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Structure-based virtual screening (SBVS) is an important approach that makes the first 
stages of drug development and repurposing processes faster and more efficient. Advances in 
experimental techniques and in silico computational modeling have contributed significantly to 
the characterization of diverse biological targets. Combined with the rapidly growing number of 
chemical compounds available in virtual databases, these advances enable the effective application 
of SBVS for prioritization of putative bioactive compounds to treat a wide range of pathologies. 
Techniques such as molecular docking, along with the utilization of pharmacophore models, are 
commonly employed for screening large databases of compounds, providing a solid foundation 
for employing SBVS in drug development pipelines. This review comprehensively analyzes 
recent advancements and strategies employed in the field of SBVS and explores methodologies 
for validation, limitations, and challenges associated with this approach. Through a series of case 
studies across different therapeutic targets, we demonstrate SBVS’s versatility and efficacy in 
identifying potential therapeutic agents. However, challenges remain, and understanding these is 
crucial for maximizing SBVS’s potential. We address these challenges, offering insights into the 
current limitations and future prospects of SBVS in drug development.

Keywords: drug design, computer-aided drug discovery, virtual screening methods, structure-
based pharmacophore modeling, and computational chemistry in drug development

1. Introduction

The traditional drug development process is complex, 
requires high economic costs, time, and multidisciplinary 
efforts.1 Fortunately, advances in technology have 
revolutionized the drug development process, moving away 
from the “trial and error” method and starting to use modern 
tools such as automated assays and artificial intelligence.2 

In the past, medicine was primarily based on the use 
of herbs and potions with healing effects, and only in the 
mid-19th century were the first efforts made to isolate 
and purify the chemical compounds responsible for their 
medicinal properties, known as active ingredients.3,4 These 

efforts led to the discovery of several important molecules 
by the first half of the 19th century through vegetal extracts, 
such as opioids (e.g., morphine) for use in chronic pain, 
salicylates (e.g., salicylic acid) for use in inflammation and 
as antipyretics, and tropane alkaloids (e.g., cocaine) for use 
in anesthesia.5,6 This period also saw the birth of the first 
pharmaceutical companies, where chemists made several 
chemical analogues in an attempt to improve the properties 
of natural compounds.5-7 Furthermore, some drugs were 
discovered by serendipity, such as antibacterial penicillin 
derived from fungi and the antipsychotic chlorpromazine 
(Figure 1). 

However, according to Pasteur: “...In the fields of 
observation, chance favors only the prepared mind”.8,9 
These early discovery processes, though they achieved 
some successes, were expensive, inefficient, and relied 
heavily on manual trial and error methods, lacking the 
efficiency of automated assays like high-throughput 
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screening (HTS). Furthermore, the methods employed often 
resulted in the discovery of hit compounds (e.g., molecule 
that produces reproducible activity above a defined 
threshold in a biological assay and whose structural identity 
has been established) with little or no understanding of their 
pharmacokinetics, toxicity, or mechanisms of action.10-12

The 20th century was a golden era in the pharmaceutical 
field, providing most of the current repertoire of drugs 
currently used in therapeutics.13 The rapid discovery of 
drugs during this period can be attributed, in part, to 
advances in the fields of microbiology and parasitology, 
which allowed the understanding of infectious processes 
and etiological agents of various diseases.14,15 Significant 
contributions have also come from the fields of biochemistry 
and physiology, allowing detailed understanding of the 
underlying physiological and biochemical disorders that 
lead to the phenotype of various diseases, as well as notable 
advances in the field of organic chemistry, further refining 
synthetic processes.16,17

With these advances, the rational design of drugs could 
be primarily achieved through exploration and utilization 
of molecules with known activity, including the application 
of concepts such as structure-activity relationships and the 
development of “me-too” drugs and drug repurposing.18-20 
Additionally, approaches such as phenotypic screening 
assess the effects of potential drugs on cultured cell lines 
(in vitro), isolated tissues/organs (ex vivo), or whole 
animals (in vivo), allowing for the refinement of lead 
compounds through testing of the effects of series of 
analogues. Moreover, target-based screening of molecules 
on purified target proteins in vitro allowed the elucidation of 
mechanisms of action at the molecular level.21 The search 
for lead compounds is not limited to plant extracts alone, 
but also includes sources in venoms, toxins, and metabolites 
(from animals and microorganisms), as well as screening 
in molecular virtual libraries.22,23 

Even given advances in organic synthesis and this 
diversity of sources, the available chemical space is still 
far from being comprehensively explored in the field of 

drug discovery. The chemical space is a metaphor that can 
be likened to the cosmological universe in its vastness, 
with chemical compounds populating space instead of 
stars, making its exploration a challenging task.24,25 To 
contextualize the complexity of the task, consider a modest 
list of 150 substituents, ranging from mono-substituted 
to 14-substituted hexanes. Given this list, it is possible to 
generate more than 1029 derivatives of n-hexanes. However, 
not all theoretically possible compounds fall within the 
limits of what is synthetically viable to produce, even with 
the extensive current knowledge of organic chemistry.24 This 
limitation led to the emergence of combinatorial chemistry, a 
strategy characterized by the rapid and efficient construction 
of a variety of structurally related compounds, resulting in 
the creation of combinatorial libraries.26 Starting from a 
single known bioactive molecule as a model, it is possible 
to assemble a set of theoretically isofunctional molecules.26 
The process of generating combinatorial libraries, whether 
through experimental or virtual means, can be based on 
synthetic routes or scaffold-based strategies, providing 
powerful tools to explore broad areas of chemical space.27

The first combinatorial libraries were used in HTS 
techniques, which employ automatic robotic technology 
to experimentally screen a large number of molecules in 
search of those that induce the desired biological effect.28,29 
However, the growing number of compounds available for 
screening added to other limitations and costs involved in 
the HTS approach, leading to the development of in silico 
approaches, such as virtual screening (VS), to complement 
HTS.30,31 

The integration of the aforementioned techniques 
(combinatorial chemistry and HTS) significantly optimized 
the process of developing new drugs. However, the HTS 
hit rate is often extremely low.32,33 Further, many hits 
can be “artifacts”, yielding false signals across a variety 
of assays because their activity does not depend on a 
specific drug-like interaction.34,35 The low hit rate and high 
technology investment involved in HTS has constrained its 
usage to advanced research programs and pharmaceutical 
companies.36,37 Therefore, VS emerges as a valuable rational 
approach to guide the selection of new hits. VS can be used 
in integration with HTS, with combinatorial libraries, or 
applied for screening in large databases for private use (in 
the case of pharmaceutical companies), research groups, or 
public use (such as the Zinc,38,39 PubChem,40,41 ChEMBL42,43 
and DrugBank44,45 databases). VS might reduce costs 
associated with purchasing biological and chemical 
materials and analyzing HTS results.46,47 Additionally, 
synthetic modeling techniques and artificial intelligence 
have led to an explosion in the number of compounds in 
large databases.48 For example, the Zinc database, which is 

Figure 1. Morphine, salicylic acid and cocaine are examples of drugs 
originating from vegetal extracts. Chlorpromazine and penicillin were 
discovered by serendipity.
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widely used in large-scale VS, contained less than 1 million 
molecules in 2004, while the latest version (Zinc22) has 
surpassed 37 billion unique chemical entries, representing 
a 50,000-fold increase in just 18 years.38,49,50

Combinatorial chemistry (improved by computational 
methods) and the explosion in the number of molecules 
available in databases can promote the idea that “bigger is 
better” because expansion in chemical space brings some 
advantages, such as rapid and cost-effective identification 
of drug-candidate ligands and protein targets, as well 
as the selection of new molecular scaffolds, which are 
crucial for patents and drug discovery.51 However, the idea 
of “bigger is better” needs to be examined with caution, 
as the expansion in chemical space can increase the 
occurrence of false positive hits.50 This is due to the fact 
that the diversity of compounds in an expanded chemical 
space can lead to non-specific interactions or artifacts. 
Moreover, the complex structures and as yet poorly 
documented chemical properties of new entities, combined 
with a limited understanding of their structure-activity 
relationships (SAR), exacerbates this risk. Furthermore, 
more complex molecules exhibit poorer fits with protein 
targets, suggesting that inclusion of ever more complex 
molecules in databases is unlikely to yield proportional 
gains in drug discovery.52 To address this challenge, 
researchers focus on improving our understanding of SAR. 
Evidently, the growth of virtual libraries requires efficient 
strategies to avoid wasted efforts.51,53

