and
greater drought susceptibility. The expression of SP3C
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was mostly confined in roots, thus suggesting it could
play a key role in connecting water availability and devel-
opmental transitions such as seed germination and flow-
ering (Moreira et al. 2022a).

While MT is a sp/sp mutant (Marti et al. 2006), the
targeted introgression of the wild-type allele allowed the
creation of an MT line with an indeterminate growth
habit (Carvalho et al. 2011). In an intriguing study, Silva
et al. (2018) used MT-SP to investigate the interaction
between SP and DIAGEOTROPICA (DGT) genes and
their influence on polar auxin transport (PAT) and, con-
sequently, tomato plant growth. The authors demon-
strated that free auxin levels and auxin-regulated gene
expression patterns were altered in sp mutants. Further-
more, the diageotropica (dgt) mutation, which impacts a
gene coding for cyclophilin A protein, appeared to have
epistatic interactions with sp. This suggests that the SP
gene influences tomato growth habit, at least in part, by
modulating auxin transport and responsiveness (Silva
et al. 2018). Recent work has shown that gene editing
of the SP and DWARF genes rapidly produces miniature
plants suitable for industrial applications (Nagamine and
Ezura 2024).

Genetic dissection of glandular trichome development

In Arabidopsis, significant advances have been made to
unveil the molecular control of unicellular and non-glan-
dular trichome development. However, this underscored
the necessity for an alternative model for researching
multicellular and glandular trichomes in plants, which
are absent in Arabidopsis. Tomatoes exhibit consider-
able diversity in trichome morphology and functionality,
possessing four glandular trichome types (I, IV, VI, and
VII) and three non-glandular types (11, III, and V) (Luck-
will 1943; Glas et al. 2012). The availability of numerous
wild tomato species with sequenced genomes and unique
trichome traits (e.g., S. habrochaites exhibits a greater
glandular cavity in type VI trichomes, and S. pennellii
has a higher density of type IV trichomes) has been key
in uncovering the pathways regulating trichome devel-
opment, particularly glandular trichomes, and their
metabolic pathways (Bergau et al. 2015; Xu et al. 2018;
Therezan et al. 2021; Vendemiatti et al. 2022).

Gene introgressions from wild relatives remain a pow-
erful tool for basic and applied research in tomato. For
example, the use of introgression lines is highly effective
for QTL localization, gene identification, and identifica-
tion of gene-by-gene and gene-by-environment inter-
actions (Alseekh et al. 2013). Although some inter- and
intra-specific incompatibility issues exist in tomato
wild relatives (Mutschler and Liedl 1994), success-
ful cross-breeding between species has been achieved
(Chetelat 2016). This has enabled the introgression and
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identification of genomic regions associated with tri-
chomes development and metabolism in tomato plants
(Therezan et al. 2021; Vendemiatti et al. 2022, 2024; Gas-
parini et al. 2023). The use of MT as the recurrent parent
has been fundamental to the successful introgression of
loci underlying trichome-related traits and their subse-
quent genetic dissection. MT introgression lines, named
MT-Get (MT XS. galapagense) and MT-Sst2 (MT XS.
habrochaites), have unraveled the genetic determinants
controlling the development and metabolism of type IV
and VI glandular trichomes, respectively (Therezan et al.
2021; Vendemiatti et al. 2022, 2024).

Although the diversity in trichome types and densities
among tomato plants and their wild relatives is essen-
tial for the identification of trichome-related genes, the
epistatic effects of the genetic background can com-
plicate these studies. Thus, using MT as a single culti-
var is advantageous, especially for comparative studies.
For example, analysis of monogenic trichome muta-
tions (Lanata—La, hairs absent — h, and Woolly—Wo)
all introgressed into MT has provided strong evidence
that the La mutation is associated with increased leaf
gas exchange and reduced leaf temperature, which are
desirable traits in breeding programs (Gasparini et al.
2021). Moreover, the generation of transgenics in an
MT background is straightforward and convenient (Pino
et al. 2010). Genetic transformation of MT has been suc-
cessfully employed to unravel trichome developmental
pathways, metabolite production, and gland formation
in tomato plants (Chang et al. 2021, 2024; Yang et al.
2021) The reporter genes GUS (B-glucuronidase) and
YFP (yellow fluorescent protein), fused with promoter
of the gene encoding the enzyme acyltransferase (AT2),
allowed for tracking glandular cell development in type
I and IV glandular trichomes in transformed MT plants
(Chang et al. 2021). Recently, the pathway that modulates
the spatiotemporal formation of trichome glands was
elucidated using transgenics in various tomato cultivars,
including MT, by altering the expression of gland cell
repressor (GRC) genes (Chang et al. 2024).

Despite certain differences in glandular trichome
metabolism between tomato species, MT transformation
has helped identify the role of genes involved in terpene
biosynthesis, such as the SCL3 gene (a scarecrow-like
subfamily transcription factor) (Yang et al. 2021). The
ease of use of MT for reproducibility and validation of
results from other species using MT plants is an addi-
tional advantage. A case in point is the characterization
of the /i phenotype (Gasparini et al. 2023). Wild tomato
species (S. pimpinellifolium) with a disruption of the H
gene exhibited the same phenotype as MT-/ plants, spe-
cifically a decreased density of long trichomes and an
increased density of type VI trichomes (Gasparini et al.
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2023). This correlation of phenotypes exemplifies the
robustness of MT as a model for studying trichomes,
potentially facilitating advancements in research and the
generation of consistent data.

