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Abstract. We propose a preliminary study of (in)consistency operators
on quasi-Nelson algebras, a variety that generalizes both Nelson and
Heyting algebras; our aim is to pave the way for introducing logics of
formal inconsistency (LFIs) in a non-necessarily involutive setting. We
show how several results that were obtained for LFIs based on distribu-
tive involutive residuated lattices can be extended to quasi-Nelson alge-
bras and their logic. We prove that the classes of algebras thus obtained
are equationally axiomatizable, and provide a twist representation for
them. Having obtained some insight on filters and congruences, we char-
acterize the directly indecomposable members of these varieties, showing
in particular that two of them are semisimple. Further logical develop-
ments and extensions of the present approach are also discussed.
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1 Introduction

Logics of formal inconsistency (LFIs) are among the most well-known and time-
honoured among the inconsistency-tolerant, or paraconsistent, logical systems.
Formally, an LFI is usually presented as a standard (propositional) consequence
relation (F) over a language which includes a conjunction (A), a disjunction (V),
an implication (=), truth constants (L, T) and a negation (~) that crucially fails
to satisfy the principle of explosion: o A ~¢ F L. To this language one usually
adds a unary consistency connective o that allows one to recover explosion in a
more controlled way. The intended meaning of oy is “¢ is consistent”, and the
following weaker principle is postulated:

pA~pANophk | (1)

(the finite gentle principle of explosion of [4, p. 50]), which can be informally
read as follows: “if ¢ is consistent and contradictory, then ¢ explodes”.

In addition (or alternatively) to o, a dual inconsistency connective e may be
employed, and ey is interpreted as “¢ is inconsistent”. One may require e to be
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the negation-dual of o (perhaps even taking ey := ~ oy as a definition) or may
impose independent postulates on both. For instance, dualizing (1), one obtains:

FoVer~pVep (2)

which is indeed a valid principle of some LFIs. Under certain assumptions on
the negation, it is also easily verified that (1) and (2) are equivalent via the
definition ep := ~ oy (or its dual op := ~ ep; more on this below).

The starting point of the present work is the paper [5], which investigates
a family of LFIs that result from adding a consistency connective to certain
extensions of the Full Lambek Calculus with Ezchange and Weakening (F Le,),
the substructural logic determined by the class of commutative integral bounded
residuated lattices. The approach of [5] is fairly general and modular, but it
only applies to involutive logics (i.e. those that satisfy the double negation law,
~~p = ): the present work is a first attempt at extending this research project
beyond the involutive setting.

To any given class K of residuated lattices one can associate two logical
consequences in a standard way, the truth-preserving logic -y and the order-
preserving I—E. Both share the same set of valid formulas, but in general they
do not coincide: I——K'— is the stronger one and satisfies the principle of explosion,
while I—E typically does not. The latter thus provides a natural candidate for an
LFI based on residuated lattices. Assuming an axiomatization for I—% is given
(see [1]), the paper [5] describes a method for axiomatizing the order-preserving
logic l—,%o obtained by endowing each algebra in K with a consistency operator o
satisfying (the algebraic counterpart of) the gentle principle of explosion (1).

The procedure sketched above may be applied to several well-known order-
preserving companions of substructural logics, including Lukasiewicz logic,
Nelson’s constructive logic with strong negation [11] and nilpotent minimum
logic [7]; in specific cases, further insight on the resulting logics is also gained
thanks to the peculiar structure of prelinear algebras (for Lukasiewicz and nilpo-
tent minimum) and the twist representation of Nelson algebras. The method
of [5] does not apply, however, to many well-known logics based on residuated
lattices—e.g. Hajek’s basic logic, product logic and F'L.,, itself—because the
algebras in K are required to be distributive and involutive (see below for the rel-
evant definitions). These limitations are due to technical reasons, and the main
aim of the present paper is indeed to explore the possibility of relaxing them.

We are going to show how the results of [5] can be extended if we take K to
be the variety of quasi-Nelson algebras, a recently-introduced generalization of
Nelson (and Heyting) algebras. Such a setting seems to be particularly promis-
ing for potential future research: for, on the one hand, quasi-Nelson algebras are
distributive but not necessarily involutive residuated lattices; on the other, they
can be represented through a Nelson-type twist construction that affords pow-
erful insight into their structure. We therefore propose the present study as a
preliminary investigation on the possibilities of extending the approach described
above to more general classes of algebras and logics. We shall focus on laying
the algebraic foundations, and in particular on the question of how to define and
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represent (in)consistency operators on quasi-Nelson algebras; we stress, however,
that all the results we will establish have a straightforward logical interpretation
in the setting of logics extending F L., (see Sect.4).

The paper is organized as follows. In Sect. 2 we recall preliminary definitions
and results on quasi-Nelson logic and its algebraic counterpart, the variety QN
of quasi-Nelson algebras. In Sect. 3 we study inconsistency operators on quasi-
Nelson algebras. The choice of focusing on inconsistency (rather than consis-
tency) operators is motivated by the technical observation that, in the absence
of involutivity, it is easier to work with the quasi-equational defining properties
of inconsistency operators (Definitions 2 and 3) than with those of consistency
operators (see Sect. 4.1). The difference, as we shall see, cannot be appreciated
in an involutive setting such as that of [5], where consistency and inconsistency
operators are perfect duals of one another. Following [5], we consider three pos-
sible definitions for an inconsistency operator (Definitions 2 and 3), which give
rise to three classes of expanded quasi-Nelson algebras. We prove that all three
are equationally definable (Theorems 1 and 3), thus also settling an issue left
open in [5]. We extend the twist representation to quasi-Nelson algebras endowed
with inconsistency operators (Theorem 4) and use it to obtain information on
the congruences and filters of these new classes of algebras; we also see how
the insight thus gained can improve our understanding of subvarieties. In the
concluding Sect.4 we sketch a plan for future work, focusing in particular on
three directions: how to introduce consistency operators on quasi-Nelson alge-
bras (Sect. 4.1); the logical translation of the algebraic results established so far
(Sect. 4.2); and the future study of (in)consistency operators in wider settings
(Sect. 4.3). To improve readability and respect space limitations, all proofs are
included in the Appendix.