To assist in choosing strategies, computer-aided drug 
design (CADD) offers a set of chemical and physical 
strategies to discover, design, and develop promising 
compounds using mathematical and computational tools 
in the areas of chemoinformatics and bioinformatics.54,55 
On October 5, 1981, Fortune magazine56 published a cover 
article entitled “The Next Industrial Revolution: Designing 
Drugs by Computer at Merck”. Some have credited this 
as being the start of intense interest in the potential for 
CADD. The technique can be categorized into three 
distinct approaches: (i) ligand-based drug design (LBDD), 
where data related to active ligands play a central role; 
(ii) structure-based drug design (SBDD), which requires 
experimental information or molecular modeling data of 
target macromolecules; and (iii) fragment-based drug design 
(FBDD), which utilizes molecular fragments as potential 
innovative starting points for drug development.57,58 
However, it is worth noting that while CADD can assist 
in FBDD, FBDD itself is considered a distinct approach 
from CADD techniques.57 These strategies offer diverse 
methods in the quest for identification of new therapeutic 
substances, allowing integrative approaches based on the 
nature, availability, and quality of the accessible data.59-61 

In the face of paradigm shifts in drug discovery 
processes and significant advances in structural biology, the 
exploration of structure based virtual screening methods 
is of great interest to the scientific community and the 
pharmaceutical industry. 

2. Virtual Screening

VS performs a search in silico for biologically active 
molecules within large compound databases using CADD 
techniques.62-64 VS is often used to predict the ability of 
molecules to bind to a macromolecular target of known 3D 
structure, allowing estimation of promising hits even before 
the biological assay and thus optimizing cost-effectiveness 
compared to the HTS approach for a hit detection.62,65 
Current estimates of the Research and Development (R&D) 
costs required to bring a new drug to market vary from 
$113 million to just over $6 billion.66-69 VS has as its main 
advantage the reduction of costs and time in the early 
stages of R&D,46 as it allows the intelligent exploration of 
vast virtual libraries, sourced from combinatorial libraries 
and large commercial databases containing billions of 
compounds, such as Zinc,39 PubChem,41 DrugBank,45 and 
ChEMBL.43

VS can be further subdivided into ligand-based virtual 
screening (LBVS), where information from ligands with 
known activity is employed to search for similar compounds 
through the generation of molecular fingerprints and 
ligand-based pharmacophore modeling, and structure-
based virtual screening (SBVS), where prior knowledge 
of the target structure information is crucial.70,71 Based on 
structural information of the biological target, molecular 
docking and/or structure-based pharmacophore modeling 
can be employed in the search for ligands that exhibit high 
complementarity to the target. Within this context, we focus 
on explaining the uses, methods, and advantages of SBVS.72

2.1. SBVS

SBVS is a VS strategy, with the main premise being 
structural knowledge of the target macromolecule, 
focusing mainly on chemical complementarity between 
possible ligands and the studied structure.73-75 A good 
target must be validated as a crucial component in the 
pathophysiology of the studied disease, and must also 
be “druggable.” In other words, the target must be able 
to be therapeutically modulated by small molecules.76,77 
Furthermore, the target should be accessible to the 
potential drug molecule, and, upon binding, the potential 
drug must elicit a biological response that may be 
measured both in vitro and in vivo.78
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The human genome was completely described in in 
the early 2000s, bringing a wealth of opportunities for 
SBVS applications and the potential for discovery of new 
drug targets.79 However, the vast majority of currently 
well-explored biological targets belong to so-called target 
superfamilies (e.g., G-protein-coupled receptors, kinases, 
proteases, ion channels, nuclear hormone receptors), which 
comprise less than 500 of the 10,000 potential targets in 
drug discovery, indicating the vastness of possibilities that 
remain to be explored through this strategy.16 Targets can 
be characterized both through experimental techniques 
(i.e., nuclear magnetic resonance, crystallography, cryo-
electron microscopy) or computational protein structure 
modeling to search for ligands in large databases using 
SBVS.80-83 The Universal Protein Resource (UniProt)84,85 
includes an expert-curated core of around 568,000 reviewed  
UniProt/Swiss-Prot protein sequence entries and over 
229 million unreviewed UniProt/TrEMBL entries that are 
annotated by automatic systems. Protein Data Bank (PDB) 
currently has more than 200,000 experimentally determined 

3D structures of proteins and nucleic acids (DNA and RNA) 
and their complexes with one another and with small-
molecule ligands (e.g., enzymes, cofactors, inhibitors, 
peptides, and drugs) an extremely low number in view of the 
number of amino acid sequences available in Uniprot.84-87 
The difficulty of characterization through experimental 
techniques, which can take months or even years to conduct, 
makes computational modeling a crucial tool in the study 
of protein structures.88

SBVS tools offer significant benefits to research and 
pharmaceutical companies. To analyze the impact of these 
strategies on scientific publications, a search was performed 
in the Web of Science platform using the term “structure 
based virtual screening”. The results show an enormous 
increase in the number of publications and citations related 
to this term, as shown in Figure 2.

The continuous evolution of SBVS and its significant 
progress in bibliometric descriptors motivated us to explore 
which areas employed it most. The Treemap (Citations 
Topic Meso) in Figure 3 indicates that the most common 

Figure 2. Result of a search on the Web of Science for the term “structure based virtual screening”, showing rapid growth in the number of publications 
and citations since the 1990s. The data were obtained using the Web of Science platform.

Figure 3. Most common research areas using SBVS. The largest is protein structure, folding and modeling (data obtained from Web of Science).
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research areas employing SBVS are protein structure, 
folding, and modeling, molecular and cell biology (cancer, 
autophagy, and apoptosis), and general virology. 

Computational protein structure modeling has greatly 
benefited from advances in artificial intelligence  (AI) 
techniques such as deep learning (DL), which has 
significantly improved the ability to generate good virtual 
models. Before the rise of AI, structure prediction methods 
were categorized as template-based modeling (TBM, 
also known as comparative modeling) or template-free 
modeling (FM). Until recently, TBM was considered the 
most reliable approach to predict protein structures, but 
these methods faced a long period of stagnation due to the 
absence of appropriate templates, drastically decreasing 
the accuracy of molecular modeling.74

With the employment of AI programs such as 
AlphaFold289-91 in protein modeling platforms, model 
prediction offers vast coverage of distinct protein structures 
with relatively good accuracy. AlphaFold2 uses the end-
to-end protein structure prediction method to forecast 
the tridimensional protein structure from the amino acid 
sequence, focused on the relationship between input 
sequence and output structure.92 The DL architecture 
employs a neural network incorporating multiple sequence 
alignments (MSAs) and outputs protein structures, enabling 
accurate end-to-end structure prediction.93,94 AI geometric 
optimization modeling methods infer protein structure 
spatial characteristics (i.e., contacts, distances, orientation, 
hydrogen bonds between residues), and these deductions 
are combined with force fields (parameter sets used to 
calculate the potential energy of a system at the atomistic 
level) and optimized for sampling the conformation with 

the lowest energy using Monte Carlo methods.95,96 Tools 
such as D-I-TASSER97,98 and trROSSETA99,100 also employ 
these methods to evaluate the target, and such data assists in 
exploring the topology of the binding site, sub-cavities, and 
physicochemical and/or electrostatic properties.101 These 
data enable greater understanding of target characteristics, 
which is essential in SBVS, allowing for more efficient 
exploration of the target of interest, including the search 
for agonist molecules, receptor antagonists, competitive 
enzymatic inhibitors, and allosteric modulators.102,103 After 
the examination of structural data, SBVS strategies can 
be properly employed, primarily through methods such 
as molecular docking and structure-based pharmacophore 
modeling.104,105

2.2. Molecular docking-based virtual screening

Molecular docking is a computational simulation 
technique that stands out as a versatile and comprehensive 
tool within the drug discovery process.87,106 Molecular 
docking plays an important role in analyzing the interaction 
between ligand and biological target, applicable not 
only to small molecule-receptor interactions but also 
to protein-protein interactions.74,107,108 This capability 
contributes significantly to the utility of molecular docking 
in elucidating complex biological processes, searching 
for hits, optimizing hits to leads, and drug repositioning, 
providing valuable insights into potential therapeutic 
interactions (Figure 4).110,111 

Over recent decades, the evolution of molecular docking 
has been driven by improved algorithms and advances in 
computational capacity.112 Previously, molecular docking 

