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Abstract

Probabilistic models enhance breeding, especially for the Tahiti acid lime, a fruit essential to
fresh markets and industry. These models identify superior and persistent individuals using
probability theory, providing a measure of uncertainty that can aid the recommendation. The
objective of our study was to evaluate the use of a Bayesian probabilistic model for the rec-
ommendation of superior and persistent genotypes of Tahiti acid lime evaluated in 12 har-
vests. Leveraging the Monte Carlo Hamiltonian sampling algorithm, we calculated the
probability of superior performance (superior genotypic value), and the probability of supe-
rior stability (reduced variance of the genotype-by-harvests interaction) of each genotype.
The probability of superior stability was compared to a measure of persistence estimated
from genotypic values predicted using a frequentist model. Our results demonstrated the
applicability and advantages of the Bayesian probabilistic model, yielding similar parame-
ters to those of the frequentist model, while providing further information about the probabili-
ties associated with genotype performance and stability. Genotypes G15, G4, G18, and
G11 emerged as the most superior in performance, whereas G24, G7, G13, and G3 were
identified as the most stable. This study highlights the usefulness of Bayesian probabilistic
models in the fruit trees cultivars recommendation.

Introduction

Breeding perennial fruit crops presents a set of challenges. The 3 to 5-year juvenile phase and
the variable expression of quantitative traits over time can delay and mislead the selection of
superior genotypes [1]. This differential performance over time can be a reflex of the geno-
types-by-harvests interaction (GHI). The GHI in perennial species refers to the variation in
gene expression and, consequently, the phenotypic traits of a plant due to the different envi-
ronmental conditions and agricultural practices that occur in each planting cycle [2]. There-
fore, in perennial fruit breeding, repeated measures on the same plant over time are
important, which increases costs and the duration of breeding cycle [3]. In the presence of
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complex GHI, breeders must consider the productivity and the stability of the genotypes over
harvests [4-6].

In Tahiti acid lime (Citrus latifolia Tanaka L.), several strategies have been proposed to
address the challenges related to the extended juvenile phase and the presence of GHI. Graft-
ing, a well-established technique in citrus propagation, influences vegetative growth and short-
ens the juvenile phase, facilitating earlier evaluations in breeding programs [7, 8].
Furthermore, research has demonstrated that employing repeatability models allows for accu-
rate genotype selection in Tahiti acid lime after just four measurements [9]. To address the
interdependence of measurements taken on the same individual over time, approaches like
random regression models using Legendre polynomials have been applied [10]. Random
regression models enable the estimation of the genotypic trajectory of evaluated treatments
over time.

A recent methodology proposed by Dias et al. [11] can help to optimize the Tahiti acid lime
cultivars recommendation, since it uses probability concepts. This method aims to reduce the
risk associated with the selection of a given genotype, which is the daily dilemma of the farmers,
who seek to guide their actions to minimize the risks of low production for a given crop [12].
Furthermore, plant breeding is increasingly focused on developing genotypes capable of coping
with the modifications of the current climate, as the impacts of climate change become an addi-
tional pivotal factor to consider in the agricultural sector [13]. Dias et al. [11] proposed to use
Bayesian probability concepts to assist in the selection of genotypes that gather favorable alleles
for performance and stability across environments and harvesters. Furthermore, it allows a
straightforward recommendation based on the probability of a given genotype to be selected
considering its performance and stability, and a pairwise comparison of the probabilities of the
evaluated selection candidates. This methodology has been proposed for the multiple-location
context. Nevertheless, we believe that the same ideas are valid for the multi-harvest. The objec-
tive of our study was to evaluate the use of a Bayesian probabilistic model for the recommenda-
tion of superior and persistent genotypes of Tahiti acid lime evaluated in 12 harvests.