2 Quasi-Nelson Logic and Algebras

The class of quasi-Nelson algebras (QN) was introduced in [12] and further inves-
tigated in a number of subsequent publications [8,10,13-15|. Formally, QN can
be viewed either as a subvariety of residuated lattices or as a generalization of
both Nelson algebras (the algebraic counterpart of Nelson’s logic) and Heyting
algebras. Taking the former approach, we may define a quasi-Nelson algebra as
a commutative, integral and bounded residuated lattice® A = (A; A, V, *,=,0,1)
that further satisfies the Nelson equation:

z=@=2y))AN(~ry= (~vy=>r~x))<z=y (Nelson)

where ~z := 2 = 0. While (Nelson) entails that quasi-Nelson algebras satisfy
distributivity (z A (y V 2) = (x Ay) V (z A 2)) and 3-potency (22 = 2?), they are
not involutive, i.e. they need not satisfy the double negation equation ~ ~z = x.
In fact, the involutive members of QN are precisely the Nelson algebras, and the
idempotent ones (those satisfying 22 = z) are precisely the Heyting algebras.

1 See [9] for all the unexplained terminology of universal algebra, substructural logics
and (residuated) lattice theory.
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Quasi-Nelson logic, the logical counterpart of QN, may be obtained by adding
the Nelson azxiom to F L, (see [9]):

((p=(p=P)A(~Y=(~Y=r~p)) = (p=1)

The interest in quasi-Nelson algebras/logic is manyfold, and can be motivated
from a number of perspectives (e.g. constructive logics, order theory, and univer-
sal algebra; see the above-mentioned papers for further details). In the present
context we are mainly interested in QN as a first step in the extension of the
approach of [5] to LFIs beyond the involutive setting.

A prominent feature of quasi-Nelson algebras is the twist representation,
which allows one to construct each algebra A € QN as a special binary product
of a nuclear Heyting algebra, i.e. a Heyting algebra (H; A, V, —,—,0,1) endowed
with a unary nucleus operator O satisfying 00 = 0 and ¢ — Oy = Ox — Oy
(see e.g. [16] for further background on nuclei). The details of the construction
are given in Definition 1 below. Recall that the set D(H) of dense elements on
a (nuclear) Heyting algebra H is given by D(H) := {a € H : —a = 0}.

Definition 1. Let H = (H; A, V,—,—,0,0,1) be a nuclear Heyting algebra, and
let V. C H be a lattice filter of H such that D(H) C V. Define the quasi-Nelson
twist-algebra Tw(H, V) = (A; A, V, *,=,0, 1) with universe:

A:={{a1,a2) € H X H : ay = Oag, a1 V az € V, a3 A ay =0}

and operations given, for all (a1, az2), (b1,b2) € H x H, by:

1:=(1,0)
0:=(0,1)
(a1,a2) * (b1,b2) := (a1 A b1, (a1 — b2) A (b1 — a2))
(a1,a2) A (b1,b2) := (a1 A by, 0O(az V b2))
(a1,a2) V (b1,ba) := (a1 V by, az A ba)
(a1,a2) = (b1,b2) := ((a1 — b1) A (ba — a2),0a1 A ba).

The negation (defined as ~z := x = 0) is given by ~{(a1, as) = {as, Oay). Thus,
if the nucleus O is not the identity map (as an example, take Ox := ——x) then
Tw(H,V) is not involutive. Each twist-algebra Tw(H, V) belongs to QN and,
conversely, the twist representation result states that every quasi-Nelson algebra
can be constructed according to Definition 1 (see e.g. [13,16] for further details).

Before we proceed, we need to introduce a notion that plays a prominent role
in the study of LFIs based on residuated lattices. The Boolean elements B(A)
of a bounded integral residuated lattice A may be defined in the following three
alternative ways: (i) B(A) :={a € A:3b € Ast.aVb=1,aAb=0} (i)
B(A) ={a€ A:aV~a=1}; (ili) B(A) :={a € A:aA~a=0}. Our
official definition will be (ii), which is equivalent to (i), but in practice easier to
work with. On the other hand, in a non-involutive setting (iii) gives a weaker
notion: this is essentially because, on every residuated lattice, aV ~a = 1 entails
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aA~a =0, but not the other way round. B(A) is the universe of a sublattice of
A; note that, on a quasi-Nelson twist-algebra Tw(H, V), the Boolean elements
are precisely those of the form (a, —a) for some a € B(H).

3 Inconsistency Operators

Drawing inspiration from [5], we consider three possible definitions for an incon-
sistency operator. As mentioned earlier, the informal reading of ea is “the value
a is inconsistent”, and we may further allow this proposition to assume only crisp
(i.e. Boolean) values or not. In the involutive case, our approach is equivalent to
that of [5], for the consistency operator can then be recovered as oz := ~ ez.

3.1 The min and Bmin Operators

Definition 2. A min-inconsistency operator on a quasi-Nelson algebra A is a
unary operator e that satisfies the following quasi-equations:

zVe~zVy=1 if and only if ox < y.

A Bmin-inconsistency operator is a min-inconsistency operator that further sat-
isfies the equation ex \V ~ ex = 1 (ensuring that ea is a Boolean element).

We denote by QN® (respectively, QNg,,) the class of all algebras (A e) such that
A € QN and e is a min- (resp., a Bmin-)inconsistency operator on A. From an
order-theoretic point of view, Definition 2 is precisely saying that, for each a € A,
the element ea is the dual pseudo-complement (see Definition 4) of aV ~ a. Such
an element is unique if it exists, for one has:

ea=min{fbec A:aV~aVb=1} (3)

Existence can be guaranteed on a finite A € QN (or, more generally, any algebra
having a complete and completely distributive lattice reduct), for one can let:

oaz/\{beA:a\/Na\/bzl}. (4)

However, the element ea given by (4) may fail to satisfy ea V ~ea = 1, so a
Bmin-inconsistency operator may not be definable, even when A is finite (see
Example 2).