Figure 4. Strategies employed in the SBVS approach and optimization of hits. (Bottom) Hit optimization steps are adapted from Jorgensen;109 (left) 
an example of pharmacophoric model is shown, with four features: hydrogen bond donor (HBD); hydrogen bond acceptor (HBA); aromatic (AR); and 
hydrophobic area (H), PDB accession code for the DHFR protein: 3K2H; (right) conformations generated by a search algorithm and selected by a scoring 
function for different ligands are shown (captopril is shown as pale cyan lines, quinaprilat is shown in yellow lines and fosinopril is shown in green line 
segments), PDB accession code for the ACEII protein: 1O86. 
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was limited to a rigid approach, in which static geometric 
and physicochemical complementarities between ligands 
and the biological target were taken into account.113 This 
approach disregarded flexibility and induced fit binding 
models, focusing only the fixed structural characteristics 
of the molecules.114-116 Semi-flexible docking introduces 
flexibility, allowing only the small molecule to adjust its 
conformation during the docking process and covering 
all degrees of freedom, including rotation, translation, 
and conformational changes, while maintaining the 
macromolecule as a rigid structure. This enables a more 
dynamic consideration of interactions, although still 
disregarding altogether the flexibility of the biological 
target molecule.117

With advances in computational capacity, it has become 
possible to create fully flexible docking tools, representing 
a more comprehensive approach where both the target and 
ligand are considered fully or partially flexible, allowing 
for the implementation of induced fit binding models where 
both molecules can modify their conformations to optimize 
their binding.118-120 This approach is particularly valuable 
when dealing with complex biomolecular interactions, 
where flexibility is an essential feature for the efficient 
formation of complexes.121 In summary, the choice between 
these approaches will depend on the specific nature of the 
molecular system in question and the goals of the research 
in molecular docking.122 Regardless of the approach 
(e.g., rigid, semi-flexible, flexible) molecular docking 
involves two challenges. The first is the search for ligand 
conformations through search algorithms. The second is the 
prediction of binding affinity through a scoring function, 
which quantifies the thermodynamics of the specific 
molecular interactions that are formed between receptor 
and ligand and ranks the compounds poses with a score 
representing chemical affinity.123,124

2.2.1. Search algorithm
In docking-based VS, an SBVS strategy, search 

algorithms are used to predict the conformation of ligands, 
exploring the possible conformational space that a given 
ligand can assume at the target binding site. Docking-
based VS may be characterized as systematic, stochastic 
or deterministic.125-127

Systematic algorithms perform exhaustive searches 
in all conformational spaces, exploring all degrees 
of freedom of the ligand in a combinatorial manner, 
rotating all dihedral angles of the ligand according to a 
predetermined range of values and a set of initial restraints 
(e.g., geometrical and chemical constraints), focusing on 
regions of conformational space that are likely to have high 
scoring ligand poses.75,128 Another way that the systematic 

algorithms perform conformational search is through 
incremental construction, which fragments the ligand into 
rigid and flexible segments (sub-molecules). This approach 
begins by introducing the rigid segment of the molecule into 
the binding site and incorporating the flexible segments in 
subsequent iterations while conducting a systematic search 
for torsion angles between the segments.129,130 

Stochastic search algorithms introduce random 
changes to ligand degrees of freedom. One common 
implementation of stochastic algorithms is the so-called 
genetic algorithm (GA).131 The GA is based on the theory 
of biological evolution, which can be either Darwinian or 
Lamarckian, wherein the arrangement of the ligand in the 
protein can be defined as a set of values describing variables 
(translation, orientation, and conformation) of the ligand 
in the protein, with each variable representing a gene, the 
set of variables representing the genotype, and the atomic 
coordinates forming the phenotype. The combination of 
all these data represents a chromosome.132,133 The genetic 
algorithm generates an initial population of chromosomes 
randomly, from which the capacity and total energy of 
interactions between the ligand and protein are assessed 
through an energy function. The fittest populations are 
manipulated using genetic operators (i.e., crossover, 
mutation), forming new populations of chromosomes that 
are then reevaluated.134,135

In deterministic algorithms, searches for conformations 
are conducted with explorations directed towards lower 
energy states compared to the initial state, implying that the 
initial state, along with its associated energy level, serves 
as a fundamental guide for the generation of subsequent 
energy states. Essentially, these algorithms follow a 
trajectory predetermined by the initial configuration and 
the energy associated with that configuration.136,137

2.2.2. Scoring function
Score functions commonly estimate the binding energy 

between ligand and the target, assuming that binding 
affinity is described as the sum of independent terms. 
Applications in molecular docking-based VS involve the 
evaluation of conformations previously generated by the 
search algorithm in the target’s binding site, estimating the 
binding affinity and thus assisting in the process of selecting 
hits for a specific molecular target.138 Score functions can 
be grouped into three main approaches: force field-based 
functions, empirical functions, and knowledge-based 
functions.139 Over the years, several studies have evaluated 
and compared different scoring functions, and each has its 
virtues and disadvantages. None of the available scoring 
functions outperforms the others on all tasks, but each 
scoring function may perform better than others on specific 
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tasks.140 To overcome the limitations that each scoring 
function may present, the consensus scoring approach is 
commonly used, which combines results from different 
docking programs by calculating the average score or 
classification of each molecule obtained in individual 
programs.141 Softwares like Gold142,143 offer empirical 
scoring functions (e.g. Chemscore)144 and force field-based 
scoring functions (e.g. Goldscore)144 in their package, 
while programs like DockThor145,146 offer empirical scoring 
functions (e.g. DockT score147).148

Force field-based scoring functions estimate bond 
energy by summing the contributions of bonded terms 
(bond elongation, angular bending, and dihedral variation) 
and unbonded terms (electrostatic and van der Waals 
interactions) into a general master function. This type of 
scoring function calculates the energy associated with 
each term of the function using the equations of classical 
mechanics.148,149 Force field score functions are appropriate 
to compute binding free energy between proteins and 
ligands with relatively greater predictive accuracy than 
other types of score functions due to their consideration of 
the enthalpy, solvation energy, and entropy.150,151

Empirical score functions focus on estimating the 
binding affinity in a molecular complex by evaluating a 
specific set of atomic interactions within that complex, 
employing a training database to enhance predictive 
capability.152,153 This database includes structures with 
known affinities, allowing the model to assign appropriate 
weights to the various atomic interactions based on their 
contributions to the total binding affinity. In essence, 
empirical functions leverage existing data to make 
predictions about the binding affinity.154

Knowledge-based scoring functions are constructed 
through rigorous statistical analysis of target structures that 
have been characterized by experimental techniques.155 The 
underlying principle is to identify interatomic distances that 
occur more frequently than a statistical average, interpreting 
these occurrences as indicative of favorable contacts in 
molecular interactions.156,157 An illustration of the processes 
of searching for and scoring ligand poses in a binding site 
is exemplified in Figure 4.

2.3. Pharmacophoric model-based VS

Pharmacophoric models represent one the most 
promising approaches in VS. The technique is applicable to 
both SBDD and LBDD for hit discovery and optimization 
of lead compounds to final drug candidate, among 
other applications.158,159 The term “pharmacophore” 
was first introduced in the early 1900s and commonly 
attributed to Paul Ehrlich, to refer to the molecular 

framework that carries (from the Greek “phoros”) the 
essential characteristic responsible of a drug (from the 
Greek “pharmacon”) to express the desired biological 
response.160,161 Before the advent of CADD techniques 
in the 1940s, initial considerations regarding SAR, 
coupled with knowledge of bond distances and van der 
Waals sizes, allowed the construction of simple two-
dimensional pharmacophoric models. These models were 
employed, for instance, in the search for analogs of para-
aminobenzoic acid (PABA) and the estrogenic agent trans-
diethylstilbestrol.162,163 The three-point model, proposed 
by Easson and Steadman,164 contributed significantly to a 
better understanding of ligand-receptor interactions and to 
the construction of pharmacophoric models by accounting 
for the chirality of molecules. When an asymmetric center 
is present in a compound, substituents on the chiral carbon 
atom are believed to make a three-point contact with the 
receptor.165,166 In the 1960s, Kier167 was the first to calculate 
the pharmacophoric model in a study of muscarinic agonists 
using the quantum mechanics of extended Hückel theory, 
establishing the beginning of computationally generated 
pharmacophores. This spurred the development of various 
algorithms, which in turn led to the software tools widely 
used in drug design today.168,169