Materials and methods
Trial and plant material

We evaluated 24 combinations of rootstock and scion of Tahiti acid lime for fruit yield,
expressed in kg of fruit per plant (Kg/tree). The hybrids Citrumelo swingle (Citrus paradisi X
Poncirus trifoliata) and Citrandarin ‘riverside’ (Citrus sunki X Poncirus trifoliata) were used as
rootstock for scions of 12 clones of Tahiti acid lime (Table 1). The plant materials came from
the Active Germplasm Bank of Embrapa Mandioca e Fruticultura [14]. Each combination was
considered a different selection candidate. The trial was laid out in a complete randomized
block design, with four replications. Each plot was composed of three plants. The inter-rows
and inter-ranges spacing was 6 x 3 m, respectively. We performed the statistical analysis
described in the next topic using the plots unit mean.

The trial was established in July 2015, in Sd0 Mateus municipality, Espirito Santo, Brazil
(18°48°21"S, 39°53°30"W, 35 m of altitude). The work was conducted on a farm at Bello Fruit™
company, through a partnership between the fruit production and export company and the
Universidade Federal do Espirito Santo. The experimental region has a rainy season in sum-
mer and a dry season in winter, being classified as Aw, following the classification of Képpen
[15]. The precipitation and temperature during the period of the experiment was illustrated in
the S1 Fig of the Supplementary Material. The data was collected between July 2017 and Sep-
tember 2020, and consisted of 12 harvests carried out in the following days after planting: 736,
808, 861, 918, 972, 1083, 1200, 1249, 1415, 1568, 1633 and 1867.
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Table 1. Codes for 24 combinations of rootstock and scion of Tahiti acid lime.

Scion Rootstock
Citrumelo swingle Citrandarin riverside
Bello Fruit Gl G13
Eledio G2 G14
Iconha G3 G15
Itarana G4 G16
Santa Rosa G5 G17
Bearss Lime G6 G18
CNPMFO01 G7 G19
CNPMF02 G8 G20
CNPMF2001 G9 G21
CNPMF5059 GI10 G22
BRS Passos G11 G23
Persian 58 G12 G24

https://doi.org/10.1371/journal.pone.0299290.t001

Statistical analyses

We applied the probabilistic approach of Dias et al. [11] by fitting two Bayesian models using
the the rstan package [16] and ProbBreed package [17]. The first model had a homogeneous
residual variance (B-ID) and presented the following conditional normal probability:

uN(E[p] )
where:
Ely] = n+g+r+ b+ ghy+p,+e
in which E[y;;] is the expectation of the phenotype from the i" genotype, evaluated in the j*
block, at the k™ harvest; 4 is the overall mean; g; is the genotypic effect; r; is the block effect;
hyis the harvest effect; gh;; is the genotypes-by-harvests interaction, and p;; is the environmen-

tal permanent effect.
The prior probability distribution of each parameter of the model was defined as:

p~N(,0,)
r~ N(O,UM)
h~N(0,0)
g§~N(0,0,)
gh ~N(0,0,)
p~N(0,0,)

e ~ Half Cauchy(0,7,)

o ~ Half Cauchy(07 O'[a])
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where N(0,0(,)) and Half Cauchy(0,0(,;) represent the normal and half-Cauchy distributions,
respectively, with mean equal to zero and with different o7, scale parameters. The following

hyperpriors were considered for the respective parameters:

oy, ~ Half Cauchy(0, ¢)
ay ~ Half Cauchy(0, ¢)
ay, ~ Half Cauchy(0, ¢)
ay, ~ Half Cauchy(0, ¢)

0y ~ Half Cauchy(0, ¢)

where ¢ represents a predetermined global hyperparameter (¢ = max(y)*10), defined in such a
way that results in a weakly informative second level hyperpriors. Therefore, the data domi-
nated the posterior distributions [18]. The half-Cauchy distribution is restricted to positive val-
ues, being often recommended as a prior distribution when modeling variance parameters
[19].