Example 1. Let A € QN be a subdirectly irreducible quasi-Nelson algebra.
Defining 0 = ¢1 = 0 and ea = 1 for a ¢ {0, 1}, one obtains a min-inconsistency
(in fact, a Bmin-inconsistency) operator. To see this, recall from [9, p. 202| that
A has a unique co-atom, say ¢ € A. Then, for every element 0 < a < ¢, we have
~a < cas well. For, otherwise, from ~a = 1 we would havea < ~~a=~1=0,
against the assumption that 0 < a. Thus a V ~a < ¢, which gives us ea =1
by (3). By the same token, for every (A,e) € QN® s.t. A is a subdirectly irre-
ducible quasi-Nelson algebra, the e operator must be defined as indicated above.
This example will also be used to show that both classes QN® and QNg,, extend
QN conservatively (see Theorem 2).
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Proposition 1. Let (A o) € QN® and a,b € A.
(i) a € B(A) if and only if ea =0 (in particular, ¢1 = 0 = 0).
(ii) ea = e(aV ~a).
(iii) e ~a =e~r~a.
(i) aV~aVeaq=1.
(v) ®a = ea x* eq.
(vi) ea <bVe(aV~aVb).

Item (i) above suggests that the behaviour of e on each algebra A € QN may be
read as a measure of “how Boolean” A is: indeed, A is a Boolean algebra if and
only if ea = 0 for all a € A. Note that, in contrast to the involutive case of [5],
it may in general happen that e ~a # ea # e(a A ~a). This will be clarified by
the twist representation for the algebras in QN® (see Proposition 5).

Theorem 1. The conditions in Definition 2 are equivalent to the following equa-
tions:
(i) ez <yVe(zrVr~zVy).
(i) xVr~xVexr=1.
(iii) o1 = 0.
Hence, QN°® and QN'Bm are varieties. Note that Theorem 1 applies to residu-

ated lattices in general, thereby settling an issue that was left open in [5]. The
following result establishes that both QN® and QNg, extend QN conservatively.

Theorem 2. The variety QN of quasi-Nelson algebras is precisely the class of
{@}-free subreducts of QNg,, (and, a fortiori, also of QN®).

3.2 The minB Operator

Definition 3. A unary operator eg on a quasi-Nelson algebra A is a minB-
inconsistency operator if the following (quasi-)equations are satisfied:

(i) xV~zVegr=1.
(ii) egx V ~egx = 1.
(i) eV~ Vy=1andyV~y=1 imply egz < y.

Denote by QNyg the class of algebras (A, eg) such that A € QN and eg is a
minB-inconsistency operator on A. Every Bmin-inconsistency operator (Defini-
tion 2) is a minB-inconsistency operator, so QNg,,, = QN*NQN? 5, implying that
Theorem 2 applies to QN; g as well. But neither QN® nor QN g is contained in
the other (see Example 2). A minB-inconsistency operator is unique, if it exists,
for we have:

ega=min{b € B(A):aV~aVb=1}. (5)
Similarly to the case of min-operators, if the sublattice of Boolean elements B(A)
is complete, then the operator eg is definable on A by:

oBa::/\{bGB(A):a\/Na\/bzl}.

The following example should help further clarify the relationships among
the classes of algebras under consideration.
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Ezample 2. [5, Fig. 2, p. 1236] depicts an eight-element nilpotent minimum alge-
bra (let us call it Ag) on which two different consistency operators o and og
are definable (note that there is a mistake in the table of the monoid operation:
it should have f % f = f instead of f * f = a). Nilpotent minimum algebras
are a subvariety of Nelson algebras (see e.g. [8]), so Ag € QN. Dualizing the
definitions (i.e. letting ex := ~ox and egx := ~opgz), we can endow Ag with
a (necessarily unique) min-inconsistency operator e and an (also unique) minB-
inconsistency operator eg which do not coincide. Thus (Ag,e) € QN* — QN7 5
and (Ag,eg) € QN; g — QN®. Since (Ag, o) ¢ QNg,,, we also see that it is not
possible to define a Bmin-inconsistency operator on As.

The counterpart of Proposition 1 for minB-inconsistency operators is the
following:

Proposition 2. Let (A,e) € QN; g and a,b € A.

(i) a € B(A) if and only if ega = 0 (thus egl = g0 =0 and ez eg a =0).
(ii) ega = eg(aV ~a) = ~~ega.

(iii) eg~a = eg~~a.

(iv) ega VbV egb € B(A).

(v) ega < bV eg(bV ~b)Veg(aV~aVb).

Also in this case the class of algebras introduced in Definition 3 is equational,
thus settling the corresponding open issue from [5].

Theorem 3. The conditions in Definition 3 are equivalent to the following equa-
tions:

(i) €V ~xVegr=1.

(ii) egx V ~egx = 1.

(iii) o5l = 0.

(iv) egx <y Vep(yV~y)Veg(zV~zVy).

Hence, QN? g is a variety.

3.3 Twist Representation

We now proceed to extend the twist representation of quasi-Nelson algebras
given in Sect. 2 to algebras in QN®. This will provide us with further insight into
their structure and a useful tool for establishing arithmetical properties.

Definition 4. Given a (nuclear) Heyting algebra H, we shall denote by — the
unary operation that realizes the dual pseudo-complement (dpc) given (whenever
it exists) by —a=min{b € H :aVb=1} for alla € H.

Proposition 3. Let A = Tw(H,V) be a twist-algebra over a nuclear Heyt-
ing algebra H. Assume the element — b exists for all b € V. Then, defining
o(a1,as) := (—(a1Vaa),~ —(a1Vaz)) for all (a1,a2) € A, we have (A, o) € QN°®.
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Proposition 4. Let A = Tw(H, V) € QN be endowed with an operation e such
that (A, e) € QN°®. Then the element — b exists for all b € V, and o{ai,as) :=
(—(a1 V ag),— — (a1 V a2)) for all {a1,as) € A.

Propositions 3 and 4 give us the announced representation result.

Theorem 4. Every quasi-Nelson algebra endowed with a min-inconsistency
operator e can be constructed as Tw(H, V) in accordance with Proposition 3.

Theorem 4 can be used to establish an equivalence between an algebraic
category based on QN® and a suitably defined category having as objects tuples
of type (H, V), as done in [6] for Nelson algebras. In turn, on such an equivalence
one might build a “two-sorted” topological duality for QN® (see [17]).