Historically, many authors have used the term 
“pharmacophore” to define structural or functional 
groups possessing biological activity. However, the 
International Union of Pure and Applied Chemistry 
(IUPAC) definition of the term, given in Wermuth et al.,170 
says that a pharmacophore is the ensemble of steric and 
electronic features that is necessary to ensure the optimal 
supramolecular interactions with a specific biological 
target structure and to trigger (or to block) its biological 
response. This definition discards a misuse often 
found in the medicinal chemistry literature,170,171 which 
consists of naming as pharmacophores simple chemical 
functional groups such as guanidines, sulfonamides, or 
dihydroimidazole (formerly imidazolines), or typical 
structural skeletons such as flavones, phenothiazines, 
prostaglandins, or steroids. Therefore, a pharmacophore 
does not represent a real molecule or a real association of 
functional groups, but rather a purely abstract concept that 
accounts for the common molecular interaction capacities 
of a group of compounds toward their target structure.170 
Pharmacophore models are based on the premise that the 
presence of common chemical features, coupled with a 
specific spatial arrangement, will lead to similar biological 
activity on the same target.172 

Pharmacophoric models can be generated through 
ligand-based or structure-based approaches.173 In structure-
based methodologies, one strategy to define the locations 
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of pharmacophoric features in a binding site involves 
identifying “hotspots”, which are regions of the protein 
cavity where the most favorable contacts occur between 
residues and probe molecules. Hotspots may be obtained 
by mapping the interactions that these “probes” (virtually 
inserted small molecule fragments with specific chemical 
properties) form in the binding site.174,175 Hotspots serve as 
excellent guides in constructing pharmacophoric models 
based on the target structure.176

The chemical features of molecules capable of 
interacting with the receptor are represented by spheres 
and vectors. The most important types of pharmacophoric 
features include hydrogen bond acceptors (HBA), hydrogen 
bond donors (HBD), hydrophobic areas (H), positively and 
negatively ionizable groups (PI/NI), aromatic groups (AR), 
and metal-coordinating areas. Additional size restrictions 
in the form of shape or exclusion volumes (XVOL), 
representing forbidden areas, can be incorporated to reflect 
the size and shape of the binding pocket, as shown in the 
Figure 4.177

Pharmacophoric models based on the structure of the 
target can use data derived from experimental techniques 
or computational modeling. In this approach, it is crucial to 
conduct a thorough analysis of the input data quality, as this 
directly impacts the pharmacophoric model quality.177,178 
Checking the protonation states of individual amino acid 
residues, the positioning of hydrogen atoms, the presence 
and relevance of non-protein substances (cofactors, solvent 
molecules) that may have a functional role, the apo or holo 
conformation of proteins, and identifying gaps in the target 
structure are critical considerations that must be examined 
to ensure the quality of the pharmacophoric model.179 
Pharmacophoric models must undergo validation to 
quantitatively assess their selectivity and specificity before 
being employed in VS. This validation can be conducted 
using statistical metrics such as receiver operating 
characteristic (ROC) curve and enrichment analysis.180,181

Pharmacophoric approaches constitute one of the most 
interesting SBVS techniques, defining molecular functional 
characteristics necessary for the binding of a molecule to 
a given receptor and then using this information to direct 
the SBVS of large collections of compounds to select 
ideal candidates.182 Although the pharmacophoric model 
is a broad and complex technique with several potential 
applications, it can also be used as a filtering method in an 
initial phase of SBVS.183,184 Since pharmacophoric models 
do not depend on specific atoms or functional groups, 
molecules that meet the pharmacophoric criteria not only 
possess potential activity but also may exhibit greater 
chemical diversity.

2.4. Recent advancements in docking engines and 
pharmacophore modeling tools

In recent years, molecular docking has seen some major 
advancements, largely thanks to the integration of AI and 
machine learning (ML) techniques. One of the standout 
developments is the emergence of AI-driven docking 
algorithms capable of accurately predicting the binding 
affinity between a small molecule and its protein target. 
These algorithms use deep learning methods, such as 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), to analyze large datasets of molecular 
structures and their corresponding binding energies. 
By learning from these datasets, AI-powered docking 
algorithms can quickly and effectively screen millions of 
compounds, significantly accelerating the drug discovery 
process.62,104,147,155,185

Moreover, the combination of ML techniques with 
molecular docking has led to the creation of hybrid models 
that combine the strengths of both approaches. These hybrid 
models integrate physics-based scoring functions with 
ML-based scoring functions, resulting in more accurate 
predictions of ligand-protein interactions. Additionally, 
advancements in reinforcement learning have enabled 
the development of adaptive docking protocols capable 
of dynamically adjusting their search strategies based on 
real-time feedback. This adaptability not only enhances 
docking accuracy but also improves overall efficiency. 
Collectively, these innovations represent a transformative 
phase in molecular docking, offering unprecedented 
opportunities for the rapid and cost-effective discovery of 
novel therapeutics.62,104,147,155,185

In pharmacophore modeling, recent advancements 
owe much to the integration of AI and ML techniques. 
AI-powered algorithms have revolutionized the process 
of pharmacophore identification by efficiently analyzing 
complex molecular structures and pinpointing key features 
necessary for ligand binding. Machine learning models, 
particularly deep learning models like CNNs and graph 
neural networks (GNNs), have been particularly helpful 
in recognizing subtle patterns and relationships within 
large pharmacological datasets. This has resulted in the 
development of pharmacophore models that accurately 
capture the interactions between ligands and their target 
proteins with unprecedented precision.186-191

Furthermore, the integration of machine learning 
approaches has facilitated the development of dynamic 
and adaptable pharmacophore models. These models can 
adjust in real-time based on feedback from experimental 
data, enabling continuous refinement and optimization. 
AI techniques have also boosted the speed and scalability 
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of pharmacophore modeling, enabling researchers to 
efficiently screen vast compound libraries and prioritize 
promising drug candidates. With the power of artificial 
intelligence and machine learning, pharmacophore 
modeling is set to transform drug discovery by accelerating 
the prioritization of novel therapeutic agents with improved 
specificity and efficacy.186-191

2.5. SBVS validation examples

Rigorous validation is essential to ensure that SBVS 
is a reliable tool in drug discovery, providing results 
aligned with the underlying structural biology and thus 
proving useful for subsequent optimization of the selected 
compounds. Continuous improvement of methods not 
only enhances the reliability of SBVS, but also increases 
its effectiveness, solidifying it as a valuable tool in the 
drug discovery process.192,193 However, the application 
of validation methods in SBVS studies is notably 
heterogeneous, ranging from situations where it is entirely 
absent, to inappropriate applications, to meticulous and 
thoughtful procedures. Inappropriate validation methods 
can include overfitting to known structures or neglecting 
ligand flexibility, leading to unreliable performance 
assessments. Conversely, thoughtful validation approaches 
involve, for example, blind testing with experimental data 
and cross-docking validation to assess robustness across 
diverse receptor conformations.194-196 Nevertheless, even 
when appropriate methodologies are employed in various 
forms of SBVS, there is a notable lack of uniformity and 
clearly defined reference methods for this technique.192,194-196 

Validation in SBVS involves assessing the method’s 
ability to reproduce plausible results that are compatible 
with previously reported experiments, while ensuring that 
identified drug candidates are biologically relevant.104,197 
An example of this is retrospective docking validation, 
which typically requires benchmarking against known 
ligand-receptor complexes to evaluate accuracy and 
reliability in reproducing experimental binding modes 
and affinities. Prospective validation, on the other hand, 
focuses on predicting the binding modes and affinities of 
newly discovered ligands, often through blind tests against 
experimental data.195 The evolution of docking engines has 
seen significant advancements in various aspects, including 
scoring functions, conformational sampling algorithms, 
and incorporation of ML techniques. While early docking 
engines struggled with accuracy and speed, recent advances 
have led to improved performance, with enhanced scoring 
functions and more efficient sampling methods enabling 
better prediction of ligand-receptor interactions.48 These 
advancements have significantly impacted the reliability 

and applicability of virtual screening approaches in drug 
discovery, allowing for more effective identification of 
lead compounds with desired biological activity.48,198,199 
Within this context, we present in this section two of the 
most widely implemented techniques commonly found in 
SBVS validations.104,200 

2.5.1. ROC curve
The ROC curve is a graphical representation that 

demonstrates the performance of a binary classifier system 
as the discrimination threshold varies. Also known as the 
relative operating characteristic curve, its construction 
involves plotting the ratio of true positives to total positives 
against the ratio of false positives to total negatives for 
different threshold values. These ratios correspond to 
sensitivity (true positive rate) and specificity (false positive 
rate). ROC analysis provides tools for selecting possibly 
optimal models and discarding less optimal ones.201