The second Bayesian model had heterogeneous residual variances (B-DG). This model has
the same considerations of the M-ID, except that o, HalfCauchy(0,0(,4)). We selected the best-
fitted model via the Watanabe-Akaike Information Criterion 2 (WAIC2) [18]. We used the
Hamiltonian Monte Carlo algorithm in four Markov chains with 4000 samples, thin equals 1
and 50% burn-in.

Convergence diagnostics. The scale reduction factor (R) was used to assess the effective-
ness of the convergence of the Markov chain Monte Carlo (MCMC). This metric indicates
whether the chains have mixed sufficiently, and the estimated model parameters have reached
a stable distribution. The closer the Rto 1, the greater the quality of mixing and convergence
[18]. Greater values imply that more iterations are needed.

We also conducted a graphical analysis to visually assess how well the data generated by our
model aligns with the true generative process of the observed data. This involved creating sam-
ples (referred to as "y,.,") from the fitted models using ancestral sampling from the conditional
joint distribution and then plotting these samples against the observed data. Additionally, we
employed posterior predictive p-values to gauge how closely the statistical measures (maximum,
minimum, median, mean, and standard deviation) of the data generated by the fitted models
resembled those of the observed data [18]. For instance, when considering the maximum statis-
tic, we defined the Bayesian p-value as follows: P,a, = pr(T(Vgen,0) > T(y,0)|y), where T is the
statistic test. The degree of similarity between the statistics derived from the generated data and
those from the observed data increases as the Bayesian p-values approach 0.5.

Probability of superior performance and genotypic stability. The probability metrics
for both performance and stability utilized in this study were proposed by Dias et al. [11] and
implemented in the ProbBreed R package [17]. Aiming to select the top four genotypes, we
sampled the posterior distribution of the marginal genotypic values given the observed pheno-
typic values. In each sample, we ranked these genotypes in descending order of posterior geno-
typic values (g;). Then, we counted the number of events where a given genotype appeared in
the subset of superior genotypes (£2), i.e., among the top four (selection proportion of 16%).
The selection of 4 genotypes has been defined in a breeding program that aims to select multi-
ple superior materials to be recommended across various regions. Moreover, diversifying
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varieties on a single farm is important for the sustainability of cultivating Tahiti acid lime. The
probability of superior performance of a genotype is given by the number of samples it
appeared in divided by the total number of samples. In summary:

1
Pr(ge, | y) = ;ZL T(ge2, | y)

where S(s = 1,2,... ,S) is the number of samples and I(g €| y) is an indicator variable that
maps failure (0, if g°¢) or success (1, if g €).

We calculated the stability across harvests based on the variance of the effect of GHI. Geno-
types with lower GHI variance (var[gh;]) tend to be more stable, showing less fluctuation in
their performance between harvests. One can draw a parallel of this metric and the frequentist
persistence (see the next topic). Following the same idea described in the last paragraph, calcu-
lated the probability of a given candidate belonging to the subset of the top four genotypes with
smaller var[ghy] (I(var[ghy]® €€V]y)). The probability of superior stability was given as follows:

1
N I(varlgh) € eV | y)

N

Pr(var(gh,) € £V | y)

We used the ideas previously described for the two probabilities to perform pairwise com-
parisons between selection candidates. The goal is to investigate the chances of a given geno-
type being superior, whether in performance or stability, to its peers. The pairwise
probabilities of superior performance and the pairwise probabilities of superior stability were
given by, respectively:

1 S
Prig > g |y =5) 1(&>81y)

s=1

and

1

S

Pr(var(gh,) < var(gh)) | y) =~ > I(varlgh} < varlgh}' | y)
where I(g® > ¢° | y)is an indicator variable mapping success if g’ has higher genotypic value
than g’, or failure otherwise; and I(var[gh;]* < var[gh;]®|y) is another indicator variable map-
ping success if gh; has lower variance than ghy, or failure otherwise.