The twist representation also provides us with an easy way to establish arith-
metical properties of QN® and its subvarieties. For instance, it is easy to verify
that the following (in)equalities are satisfied on twist-algebras — the two inequal-
ities being, in general, strict (cf. Proposition 1): e~(z A ~x) = o(x A ~z) <
e~z < exr = ex x ox. As another application, in the next proposition we con-
sider, from the perspective of twist-algebras, a few (in)equalities (corresponding
to subvarieties of QN*®) that play a prominent role in the study of logics of formal
inconsistency.

Proposition 5. Let (A = Tw(H,V),e) € QN®, let a € V and (b1, bs) € A.

(i) ex < o(x A ~z) holds iff —a =rDa.
(ii) e~x < o(x Ar~x) holds iff Oby VbV —O(by Vby)=1.
(’LZZ) ox < e~z holds Zﬁbl V baV '_(Dbl \Y b2) =1.
(iv) x Nex =0 holds iff V={1} (and H is a Boolean algebra).
(v) ~xANex =0 holds iff Oa=0byV by =1.
(vi) exV ~ex =1 holds iff —aV-r—a=1.

3.4 Filters and Congruences

In this section we take a look at filters and congruences on quasi-Nelson algebras
endowed with inconsistency operators; here, too, we shall profit from the insight
gained with the twist representation.

An implicative filter of a residuated lattice A is a lattice filter FF¥ C A
that is further closed under the monoid operation, i.e., a * b € F whenever
a,b € F. Implicative filters are in one-to-one correspondence with congru-
ences on commutative residuated lattices [9, Thm 3.47] via the maps defined
as follows. To an implicative filter FF C A one associates the congruence
O .= {{a,b) € AX A:a=bb=a€ F}, and to a congruence 6 € Con(A) one
associates the implicative filter 1/6.

The above correspondence applies to quasi-Nelson algebras as well. Given
(A, e) € QN*® and a congruence 6 € Con(A,e), —that is, § is compatible with
the operations of A and also with the e operator—the associated implicative
filter 1/0 will satisfy the following: if a = b,b = a € 1/0, then ea = &b € 1/6.
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We say that an implicative filter F' closed under this rule is a e-filter (cf. the
definition of o-filter in [5, Fig.2, p. 1236], and note that we do not need to
impose condition (F2), because we know to be dealing with varieties). It is easy
to verify that each e-filter F' is also closed under the following rule: if a € F', then
~eaq € F (in fact, Corollary 1 entails that this rule is not only necessary but
also sufficient for defining e-filters). Indeed, from a € F we have 1 = a=a € F
and a = 1 =1 € F, so we immediately obtain eq = 1 = eq = 0 = ~eq € F.

The isomorphism between implicative filters and congruences of each A €
QN is preserved when we consider an algebra (A, e) € QN°® and its e-filters:
indeed, it is easy to verify that 6 is compatible with e if (and only if) F' is
a e-filter. This entails, in particular, that any algebra (A,e) constructed as in
Example 1 is simple (i.e. has exactly two congruences). Indeed, if (A, e) had a
non-trivial congruence Idy # 6 # A x A, then 1/6 would be a non-trivial e-
filter. But there are no e-filters on A except {1} and A itself, for a € 1/6 implies
~eq=n~1=0¢€1/0 whenever 0 # a # 1. A similar reasoning shows that the
algebra defined in Example 2 (endowed either with e or with eg) is also simple.
Indeed, any algebra (A, e) will be simple as long as A is subdirectly irreducible,
and the algebra in Example 2 witnesses that the converse is not true: (Ag, ) is
simple even though Ag is not a subdirectly irreducible residuated lattice.

e-filters can be characterized via the twist construction, building on a descrip-
tion of implicative filters on quasi-Nelson twist-algebras [16, Prop. 4.1].

Proposition 6. A subset G C A of A = Tw(H,V) € QN is an implicative
filter if and only if G = (F x H)N A, where F is a lattice filter of H.

Consider an algebra (A = Tw(H,V),e) € QN°*. By the preceding result,
every e-filter G C A has the shape G = (F x H) N A, with F a lattice filter of
H. In such a case, moreover, one will have = —a € F' whenever a € VN F. This
property appears to be a relativized version of the normality considered in [18]:
the latter, indeed, corresponds precisely to the special case where F' C V. This
consideration suggests the following definition.

Definition 5. Let H be a (nuclear) Heyting algebra and le V. C H be a filter
such that —a exists for all a € V. Given a lattice filter F C H, we say that I is
V-normal if = —a € F whenever a € VN F.

The family of all V-normal filters (for a fixed V) is closed under arbitrary inter-
sections, and so forms a complete lattice. Two alternative characterizations of
V-normality are given in the following lemma.

Lemma 1. Let H be a Heyting algebra and let V,F C H be lattice filters.
Assuming —a exists for all a € V, the following are equivalent:

(i) F is V-normal.
(ii) For alla,be V, ifa—beF, then—b——a€F.
(#ii) For all a,b €V, ifa —bb—a€F, then—a——beF.

Having singled out the notion of V-normality allows us to smoothly extend
Proposition 6 as follows.
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Proposition 7. A subset G C A of an algebra (A = Tw(H,V),e) € QN® is a
o-filter if and only if G = (F x H)N A, where F is a V-normal filter of H.

The preceding result implicitly contains a characterization of the congruences
on each algebra (A = Tw(H,V),e) € QN® in terms of Con(H), and suggests
that further insight on QN® might be obtained by importing results on normal
filters (e.g. Thm. 4.3, Cor. 4.5) from [18]. Before explaining this, let us note
that Proposition 7 entails (Lemmas 4.7, 4.8 and) Theorem 4.9 from [5]. Indeed,
phrased in our notation, the latter states that, given (A = Tw(H, V), e) € QN®,
we have that:

(i) G:=(V x H)N A is a proper e-filter A iff V is proper and normal;
(ii) if V is the minimal filter of H, then G is the minimal filter of A.

The only mismatch is that the normality mentioned in (i) is the standard notion
from [18]; but normality and V-normality here coincide, because F = V. The
following characterization of e-filters also follows from Proposition 7.