The plotting of the ROC curve and the evaluation 
of the area under the ROC curve (AUC-ROC) in SBVS 
involves the use of true positives compounds (TPCs) and 
false positive compounds (FPCs), known as decoys.202,203 
TPCs are compounds with known biological activity 
against the molecular target of interest, and are accessible 
in databases such as ChEMBL.42 In certain cases, a small 
number (> 2) of known TPCs is required to calculate the 
AUC-ROC.204 On the other hand, decoys are molecules that 
are intentionally included in a screening dataset but are 
known not to interact with the target of interest. They serve 
as a control to help assess the performance of the screening 
method by mimicking the properties of active compounds 
while lacking their specific biological activity. When a 
screening method incorrectly identifies a decoy as a hit, it 
results in a false positive, indicating a potential flaw in the 
method’s ability to distinguish between active compounds 
and non-interacting molecules.104 DUD-E205,206 and ZINC38 
are examples of databases that provide decoys. The use of 
decoys aims to improve the reliability of VS results, as the 
program can distinguish TPCs from FPCs that have similar 
physical properties but are known to be inactive.193,207

After generating decoys, the SBVS process is carried out 
using known TPCs and decoys against a target of interest (in 
the case of docking-based VS) or a pharmacophore based 
on the structure of a target.202,208 In docking-based VS, for 
each ligand-target complex, an affinity energy is calculated. 
It is expected that TPCs, known to bind to the target of 
interest, will exhibit higher affinity energies compared to 
inactive compounds or decoys. In pharmacophore-based 
VS, results are based on the model’s feature overlap with 
molecules, leading to a similarity ranking of screened 
compounds, with TPCs typically being selected.209,210 In 
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this scenario, the ROC curve represents the distribution 
of true and false results on a graph, while the AUC-ROC 
allows the evaluation of the probability of a result being 
false. Thus, the AUC-ROC reflects the probability of 
retrieving an active compound rather than inactive ones, 
enabling the verification of the sensitivity of the SBVS 
experiment concerning its specificity. The larger the area 
under the curve, the better the ability to have TPCs and 
fewer FPCs.104,201

AUC values can range from 0 to 1, and the practical 
interpretation proposed by Hamza et al.211 establishes 
categories such as excellent (AUC between 0.90 and 1.00), 
good (AUC between 0.80 and 0.90), fair (AUC between 
0.70 and 0.80), poor (AUC between 0.60 and 0.70), and 
failure (AUC between 0.50 and 0.60). Therefore, the 
closer the AUC value is to 1, the greater the ability of the 
SBVS tool to distinguish between TPCs and FPCs, with 
values above 0.7 considered acceptable.104 However, there 
are several critiques regarding the application of the ROC 
curve as a method for evaluating the performance of VS. 
The primary concern is that the method does not effectively 
highlight the most accurately classified active compounds 
that should be prioritized for in vitro experiments, a 
phenomenon referred to as early recognition.104,193,202 In 
response to this challenge, Truchon and Bayly200 proposed 
refining the ROC curve for VS through the enhanced 
discrimination of ROC by Boltzmann (BEDROC), which 
incorporates exponential weighting to assign greater 
significance to early classifications of active compounds 
relative to later ones. However, Nicholls212 argued that both 
AUC-ROC and BEDROC show a high level of correlation 
in VS simulations, concluding that the ROC curve alone is 
a sufficient metric for performance evaluation.212,213

2.5.2. Enrichment analysis
Enrichment analysis in the context of SBVS is of 

crucial importance for assessing the capability of SBVS 
to increase the proportion of active molecules among the 
top candidates selected during the procedure. Enrichment 
analysis involves comparing the distribution of TPCs to 
inactive ones (FPCs) along the ranked list generated by 
VS. The premise is that, as one progresses through the list, 
active compounds should be selected in proportions higher 
than expected by chance alone.104,214

Common metrics in enrichment analysis include 
cumulative enrichment and the enrichment factor (EF). The 
first represents the cumulative increase in the proportion of 
active compounds as the list progresses, visualizing results 
through cumulative enrichment curves. The EF, on the other 
hand, is determined by the number of active compounds 
found in a specific fraction relative to those that would be 

selected in a random search, often calculated for specific 
percentages of the database, as exemplified by EF10% for 
10% of the database.104,200,215

Despite the simplicity of the EF, its limitations include 
dependence on the assigned fraction value and the number 
of true positives and true negatives, making it more of an 
experimental performance metric (reflecting how well 
it performs in real-world experimental conditions) than 
a method performance metric, which would evaluate its 
inherent capabilities under standardized conditions or 
benchmarks.216,217 An additional disadvantage is the equal 
weighting of active compounds beneath the cutoff, making it 
impossible to differentiate between algorithms that place all 
active compounds at the beginning of the list, a phenomenon 
known as the saturation effect.200,218 To overcome these 
limitations, the relative enrichment factor (REF), proposed 
by von Korff et al.,219 normalizes  EF by the maximum 
possible enrichment, providing well‑defined boundaries 
and reducing sensitivity to the saturation effect.

Enrichment analysis plays a crucial role not only in 
assessing the ability of SBVS models to select active 
compounds, but also in enabling the comparison of different 
approaches and parameter optimization. Furthermore, 
successful enrichment evaluations support SBVS in 
efficiently directing its efforts toward more promising regions 
of the compound list, resulting in a more effective selection 
of molecules for subsequent experimental testing.104,200,214

In conclusion, both ROC curve and EF serve as validation 
tools in SBVS, offering distinct yet complementary insights 
into the performance and effectiveness of screening 
methods.200 While the ROC curve provides a comprehensive 
assessment of discrimination between active and inactive 
compounds across various thresholds, making it applicable 
in both pharmacophore-based and docking-based 
approaches, the EF offers valuable information on the 
early enrichment of active compounds. This is particularly 
beneficial in pharmacophore-based screening for selecting 
compounds for experimental validation.199,201,207 By utilizing 
these tools judiciously, researchers can better evaluate and 
enhance the reliability and efficacy of SBVS methods in 
identifying potential drug candidates.

3. SBVS Pitfalls

Elaborating a VS protocol is a challenging task that can 
lead medicinal chemists into several pitfalls. Scior et al.220 
summarize almost all pitfalls that occur in VS, and here, 
we describe the most common errors in the employment 
of SBVS techniques.

Definitions based on erroneous expectations can lead to 
errors in the interpretation of docking results. Considering 
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potency as the main criterion in the search for hits should 
also be avoided, because affinity and potency are optimized 
in the hit-to-lead stages of the development project.220,221 
Instead, the emphasis should be on maximizing structural 
diversity and drug-likeness as well as minimizing 
false-positive rates. This multifaceted approach ensures 
that the compounds selected for biological testing not 
only exhibit potency, but also possess diverse chemical 
scaffolds and favorable properties for further drug 
development.222 Additionally, methods such as clustering 
or scaffold decomposition can be employed to reduce 
costs by decreasing the number of compounds tested 
while maintaining structural diversity.223 Moreover, scoring 
functions do not have sufficient precision for predicting 
the binding affinity of compounds with very different 
structures and different binding modes.224 In initial steps, 
the VS scoring function should be seen as a tool for creating 
hit libraries, rather than attempting to rank compounds by 
greater potency.220

Molecular recognition is a dynamic and highly complex 
process, involving a large number of intermolecular 
interactions between the ligand, the receptor molecule 
and the system’s solvent.225,226 Search algorithms seek for 
conformations that have better complementarity with the 
binding site. However, these conformations in a biological 
assay are uncertain due to various contributing factors. 
These factors include the dynamic nature of proteins, 
solvent effects, binding pocket flexibility, and entropy 
effects.224 Furthermore, the flexibility of the ligand and 
protein, especially in highly flexible targets that require 
induced fitting, coupled with the difficulty in determining 
the bioactive conformation, can lead to protocol errors.227,228 
The notion that the bioactive conformation is invariably 
the lowest energy conformation has been challenged by 
empirical observations and theoretical considerations, 
indicating that this assumption may not always hold true.229 
Considering this in conformational analysis can also lead 
to errors.230,231 The use of flexible molecular docking 
approaches and molecular dynamics for refining results 
of VS are alternatives in these cases, although they have 
a high computational cost.224,232 Semi-flexible docking 
with different target conformations can be used in cases 
of limited computational power.224 Therefore, it is crucial 
for the medicinal chemist to maintain a certain skepticism 
when analyzing results, and to use knowledge about 
possible molecular interactions (e.g., hydrogen bonds, 
van der Waals) to analyze the results conscientiously.233