Genetic basis of homobaric and heterobaric leaves

A rich array of diverse structures can be observed in
the leaf arrangements of plants. These arrangements are
fundamental for the organism’s development in adverse
environmental conditions. Leaves have a hydraulic design
that optimizes water transport, facilitating environmen-
tal acclimatization and influencing the ecological distri-
bution of plant species (Nicotra et al. 2011). The venation
pattern contributes to the performance regarding water
transport and distribution (Sack et al. 2012; Sack and
Scoffoni 2013). Bundle sheath extensions (BSEs) consist
of a column of parenchyma and sclerenchyma cells that
connect the veins to the epidermis in the leaves of numer-
ous species (Buckley et al. 2011). The hydraulic integra-
tion of the leaf blade is enhanced by the presence of BSEs,
which reduce the resistance to water flow between veins
and stomata (Zwieniecki et al. 2007). Leaves with BSEs
are considered heterobaric, whereas those without BSEs
are homobaric (Terashima 1992).

In tomato plants, leaves are classified as heterobaric
(Thompson et al. 2007). Little is known about the genetic
control of BSE formation, although a potential adaptive
role is suggested by the clear ecological bias in the dis-
tribution of heterobaric and homobaric species (Kenzo
et al. 2007). The monogenic obscuravenosa (obv) mutant
(Jones et al. 2007), was characterized as homobaric using
a near-isogenic introgression line in an MT background
(Zs6gon et al. 2015). The obv mutation has been incor-
porated into numerous tomato cultivars (Jones et al.
2007), suggesting that it may offer specific benefits in
in tomato breeding. The introgression of obv into MT
paved the way for the fine-mapping and identification of
the responsible gene, a C,H, Zn-finger transcription fac-
tor (Moreira et al. 2022b). Interestingly, the homobaric
phenotype of AUXIN RESPONSE FACTOR 4 (ARF4)
knockdown (via RNAi) and knockout (via CRISPR/Cas9)
lines in MT (Bouzroud et al. 2020) contributed to placing
OBV in an auxin signaling-related pathway (Moreira et al.
2022b). Further work will contribute to producing a more
complete picture of this new auxin signaling module that
controls BSE development.

Hormonal control of the arbuscular mycorrhizal symbiosis

Arbuscular mycorrhizal fungi (AMF) colonize the
roots of certain angiosperms, resulting in a symbiotic
relationship in which nutrients are exchanged between
the plants and AMFs (Duan et al. 2024). In particular,
inorganic phosphate (Pi) is the primary currency in
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this interaction, with plants possessing a mechanism
that promotes symbiosis under conditions of low Pi
availability (Ezawa and Saito 2018). In addition, the
fungal mycelium enhances access to previously inacces-
sible resources due to root absorption area expansion.
However, species of some angiosperm families do not
form mycorrhizal associations, amongst them various
Proteaceae, Chenopodiaceae, and Brassicaceae family
members, and certain Fabaceae and Cactaceae genera
(Wang et al. 2021). The genetic coordination between
the symbiotic partners is not well understood, and
Arabidopsis is not a suitable model species, as it does
not form mycorrhiza (Fernindez et al. 2019).

It has long been established that phytohormones
regulate AMF formation; however, the molecular spe-
cifics of this regulation remain elusive (Barker and
Tagu 2000). The utilization of MT mutants constitutes
an effective approach to elucidate such mechanisms
(Shaul-Keinan et al. 2002; Rillig et al. 2008). One of the
first studies comparing different hormone mutants for
AM formation was conducted in a collection of near-
isogenic lines in an MT background (Zs6goén et al.
2008). The ethylene overproducing mutant epinastic
was found to suppress hyphal penetration to the roots
and reduce colonization. A subsequent study found
that the ABA-deficient mutant notabilis interferes with
the development of AMF symbiosis, even when using
an ethylene inhibitor (Fracetto et al. 2013, 2017). Fur-
ther work using MT genetic variants will provide more
insight into the hormonal control of AMF formation
and suggest approaches to its optimization.

Conclusions

Plant biology has been prolific and dynamic in the
development of biological model organisms, as recently
illustrated by a machine-learning-assisted analysis of
the research trends over the last five decades (Shiu and
Lehti-Shiu 2024). The top five genera with published
records in the last 50 years are, in decreasing order,
Arabidopsis, Oryza, Nicotiana, Triticum, and Glycine
(Shiu and Lehti-Shiu 2024). The advent of the genomics
era has ushered in a diversification and decentralization
of research efforts, with experimental work increasingly
conducted directly on species of interest. Thus, the
tomato has emerged as a key player in both fundamen-
tal and applied research, as both a convenient genetic
model and a cash crop. The adoption of the minia-
ture cultivar MT has further expanded the repertoire
of tools available for studying tomato genetics. It will
continue to provide significant value for research, as we
have attempted to demonstrate in this brief overview.
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