Corollary 1. Let (A = Tw(H,V),e) € QN°® and let G C A be an implicative
filter of A.. The following are equivalent:

(i) G is a eo-filter.
(i) ~ea € G whenever a € G.

Unlike some of the previous propositions, the proof of Corollary 1 appears to
rely in an essential way on the twist representation; we therefore do not know
whether the result applies to more general classes of residuated lattices, or even
to the involutive ones considered in [5]. While the twist representation does not
seem essential to the following result, it enables us to provide a straightforward
proof (cf. [5, Thm. 3.8]).

Theorem 5. An algebra (A, e) € QN°® is directly indecomposable if and only
if B(A) = {0,1}. In consequence, we also have that B(A) = {0,1} whenever
(A, e) is subdirectly irreducible.

In the case of a quasi-Nelson algebra A = Tw(H, V), we know that the lattice
of congruences Con(A) is isomorphic to the lattice Con(H;A,V,—,—,0,1) of
congruences of H viewed simply as a Heyting algebra (the nucleus O does not
alter the congruences of the underlying Heyting algebra reduct). This result,
proved in [13, Prop. 8], may also be obtained as a corollary of Proposition 6, and
we may employ Proposition 7 to obtain a similar result about Con(A,e).

As observed earlier, for each algebra (A = Tw(H, V), e) € QN°®, we have that
Con(A = Tw(H, V), e) is isomorphic to the lattice of e-filters on (A, e), which
is isomorphic (by Proposition 7) to the lattice of V-normal filters of H. These,
in turn, are easily seen to be in one-to-one correspondence with the Heyting
algebra congruences of H that satisfy the following property: for all a,b € V
such that (a,b) € 6, we have (—a,—b) € 6. This result may not appear very
informative, but one needs to keep in mind that the role of H in the representa-
tion given in Theorem 4 is not exactly that of a standard algebra, for the dual
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pseudo-complement operation is only required to be defined on the elements of
V. Obviously, when V = H, we recover the well-known correspondence between
the congruences of a Heyting algebra endowed with a dual pseudo-complement
and its normal filters [18, Thm. 3.3].

We state below a stronger version of Theorem 5 for quasi-Nelson algebras
endowed with a minB-inconsistency operator (cf. [5, Thm. 3.16]).

Theorem 6. For each (A, eg) € QN; g, the following are equivalent:

(i) (A, eg) is simple.

(i) (A, eg) is subdirectly irreducible.
(iii) (A, eg) directly indecomposable.
(iv) B(A)={0,1}.

Hence, QN1 g (and QNg,,,) are semisimple varieties.

4 Future Work

4.1 Consistency Operators

On every quasi-Nelson algebra A, a max-consistency operator o may be intro-
duced, as in [5, Def. 3.3], by the prescription:

cA~zAy=0 if and only if y < ox

giving us oa = max{b € A : aA~aAb =0} for all a € A. Many of the
results established in the previous sections, including the twist representation
(see below), can be obtained for the consistency operator o as well. There are,
however, certain additional technical difficulties. For instance, it is not clear at
this point whether an analogue of Theorem 3 (entailing that the resulting class
of algebras is equational) can be established: this is essentially due to the fact
that the term y V ~y appearing in item (iv) of Theorem 3 is the same that
defines the Boolean elements, but its negation-dual y A~ y, as we have observed,
does have the same effect in a non-involutive setting. Strategies for overcoming
such difficulties will have to be explored in future research.

On the other hand, a twist representation can be established, and the ana-
logue of Theorem 4 would state that the consistency operator is given, on every
twist-algebra, by o{ay,as) := (= — (a1 V az),—(a;1 V az)), where the unary oper-
ation — is defined as follows:

—a=min{be O[H]: 0(aVb) =1}. (6)

(6) is precisely saying that —a is the dual pseudo-complement of a € O[H]
computed in the Heyting algebra O[H] := {a € H : Oa = a} of fixpoints
of the nucleus operator. Using this representation it is not hard to verify, for
instance, that when both a min-inconsistency operator e and a max-consistency
operator o are defined on a quasi-Nelson algebra A = Tw(H, V), the inequality
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~ex < ox is always satisfied. On the other hand, the converse inequality (ox <
~ezx) holds if and only if —a = O —a for all @ € V, in which case the term
~exr may be taken as a definition of ox. A perfect duality between the two
operators, however, is only reached if we impose the stronger requirement —
a = —a for all @ € V (in which case we may also define ex := ~ oz, as in the
involutive setting). These considerations suggest that the exploration of non-
involutive algebras simultaneously endowed with consistency and inconsistency
operators may also prove to be an interesting direction for future research.

4.2 LFIs Based on Quasi-Nelson Algebras

As mentioned earlier, the logical interpretation of the results presented in the
previous sections is straightforward. Following [5], we can proceed by first defin-
ing truth-preserving logics Fg for K € {QN®*,QNg,,,,QN%s}. For K = QN°®, the
counterparts of the rules (A1), (Max) and (CNG) of [5, Definition 5.1] would be
the following;:

=P, =@

, . pV~pVY
(A1) —————— (Min) — =% s o3

CNG
pV~pVep o =1 ( )

(Note that these formulations of (A1l’) and (Min) appear closer to their alge-
braic counterparts than (A1) and (Max) in [5].) In a similar way one may define
rules for the truth-preserving logic - with K € {QNg,,, QN%g}. By restricting
the application of these rules as indicated in [5, Def. 5.5], we can then obtain
order-preserving logics i for K € {QN®, QNg,.,, QN%g}, thus recovering the
subsequent logical results of [5, Section 5] in the setting of quasi-Nelson algebras
endowed with inconsistency operators. We intend to pursue this in future publi-
cations, alongside the study of logics based on algebras endowed with consistency
operators (defined as in the preceding subsection) and logics that include both
consistency and inconsistency connectives.