In the construction of pharmacophoric models, the 
choice of features, although commonly guided by specific 
criteria such as physical-chemical properties of the 
cavity and protein hot spots, can be arbitrary, requiring a 

researcher’s intuition.173,175,177 Therefore, caution is needed. 
Including a greater number of features in the model in 
order to faithfully represent the binding site or achieve 
high selectivity can lead to overly stringent and complex 
models. Applied in VS, these models may result in low 
structural diversity and increase the likelihood of selecting 
false positives. Therefore, the researcher’s experience and 
knowledge play a crucial role at this stage of the project.220

The use of physicochemical property filters also has 
its pitfalls, such as dependence on “drug-like” compounds 
and Lipinski’s rule of five.234,235 Although these filters are 
interesting and valuable in drug discovery, several drugs 
approved by the Food and Drug Administration (FDA) in 
recent years deviate from the rules of these filters, indicating 
that they must be used judiciously to avoid restricting the 
VS project to a relatively narrow fraction of the chemical 
space.236

Errors in the interconversion of different molecular 
formats are also common in VS. Since molecular modeling 
represents a niche market and not all software adheres 
to the same quality control standards, it is common for 
information to be lost or altered when converting a file 
format to another, or even when using the same format 
across different softwares.220,237 The information that can 
be distorted through these technical limitations ranges from 
benign annotations to more serious issues, such as atomic 
coordinates, chirality, hybridization, and protonation states. 
These distortions can impact the reliability and integrity 
of molecular data.216,220 The knowledge and ability of the 
medicinal chemist to properly interpret the results is a 
crucial factor in the discovery of drugs.238

4. SBVS Success Cases

In this section, we describe seven successful cases of 
the application of SBVS to discover promising hits and 
their particularities.

4.1. CCR5 receptor agonists

The C–C chemokine receptors type 5 (CCR5) are 
G protein-coupled transmembrane receptors that play 
a crucial role in immunological processes. They are 
expressed in almost all leukocytes and act as receptors 
for the β-chemokine group, and are thus implicated in 
the chemotaxis of these cells, driving them to inflamed 
regions in need of their physiological action. This family 
of receptors is also involved in the modulation of other 
less well-understood inflammatory mechanisms, and 
additionally play a role in some types of cancers such as 
breast and prostate cancers, inhibiting their migration and 



Structure-Based Virtual Screening: Successes and PitfallsLima et al.

12 of 29 J. Braz. Chem. Soc. 2024, 35, 10, e-20240112

metastasis and enhancing the effectiveness of chemotherapy 
in some kinds of cancer stem cells when inhibited by 
antagonists.239,240 Furthermore, CCR5 together with the 
C-X-C motif chemokine receptor 4 (CXCR4) are used by 
the human immunodeficiency virus (HIV) as co-receptors 
for cell entry. Therefore, Kellenberger et al.241 took interest 
in developing CCR5 receptor antagonists which led them 
to employ a SBVS methodology to select promising hits 
from a library the group filtered according to criteria such 
as drug-likeness, probable toxicity, reactive compounds 
and pan-assay interference compounds (PAINS). The 
study screened 44,524 different compounds in parallel in 
both the softwares Gold144 and Surflex,242 with a subset of 
the compounds extracted by a 2D pharmacophoric filter 
based on all known CCR5 antagonists at the time, which 
the research group used as a validation dataset. This 
framework led to the selection of 5% of the screened dataset 
in both softwares employed, and among those, less than 
one hundred compounds were commonly selected by both 
programs. The researchers then employed a graph-based 

maximum common substructures (MCS) post-processing 
procedure to classify the selected compounds, followed by 
visual inspection of the binding poses, which resulted in 77 
final hits. Among the 77 hits, 59 were commercially available 
for purchase, and were acquired for conducting in vitro 
receptor functional response in an aequorin luminescence 
assay, with radiolabeled MIP1-β  (CCL4) as a tracer in a 
competition binding assay, with the compounds tested in 
two concentrations. Ten compounds exhibited detectable 
binding affinity to the CCR5 receptor. Nine out of the ten 
binding hits showed agonist activity in the conducted assay, 
with the most potent one showing a value of half maximal 
effective concentration (EC50) of 1.9 µM (Table 1). This 
work illustrates how an SBVS strategy can be effectively 
used to select a few promising hits from a large library of 
compounds, making it possible to find active compounds 
with much less money, time and work expenditure. However, 
it also illustrates that virtually prioritizing compounds with 
affinity for the desired target does not necessarily mean they 
will have the desired activity profile on said target.241

Table 1. CCR5 receptor agonists found by SBVS of a library of 44,524 compounds

Compound code in the 
original work

PubChem CID Compound chemical structure EC50 / µM

8 1167892

 

3.0

9 4080740

 

antagonist

10 3209888

 

> 100

11 3258407

 

1.9

EC50: half maximal effective concentration. Data obtained from Kellenberger et al.241
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4.2. Reverse transcriptase inhibitors

One of the most effective therapeutic strategies in 
combating the HIV infection involves inhibition of its 
reverse transcriptase (RT) enzyme, which represents 
a crucial target in the physiology of the virus. Non-
nucleoside reverse transcriptase inhibitors (NNRTI) 
play an important role in HIV antiretroviral therapy. 
These inhibitors bind to the allosteric site of the reverse 
transcriptase, promoting the inhibition of the catalytic 
activity of this enzyme and thus preventing virus replication.  
Nichols et al.243 virtually screened a library of over two 
million compounds from the Zinc database38 using three 
crystal structures in complex with NNRTIs, one with the 
Y181C mutation (PDB ID 1JLA), a conventional wild type 
(WT) structure (PDB ID 1RT4), and another WT structure 
with an alternative Y181 conformation (PDB ID 2BE2).38,87 
After screening the library with Glide,126,244-246 nine 
compounds were acquired and tested for their antiviral 
activity against the WT HIV-1 and Y181C variants using 
infected human T cells.243 Despite the small number of 
compounds tested, two compounds inhibited WT or Y181C 
at low micromolar concentrations. This suggests that use of 
ensemble docking, which considers multiple conformations 
of the same target, can improve SBVS results. This 
approach can be applied in selecting new leads with 
antiviral activity against mutant RT strains. Subsequently, 
Jorgensen109 utilized a hit with an EC50 value of 4.8 μM, 
employing thermodynamic integration (TI) and free 
energy perturbation (FEP) (both alchemical perturbation 
methods based on statistical mechanics theory) methods 
alongside molecular dynamics (MD) or Monte Carlo (MC) 
simulations (which compute the relative binding free energy 
between congeneric series of ligands towards a target). 
These techniques guided the optimization of a series of 
catechol-based NNRTIs. First, the author determined 
the optimal substitution pattern for the phenyl rings and 
evaluated the possibility of replacing the methylene 
between the rings with an oxygen. In good agreement 
with FEP predictions, the synthesized compounds 
showed improved antiviral activity in an MTT‑based 
assay in cell culture. The addition of a cyano vinyl group 
at position 5 of the terminal ring yielded the most potent 
NNRTI reported in cell culture assays, with an EC50 value 
against WT HIV of 55 pM. Additionally, this series of 
compounds exhibited nanomolar activity against clinically 
important HIV variants Y181C and Y181C/K103N and 
low cytotoxicity. The accuracy of their model was further 
supported by good agreement between the predicted 
binding positions of the catechols and experimentally 
determined crystal structures (PDB ID 4H4M). However, 

the cyano vinyl group can act as a Michael acceptor, 
leading to potential covalent modifications of proteins or 
nucleic acids. To avoid toxic risks in future development, 
the cyano vinyl phenyl group was replaced by a bicyclic 
substructure (indole, indolizine and benzofurans). Using 
MC/FEP predictions, several indolizines showed good 
antiviral potency, confirming the feasibility of substituting 
the cyano vinyl group. One compound exhibited a 
half‑maximal inhibitory concentration (IC50) of 380 pM 
against WT HIV and improved antiviral activity against the  
Y181C/K103N variant compared to parent compounds, 
although its potency decreased against the single Y181C 
mutant. This loss of potency was explained by the loss 
of aryl-aryl interaction between the bicyclic heterocycle 
and Y181 observed in the WT RT crystal structure 
(PDB  ID  4MFB). Additional work247 determined the 
antiviral activity of 20 against a wider range of mutant 
variants in an alternative single-round infectivity assay 
using CD4+ T cells from blood donors. Compound 5 showed 
an excellent profile, with low nanomolar activity against all 
tested HIV variants. It exhibited an EC50 of 1 nM against 
the K101P mutant, which is a low-frequency viral mutation 
but confers resistance to both etravirine and rilpivirine, as 
shown in Table 2.247