4.3 (In)consistency Operators Beyond the Quasi-Nelson Setting

As mentioned in the Introduction, the present paper aims at establishing an
algebraic background for extending the approach of [5] to LFIs beyond the set-
ting of distributive involutive residuated lattices. Quasi-Nelson algebras, while
non-necessarily involutive, are still a quite special subclass of residuated lattices
(members of QN are, in particular, distributive and 3-potent), but some of the
results presented here can be proved in a more general setting. As a next step
in this direction, we speculate that the classes of residuated lattices introduced
in the recent papers [2,3| might be a promising starting point. These are much
more general residuated lattices that, while not necessarily satisfying any of the
above-mentioned requirements (involutivity, distributivity, n-potency, integral-
ity or commutativity), are still representable as twist-algebras. One may thus
hope to obtain suitable generalizations of the results presented in the present
paper, including those that appear to rely more heavily on the twist construction
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(e.g. Proposition 7 and Corollary 1). We leave this as a last suggestion for future
investigations.
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Appendix: Proofs

Proof (Proposition 1). Ttems (i) to (iv) are straightforward consequences of Def-
inition 2. We shall prove (v) later on, as it follows directly from the twist
representation. Let us prove (vi). Using Definition 2, it suffices to show that
aV~aVbVe(laV~aVb)=1forallabec A Since a <aV ~aVb, we have
aVr~aVb>~a>~(aV~aVb). Hence, we can use item (iv) to obtain the
result: aV~aVbVe(aV~aVbd) = (aV~aVb)V~(aV~aVb)Ve(aV~aVb)=1.

Proof (Theorem 1). We have seen in Proposition 1 that the three conditions in
the statement are consequences of Definition 2. Conversely, assume conditions
(i)—(iii) hold on a quasi-Nelson algebra A, and let a, b be such that aV~aVb = 1.
By (i) and (iii), we have ea < bVe(aV~aVb) =bVel =>bV0=Db, as required.
Conversely, assume ea < b. Then, by (ii), we have 1 =aV~aVea <aV~aVb,
as required.

Proof (Theorem 2). Recall that all the classes under consideration are varieties.
Thus, assuming an equation ¢ = 1 in the {e}-free language does not hold in
QN, let A € QN be a subdirectly irreducible algebra witnessing this. We can
then apply Example 1 to obtain an algebra (A, e) € QNg,, that does not satisfy

©=1.

Proof (Proposition 2). Items (1)—(iii) are immediate consequences of Definition 3.
Regarding (iv), using items (ii) and (i) of Definition 3, we have:

(ega V bV egb) V ~(ega V bV egb)

= (ega VbV egh) V (~ega A ~b A ~ egh)

= (ega VbV eghV ~ega) A (ega VbV eghV ~b)A(egaVbVeghbV ~b~ egh)
> (egaV ~ega) A (bVeghV ~b)A(eghV ~egb) =1A1ALl=1.

Let us now prove (v). Note that, by the previous items (ii) and (iv), we have
bVeg(bV~b)Veg(aV~aVb) =eg(aV~aVb)VbVegbec B(A). Then, by
Definition 3 (iii), it will be sufficient to show that a V ~a VbV eg(bV ~b) VvV
eg(aV ~aVb) = 1. Indeed, following the proof of Proposition 1 (vi), we can
show that a V~aVbVeglaV~aVd) =1 Froma < aV~aVb, we have
aV~aVb>~a>~(aV~aVb). Hence, Definition 3 (i) gives us the required
result: aV~aVbVe(aV~aVb) = (aV~aVb)V~(aV~aVb)Ve(aV~aVb)=1.
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Proof (Theorem 3). We have seen in Proposition 2 that an operator eg given as
per Definition 3 satisfies all the equations in the statement. Conversely, supposing
these equations hold, let us prove that Definition 3 (iii) is satisfied. Let then
a,b € Abeelements of A € QN such that avV~aVb = bV~b = 1. Then, using (iv)
and (iil), we have ega < bVeg(bV~b)Veg(aV~aVbd) = bVeglVegl = bV0OV0 = b,
as required.

Proof (Proposition 3). Let us preliminarily note that Tw(H, V) is closed under
the new operation. Indeed, on the one hand, if {(a;,as) € A, then a; Vas € V,
so —(ay V ag) exists in H. Furthermore, we have —(a; V ag) A = — (a1 Vaz) =0
and, since Oz = —z, also O- — (a1 V az) = = — (a1 V ag).

To prove the main statement, for the “if” part, let us check that (a1, as) vV
~(ai,a2) V ®{a1,az) = (1,0). Recalling that Oa; A az < Oay A Oaz = O(ag A
az) = 00 = 0, we easily obtain: (a1, as) V ~{(aj,as) V e{a1,as) = (a1 V asV —
(a1 V (12),(12 AOap A — '_(al V (12)) = <1,0 N~ v—(a1 V a2)> = <1,0>

For the “only if” part, assume (a1, as) V ~(a1,az) V {b1,b2) = (1,0). In the
light of the preceding computations, we note that only the first component gives
us some information; namely that a; V as V by = 1. Then, by the property of the
dpc, we have —(a1 Vaz) < by. As to the second component, we need to show that
by < — (a1 Vas). By the property of the pseudo-complement, this is equivalent
to — (a1 V az) Abe = 0. The latter, in turn, follows from —(a; V az) < by and the
assumption that by A by = 0, for we have — (a1 V az) A by < by A by = 0.

Proof (Proposition 4). Let b € V. Then (b,0) € A. Let ¢(b,0) = (a1,as). We
claim that a; =— b. We therefore need to show that, for all ¢ € H, we have
bve=1 iff ay < c. Assume a; < ¢. From Definition 2 we have: (1,0) =
(b,0)V~(b,0)Ve(b,0) = (bVOVai,0ANObAas) = (bVay,0), which, in particular,
givesus 1 =bVa; < bV ¢, as required.

Conversely, assume bV ¢ = 1. Then, considering for instance the element
(e,mc) € A, we have: (b,0) V ~(b,0) V (¢c,m¢c) = (bVOVc,0ADObA-C) =
(b V¢, 0) = (1,0). Thus, we may apply Definition 2 to obtain e(b,0) < (¢, —c),
giving us in particular a; < ¢, as required.

For the second claim in the statement, given (aj,a2) € A, let o(ay,a2) =
(b1,be). By Proposition 1 (i), it suffices to compute e({a1,as) V ~{aj,as)) =
e(ayVaz,0). Since a; Vaz € V, we can apply the above reasoning to obtain by =—
(a1Vas). Hence o{ay, as) = (— (a1 Vasg), bs), and we know that — (a3 Vag) Aby = 0,
i.e. (by the property of the pseudo-complement) by < — —(ay V ag). It remains
to show that = — (a1 V ag) < by. Since (a1, a2) V ~(ai,a2) V (— (a1 V az),~ —
(a1 Vaz)) = (1,0), by Definition 4 we have (b1, b2) < (— (a1 Vaz),— — (a1 Vasz)),
giving us, in particular, = — (a1 V az2) < ba.

Proof (Proposition ). Let us preliminarily verify that the following (in)equalities
hold on every twist-algebra: e ~(z A ~xz) = o(x A~z) < e~z < oz = ox x or.
Given (b1,b2) € A, to establish e~(x A ~2z) = o(z A ~z), let us compute:
0(<b1, b2> A N<b1, b2>) = 0<0, D(b2 vV Db1)> = 0<0, D(bl \Y b2)> = <'— D(b1 \ bg), -
D(bl \/b2)> = 0<D(b1 \/bg)7 0> =e N(O, D(b1 Vb2)> =e N((bl, b2> /\N<b1, bg)) Now
observe that from 0Oby V be < 0O(by V be) = O(Oby V b2) we have —0(by V be) <r—
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(Oby V by), which justifies the inequality e(z A ~z) < e~x. To justify the
inequality e ~x < ez, suffice it to observe that —(0b; V by) <— (b1 V ba) because
b1 V by < Oby V by. Finally, regarding e = ex x ex, recall that the idempotent
elements on a twist-algebra are precisely those of the form (b1, —b;) for some
by € H.

(i). By the preceding observations, we have e(by,bs) < e({by,bs) A ~(b1, b))
if and only if — (b1 vV bg) <= D(bl \Y bg) Note that the inequality — D(bl V bg) <~
(b1 V by) holds in general. Since by V by € V, the result easily follows.

(ii). Recalling the preliminary observations, we easily see that e ~(by, bs) <
o((b1,b2) A ~(b1,b2)) if and only if — (Oby V by) <— O(by V b2) if and only if
— (Oby V by) =— O(by V ba). By the property of the dpc, the latter is in turn
equivalent to Oby V byV —0O(by V bg) = 1.

(iii). As with the preceding item, we have e(by,bs) < e~(by,by) iff — (b V
by) <—(Oby V by) iff — (b1 V by) =—(Oby V be). By the property of the dpe, the
latter is equivalent to by V baV —(0Oby V by) = 1.

(iv). Assume A = 2 A ex =0, and let a € V. Then, considering (a,0) € A,
compute (a,0) A o(a,0) = (aA —a,0(0 V= —a)). The assumption then gives
us, in particular, O(0V = —a) = O(— —a) = 1. From the latter, recalling that
-0z = -z, we obtain ~0—- —a = == —a = 0 = —1. Since —a < = —a, we
conclude that —a = 0. The latter gives usa =aV0=aV —a=1. So V = {1}.
Notice that, by construction, D(H) C V. Since D(H) = {bV b : b € H}, we
see that V = {1} entails that H is a Boolean algebra (and, in consequence, the
nucleus is the identity map).

Conversely, assume V = {1}. Then e(by,b) = (—1,— —1) = (0,1) for all
<b1, b2> € A.

(v). Assume A = ~zAex = 0, and let (b1, ba) € A. Let us compute ~(by, ba) A
.<b1, b2> = <bg/\ f(bl Vv bg), D(Dbl V= f(bl \Y bg))) = <b2/\ — (bl \Y bg), D(bl V=
(b1 V b2))). We thus see that the assumption implies, in particular, boA — (by V
bs) = 0, which (by the property of the pseudo-complement —) is equivalent to
— (b1 V by) < —by. By the property of the dpc, the latter is in turn equivalent to
by Vba V =by = 1. But by < =g (because by Aby = 0), 80 by V by V —by = by V —ba.
This means that, for every by € O[H], we have by V —by = 1. Thus, in particular,
the Heyting algebra Hy is Boolean; notice also that bs V —by = 1 is equivalent
to the statement Oc V —c = 1 for all ¢ € H, because Oby; = by and —Oc = —c.

Now let a € V, so (a,0),(0,0a) € A. Taking then b; = 0 and by = Oa,
~(0,0a) A ¢(0,0a) = (QaA — Oa,0(0 V = — Oa)) = (0,1). From the second
component, we have 00— —Oa = — —Oa = 1, which negating both sides gives us
- —Oa = 0 = —1. Since z < =z, we thus have —Oa = 0. Then 1 = QaV —
Oa = Oa V 0 = Oa, as claimed.

Conversely, let (b1,bs) € A. We need to show that baA — (b1 V by) = 0 and
O(by V- = (b1 Vbe)) = 1. Since be € O[H], the assumptions give us by V —bg = 1.
The latter gives us by V by V =by = 1, which is equivalent (by the property of the
dpc) to — (b1 V ba) < —by. By the property of the pseudo-complement, the latter
is in turn equivalent to boA — (by V ba) = 0, which is the first required equality.
To obtain the second, from baA — (by V ba) = 0 we have, again by the property
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of the pseudo-complement, by < = —(by V ba). From by < = — (b1 V b2) we obtain
bl\/bg S b1 V= '_(bl \/bg) Since bl \/bg S V, we have that bl V= '_(bl \/bz) eV as
well. So we may use the assumptions to conclude that O(by V = — (b Vb)) = 1.

(vi). Observe that e(aj,as) V ~e(a1,a2) = (—(a1 Vaz) V- (a1 Vag),~
(a1 Vaz) ANO (a1 Vaz)) = (—(a1 Vaz) V- (a1 Vaz),0). The latter equality
follows from the nucleus properties: we have = — (a; Vag) A0 — (a1 V ag) <
O- '—(al\/aQ)/\D r(al\/a2) = D(—' '—(al\/ag)/\ '—(&1\/&2)) =00 =0.
The only non-trivial condition imposed by the identity ex V ~ex = 1 is thus
'_(al \/02) V= '_(G,l \/ag) =1.