4.3. Phosphodiesterase 4B inhibitors

Chronic obstructive pulmonary disease is one of the 
most predominant diseases globally. Phosphodiesterase 4 
(PDE4), a hydrolytic enzyme, has been proposed as 
a promising target in asthma and chronic obstructive 
pulmonary disease. PDE4B selective inhibitors are 
desirable to reduce the dose limiting adverse effect 
associated with non-selective PDE4 inhibitors, and 
the group of Gangwal  et  al.248 developed ligand-based 
pharmacophore models for a diverse class of PDE4B and 
PDE4D inhibitors. The best pharmacophore models, Hypo1 
for PDE4B and Hypo1 for PDE4D, were validated using 
different methods to assess their predictive power over the 
diverse test set compounds. The highly predictive models 
were further employed in virtual screening to prioritize 
selective PDE4B inhibitors. Three diverse chemical 
databases containing 748,822 compounds, post-filtered 
according to Lipinski’s rule of five, were utilized in VS. The 
hits from the VS were filtered based on estimated activity, 
FitValue, QED value, and molecular docking analysis 
using the software Glide 5.5.126,245 The docking protocol 
was validated by re-docking the co-crystallized ligand, 
rolipram, in the active site of PDE4B (PDB ID 1RO6) 
and PDE4D (PDB  ID  1TBB) with a root-mean-square 
deviation (RMSD) value of 0.328 and 0.356 Å, respectively. 
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Ten compounds were selected and purchased for testing in 
biological assays, using rolipram as a reference. Compound 
ZINC33106106 have shown potent and selective PDE4B 
inhibitory activity, as shown Table 3.248

4.4. FTO inhibitors

The fat mass and obesity-associated protein (FTO) 
belongs to the family of Fe2+ and α-ketoglutarate 
(α-KG)‑dependent oxygenases. It demethylates sites 
modified with N6-methyladenosine (m6A) and mRNA 
sites modified with N6,2’-O-dimethyladenosine (m6Am), 
influencing various mRNA-related processes, including 
transcriptional stability, alternative splicing, mRNA 
translocation, and protein translation.249

To discover potential FTO inhibitors, a structure-based 
virtual screening VS strategy was employed by the group 
of Peng et al.249 on a library of FDA-approved drugs. The 
binding site was defined as both the substrate-binding site 
and the N-oxalylglycine cofactor site, as in the crystal 
structure of FTO (PDB accession code 3LFM). The Fe2+ 
ion was processed according to a previously published 
protocol,250,251 with reduced van der Waals interaction 
and partial atomic charge parameters. The group docked 
1323 FDA-approved drugs obtained from Zinc against FTO 
using DOCK 3.5.54 and generated the top 500 docking 
poses for each compound. Subsequently, these docking 
poses were filtered based on three predefined structural 
descriptors, according to the FTO crystal complex 

structure bound to N3-methylthymidine. After filtering, 
332 compounds remained. The docking poses were energy 
minimized and re-scored using a more sophisticated scoring 
method, molecular mechanics/generalized born surface 
area (MM/GBSA), using the software PLIP.252,253 The 
refined poses were further filtered and visually inspected, 
and 19 compounds were selected for experimental 
validation. Following experimental validation, entacapone, 
a catechol-O-methyltransferase (COMT) inhibitor used 
to treat Parkinson’s disease, demonstrated the capability 
to inhibit FTO demethylation activity with an IC50 of 
3.5 μM, and thus is a potent chemical inhibitor of FTO 
(Table 4). Entacapone competed with both m6A-containing 
oligonucleotide substrates and the FTO cofactor α-KG and 
bound to FTO with a dissociation constant (Kd) of 234 nM 
in the presence of Fe2+ or 1,072 nM without Fe2+, suggesting 
it forms a complex with the cation.249

4.5. Triose phosphate isomerase inhibitors 

Infectious diseases caused by intestinal protozoa 
such as Entamoeba histolytica and Giardia lamblia 
are a worldwide public health problem, affecting 
over 70  million people each year. They colonize the 
intestines, primarily causing diarrhea, and can lead to 
more severe complications.254 The treatment of choice, 
metronidazole, is associated with adverse side effects and 
drug resistance. In a drug-repurposing study, the research 
group of Juárez‑Saldivar et al.254 conducted a molecular 

Table 2. Reverse transcriptase inhibitors found by SBVS of a library of over two million compounds from the Zinc database243

Compound code in 
the original work

PubChem  
CID

Compound chemical structure
 

EC50 / nM

WT Y181C

3 –

 

6.2 12.0

4 733568

 

NA 7.5

5 5304849

 

4.8 NA

EC50: half maximal effective concentration; NA: not applicable. Data obtained from Nicholls et al.243 and Jorgensen.109
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Table 3. Phosphodiesterase 4B inhibitors found by SBVS of a library of 748,822 compounds

Compound code in 
the original work

Zinc ID Compound chemical structure
EC50 / nM

PDE4B PDE4D

1 ZINC05612594

 

813 672

2 ZINC03008558

 

2,202 1,253

3 ZINC01210083

 

378 3,056

4 ZINC27499887

 

790 > 10,000

5 ZINC15880786

 

140 1,792

6 ZINC15880845

 

216 1,136

7 ZINC01212527

 

174 2,440

8 ZINC33106106

 

2 2,116
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Compound code in 
the original work

Zinc ID Compound chemical structure
EC50 / nM

PDE4B PDE4D

9 ZINC09827866

 

461 136

10 ZINC03008557

 

140 209

EC50: half maximal effective concentration. Data obtained from Gangwal et al.248

Table 3. Phosphodiesterase 4B inhibitors found by SBVS of a library of 748,822 compounds (cont.)

Table 4. Phosphodiesterase 4B inhibitors found by SBVS of a library of 748,822 compounds

Compound code in 
the original work

PubChem  
CID

Compound chemical structure Inhibition (at 10 µM) / %

1 5281081

 

93

2 4659569

 

85

3 2756

 

< 20

4 159269

 

< 20

5 5327

 

< 20

6 4739262

 

< 20
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Compound code in 
the original work

PubChem  
CID

Compound chemical structure Inhibition (at 10 µM) / %

7 35025669

 

< 20

8 41684

 

< 20

9 19150

 

< 20

10 7048634

 

< 20

11 16850

 

< 20

12 4236

 

< 20

13 12876779

 

< 20

14 19529

 

< 20

15 4680

 

< 20

Table 4. Phosphodiesterase 4B inhibitors found by SBVS of a library of 748,822 compounds (cont.)
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docking-based virtual screening campaign with a library 
of 1,466 FDA-approved drugs, with a molecular weight 
between 100 and 900 Da. These were docked against the 
glycolytic enzyme triose phosphate isomerase (TIM) from 
E. histolytica (TIMEh) and from G. lamblia (TIMGl) by 
means of the AutoDock Vina software.255,256 The systems 
were prepared for the docking procedure through the UCSF 
Chimera257,258 and AutoDock tools255 packages and the 
results analyzed with the PLIP tool.252 Beforehand, known 
inhibitors of the enzymes (compound D4 and omeprazole, 
for TIMEh and TIMGl, respectively) were docked against 
their crystallographic structures obtained from the Protein 
Data Bank (PDB accession codes 1M6J for TIMEh and 
4BI7 for TIMGl) to be used as guides for determining the 
docking experiment parameters, to validate the protocol 
and to serve as control references for the VS procedure. 
The 1,466 screened compounds were then ranked based on 
their docking score, and the ten best ranked compounds for 
each enzyme had their molecular interactions with them 
further investigated. Through a comparison of the formed 
molecular interactions of the best ranked compounds with 
that of the reference compounds, and using a merged 
per‑compound docking score for both enzymes, four of the 
docked compounds were selected for in vitro trophozoites 
growth inhibition assays, specifically, chlorhexidine, 
tolcapone, imatinib and folic acid, as well as the standard 
treatment for those parasitoses, metronidazole. The in vitro 
growth inhibition assays demonstrated that all compounds 

had IC50 values in the microgram range for G. lamblia, with 
folic acid showing the weakest inhibition and tolcapone 
the strongest, with values of 5.34 and 0.05 µg mL–1, 
respectively. The latter was close to the reference compound 
(omeprazole) value of 0.025 µg mL–1. All selected and 
assayed compounds were able to inhibit the growth of  
G. lamblia trophozoites with IC50 values below the standard 
treatment, metronidazole (IC50 = 7.8 µg mL–1). On the other 
hand, only folic acid and metronidazole were effectively 
capable of inhibiting E. histolytica growth, with IC50 values 
of 0.186 and 0.205 µg mL–1, respectively, which were more 
effective than the reference compound (D4), which had 
a IC50 value of 8.306 µg mL–1.254 This interesting study 
demonstrates the power and versatility of VS techniques 
in selecting from a large library the compounds with 
greater probability of showing desired pharmacological 
properties. Although further studies are needed to suggest 
possible repositioning of the mentioned drugs, the SBVS 
strategy used by the authors proved effective in the search 
for compounds with antiprotozoal activity (Table 5).