Proof (Lemma 1). It will be useful to preliminary state the following lemma (we
write —a,— b etc. meaning that the relevant properties hold whenever the dual
pseudo-complements of the elements a, b etc. exist in the Heyting algebra H).

Lemma 2. For every Heyting algebra H and for every a,b € H, we have - —
(a—=b) <rb—ra.

Proof. Since —is order-reversing and — (z Ay) =—2aV —y, from a A (a — b) < b
we have —b <—(a A (a — b)) =—aV —(a — b). From the latter inequality, using
distributivity, we obtain —bA - —(a = b) < (maV —(a = b)) A-—(a — b) =
(ranN=—(@a—=b)V(—(a—=b)A-—(a—b)=(aA-—(a—b)V0=r
a A= —(a —b). Thus, in particular, we have —b A = —(a — b) <—a, which by
residuation gives us = —(a — b) <—b —ra, as required.

We can now easily prove the equivalence among the three items in the statement
of Lemma 1. To show that (i) entails (ii), assume F' is V-normal and a — b € F
for some a,b € V. Then — — (a — b) € F, so we can apply Lemma 2 (iii) to obtain
—b —r a, as required. It is clear that (ii) entails (iii). To conclude the proof,
assuming F satisfies (iii), let us prove (i). Let a € VN F. Thena - 1=1€ F
and 1 — a = a € F. Hence we can apply the hypothesis to obtain —a ——1 € F.
But —a —-—1=—a — 0 = = —a, so we are done.

Proof (Proposition 7). We know that every implicative filter G C A has the
shape G = (F x H) N A, where F is a lattice filter of H (Proposition 6). It
remains to show that G is a e-filter if and only if F' is V-normal. Let us first
assume that G is a e-filter, and let a € VN F. Then (a,0) € G and, as observed
earlier, o(a,0) = (0,1) = ~e(a,0) = (= —a,0 —a) € G. This means that
- —a € F, as required.

Conversely, assume F is V-normal and (a1,as) = (b1,ba),(b1,b3) =
(a1,a2) € G. This means, in particular, that a; — b1,b; — a1,a2 — by, by —
az € F. Since z — y < x — (yV z), from a; — by,as — bs € F we obtain
a; — (b1 \Y bQ),GQ — (bl \Y bQ) € F‘7 hence (a1 — (bl V bg)) A (ag — (bl V bg)) =
(a1 Vaz) — (b1 Vby) € F as well. Symmetrically, from b; — a1,b0 — a9 € F
we obtain (by V by) — (a1 V az) € F. Since a1 V ag,b; V by € V, we can use
Lemma 1 to obtain —(ay V ag) —— (b1 V by) € F. Since — (a1 V az) — (b1 V b2)
is the first component of e(a,az) = (b1, bs), this allows us to conclude that
o(ay,az) = o(by,by) € G, as required.
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Proof (Corollary 1). We have already observed that every e-filter satisfies (ii).
For the converse, let A = Tw(H, V), so we can use Proposition 7. Hence, G =
(F x H)N A, where F' is a V-normal lattice filter of H. Let a = (a1,a2) and
b = (b1, bz) be such that (a1, az) = (b1, b2), (b1, b2) = (a1,az2) € G. This means,
in particular, that a1 — b1,b7 — a1,a2 — ba,bs — as € F. Since ¢ — y <
x — (y V z) holds on Heyting algebras, from a; — b1,a3 — by € F we obtain
a; — (b1 vV bg),ag — (b1 V bg) S P’7 hence (a1 — (bl V bg)) A (ag — (bl V bg)) =
(a1 Vag) — (b1 Vby) € F as well. Symmetrically, from b; — a1,b0 — ag € F
we obtain (by V ba) — (a1 V ag) € F. Since a1 V ag,b1 V ba € V, we can use
Lemma 1 to obtain —(aj V ag) —— (b1 V b2) € F. Since — (a1 V az) — (b1 V b2)
is the first component of e(aq,as) = (b1, bs), this allows us to conclude that
o(ay,az) = o(by,bs) = ea = eb € G, as required.

Proof (Theorem 5). Supposing A is not directly indecomposable, let A = B x
C. Then the element (1B, 0€) is Boolean and B(A) # {0,1}. Conversely, let
A =Tw(H,V). As observed earlier, every Boolean element is involutive and an
idempotent, that is, every element in B(A) is of type a = (a1, a;) for some
ay € H with a1 = Oay and a; V —a; = 1 (hence, a; is a Boolean element of
H). Now, assuming a € B(A) — {0,1}, let us consider the up-set G := [a).
We claim that G is a e-filter. It is easy to see that G is closed under * (hence,
it is an implicative filter). It follows that G = (F x H) N A, where F' = [a;).
Since ay is Boolean, we have a; = = — a; (Lemma 2). It follows that F' is
V-normal. Indeed, letting b; € VN F (i.e. a; < by), we have —b; <—a; and
a1 = - —a; < = —by. Hence, F'is V-normal and, by Proposition 7, G is a e-filter.
A similar reasoning shows that J := [~a) is a e-filter. Note that in the lattice
of e-filters of A, we have GA J = {1} and GV J = A. The former claim follows
from the observation that ¢ > a,~a entails ¢ > a V ~a = 1. As to the latter,
we have that a,~a € GV J entails a A ~a =0 € GV J. Thus, considering the
associated congruences g and 67, we have g AN0; = Id4 and OV O; = A x A.
Hence, 6 and 6 are (non-trivial) factor congruences of A (it is obvious that
they permute, for quasi-Nelson algebras (as a subclass of residuated lattices)
are congruence-permutable). We would then conclude that A = A /g x A /0,
contradicting our hypothesis that A was directly indecomposable.

Proof (Theorem 6). Clearly (i) implies (ii), which implies (iii). The only non-
trivial implications are from (iii) to (iv) and from (iv) to (i). For the former, we
can reason as in the proof of Theorem 5. As to the latter, assuming B(A) =
{0,1}, we have ega = 1 for all a € A — B(A) (item (iii) of Proposition 2). It
follows that the only eg-filters of A are {1} and A itself. Hence, A has only two
congruences, and is simple.
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