4.6. Proteasome inhibitors

Polyphenols, an important class of natural products, are 
widely distributed in plant foods. These compounds possess 
diverse biological activities and exert protective effects in 
various pathophysiological contexts, such as cardiovascular, 
circulatory, neurodegenerative diseases, and cancer. In 

Table 4. Phosphodiesterase 4B inhibitors found by SBVS of a library of 748,822 compounds (cont.)

Compound code in 
the original work

PubChem  
CID

Compound chemical structure Inhibition (at 10 µM) / %

16 12309468

 

< 20

17 5323714

 

< 20

18 6604200

 

< 20

19 6918995

 

< 20

Data obtained from Peng et al.249
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cancer, polyphenols impair cell proliferation, tumor growth, 
angiogenesis, inflammation, and apoptosis activation. 

Armed with this information, Marchese et al.259 decided 
to investigate the potential interference of polyphenols 

Table 5. Triose phosphate isomerase inhibitors found by SBVS of a library of 1,466 FDA-approved drugs

Compound code in 
the original work

FDA approved 
drug name

Compound chemical structure
IC50 / (μg mL–1)

E. histolytica G. lamblia

1 metronidazole

 

0.205 7.8

2 D4

 

8.306 ± 1.616 –

3 omeprazole

 

– 0.025

4 chlorhexidine

 

> 100 4.93 ± 0.005

5 tolcapone

 

> 100 0.05 ± 0.002

6 imatinib

 

> 100 3.46 ± 0.005

7 folic acid

 

0.186 ± 0.003 5.34 ± 0.007

FDA: Food and Drug Administration; IC50: half-maximal inhibitory concentration. Data obtained from Juárez-Saldivar et al.254
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in the activity of the proteasome. The proteasome plays a 
fundamental role in the degradation of oncogenic proteins 
and the regulation of cellular pathways. Thus, the authors 
conducted a SBVS using polyphenolic compounds already 
approved by the FDA to identify polyphenolic compounds 
with potential proteasome inhibitory activity. In the initial 
phase, molecular docking-based virtual screening was 
performed using the Glide software,245 where, considering 
the highest theoretical binding affinity, two flavone 
glycosides were selected, diosmin and hesperidin.126,245 To 
confirm the in silico results, in vitro assays were performed 
using the purified catalytically active β5 subunit of the 
proteasome. Incubation of the recombinant β5 proteasome 
subunit with hesperidin or diosmin resulted in inhibition 
of β5 enzymatic activity, which was particularly evident 
at a concentration of 200 μM. Next, in the evaluation of 
multiple myeloma cells treated with diosmin or hesperidin, 
protein accumulation could occur because of proteasome 
inhibition. Western blot analysis 48 h after treatment 
with hesperidin or diosmin showed a significant positive 
regulation of poly-ubiquitin species after treatment with 
both compounds, thus confirming, in a cell-based assay, the 
results obtained in an SBVS strategy (Table 6).259

4.7. PD-1/PD-L1 interaction inhibitors

The programmed cell death protein 1 (PD-1) helps 
prevent the development of autoimmune diseases by 
negatively regulating the immune system. When this 
immune checkpoint binds to its ligand (programmed 
cell death ligand 1 (PD-L1)), the resulting interaction 
inhibits immune responses, stimulates cytokine release, 
and triggers cytotoxic reactions, suppressing T cell 
functions. PD-L1 expression enables various types of 

tumor cells (e.g., melanoma, colorectal, and renal cells) 
to evade immune system attacks. The advent of immune 
checkpoint therapy, specifically designed to block the  
PD-1/PD-L1 interaction, either directly targets tumor cells 
or nonspecifically reinvigorates the immune system, relying 
on the negative regulation of the immune mechanism 
induced by PD-L1 and the resulting suppression of cancer 
cell growth. In a study conducted by Lu et al.,260 the 
authors conducted a SBVS utilizing the available human 
PD-1 protein in the PDB (PDB code: 5B8C), to find small 
molecule compounds capable of blocking the PD-1/PD-L1  
interaction. They selected 208,023 compounds from the 
National Cancer Institute (NCI) compound database, 
which were then subjected to a filtering step (Lipinski’s 
rule of 5) before SBVS using iGemdock software.261 The top 
100 compounds from molecular docking were subjected to a 
reassessment of interaction residues and physical-chemical 
properties of the binding site using the SiMMap server.262 
The compounds were reordered according to the SiMMap 
score, and six compounds were selected for in vitro assays. 
Compound  CH4 exhibited inhibitory capacity for the  
PD-1/PD-L1 interaction at a dose of 10 µM, indicating that 
CH4 and CH5 may be hit compounds that act by blocking 
the PD-1/PD-L1 interaction (Table 7). Through this process, 
SBVS proved to be an excellent strategy for prioritizing 
promising hits to block PD-1/PD-L1.260

5. Conclusions

SBVS is an important strategy in the prioritization 
of putative bioactive compounds from vast chemical 
databases. This approach accelerates the exploration of 
potential drug candidates and facilitates drug repositioning, 
streamlining drug development pipeline and reducing costs. 

Table 6. Proteasome inhibitors found by SBVS of a library of FDA-approved polyphenolic compounds

Compound code in 
the original work

Compound 
common name

Compound chemical structure
Concentration / 

(μg mL–1)
β5 proteasome 

activity / %

1 diosmin

 

200 > 60

2 hesperidin

 

200 40

Data obtained from Marchese et al.259
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Advances in macromolecular characterization and target 
validation have further enhanced the utility of SBVS in 
medicinal chemistry. The shift towards using 3D target 
structures for pharmacophore models offers improved 
hit prioritization by enhancing selectivity. Nevertheless, 
the adoption of consensus scoring across many platforms 
bolsters the reliability of hit prioritization. It is important 
to emphasize that SBVS serves as an initial screening tool 
in drug discovery, acting as a means to explore chemical 
space. Hits prioritized through SBVS require thorough 
optimization in parameters such as binding affinity and 
selectivity, toxicity, pharmacokinetics, and bioavailability 

to become viable drug candidates. The cited successful 
applications across various therapeutic areas, from HIV 
treatment to cancer immunotherapy and chronic obstructive 
pulmonary disease, highlight SBVS’s significance as 
a cornerstone in modern medicinal chemistry. Future 
advancements could harness ML to refine scoring functions 
and integrate hybrid models for a more holistic approach. 
Additionally, exploring multi-target screening may enhance 
therapeutic outcomes. In conclusion, as SBVS continues to 
evolve, its integration with advanced technologies promises 
to further revolutionize drug discovery, offering renewed 
hope for tackling complex medical challenges. 

Table 7. Programmed cell death protein 1 (PD-1) inhibitors found by SBVS of a library of 208,023 compounds from the National Cancer Institute (NCI) 
compound database

Compound code in the 
original work

PubChem  
CID

Compound chemical structure
Concentration / 

(μg mL–1)
Cell 

viability / %

CH-1 376635

 

10, 20, 40, 80 N.A.

CH-2 248395

 

10, 20, 40, 80 N.A.

CH-3 –

 

10, 20, 40, 80 N.A.

CH-4 379775

 

20 30-40

CH-5 –

  

10 30-40

CH-6 5355233

 

80 > 40

N.A.: not aplicable. Data obtained from Lu et al.260
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