The probability of superior performance within harvests and the pairwise probability of
superior performance within harvests can be obtained by the following equations, respectively:

1 s
prige > gl ) =5 1(gi > 8 l),

1 s s
pr(var(ghy) < var(ghy) |y) =~ 1(varlgh]" < varlghy] | y)

where I(g, > g5 | ), is an indicator variable mapping success if ¢* has higher genotypic value
than g° in the harvest k, or failure otherwise; and I(var[ghy]® < var[ghx]®|y) is another indicator
variable mapping success if gh; has lower variance than ghy in harvest k, or failure otherwise.

Stability in the frequentist context. To compute the stability, we first fitted the following
frequentist model (F-DG):

y=lpu+Xr+Xh+2g+2Zgh+2Zp+e

where y is the vector of phenotypic data, 1 is a vector of ones, y is the intercept of the model, r
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is the vector of repetition effects (assumed to be fixed), 4 is the vector of harvest effects
(assumed to be fixed), g is the vector of genotypic effects (assumed to be random)

{ ~N (O, I az)} , gh is the vector of the effects of the genotype-by-harvest interaction
(assumed to be random) [gh ~N (0, I azhﬂ , p is the vector of permanent environmental effect

(assumed to be random) {p ~N (0, I a;)] , and e is the vector of residues associated with phe-

notypic observations (random) [e ~ N(0, R)], where R is a residual covariance matrix. The
capital letters X; and X, refer to the incidence matrix for the fixed effects, and Z,,Z, and Z; are
the incidence matrix for the random effects of the respective effects.

We estimated the variance components and predicted the genetic values using the residual
maximum likelihood-REML [20], and the best linear unbiased predictor-BLUP [21], respectively.
The significance tests of the random effects were verified via likelihood ratio test (LRT) [22].

A concept analogous to stability called “persistence” is used by breeders of perennial forages
and refers to the ability to survive and keep producing dry matter for long periods [23, 24]. In
perennial fruit plants, this concept can be readjusted as the ability to maintain a high fruit
yield for several years [2]. Therefore, persistence is analogous to an ecological stability of the
genotypes (P;) based on the distance between each genotype in relation to the ideotype. The
ideotype (g,4x) was defined as the maximum genotypic value estimated on each harvest. We
used the following expression to estimate the persistence [24]:

S S—
12
> (Egma)?
_ k=1
S ——
i=1 12 9
> & max)?
We compared the genotype ranking of the Bayesian probabilistic model and persistence via
the frequentist model using Spearman correlation, following the expression below [25]:

6

=1
P n(n? —1)

where p is the Spearman correlation, d is the difference between the rank positions of the geno-
types in each methodology, and # is the number of genotypes.

We performed the analysis using R software environment, version 4.2.1 [26]. The Bayesian
models were fitted using the probabilistic programming language Stan [27] from the rstan
package [16], and the ProbBreed R package [17]. We fitted the linear mixed models using
ASReml-R (version 4.1) [28].

Results
Probability of superior performance of genotypes

The Bayesian models (B-ID and B-DG) displayed a mean value of the statistic R close to 1,
indicating strong convergence of the model parameters (Table 2). Notably, among these mod-
els, the B-DG model exhibited the best fit, as evidenced by its lower WAIC2 value (Table 2).
Note how the density of the data generated by B-DG model follows the same trend as the den-
sity of the real data. This indicates the model’s effectiveness in replicating the distribution of
observed data through the generated data, highlighting its reliability in capturing the underly-
ing patterns (Fig 1A). Considering the findings from the B-DG, the posterior distribution of
genotypic values of the 24 genotypes exhibited a variable overlapping pattern among their
highest posterior density intervals (Fig 1B).
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Table 2. Comparative statistics of Bayesian models.

Predictive a posteriori verification statistic Homogeneous residual variance model Heterogeneous (diagonal) residual variance model
WAIC2 8420.87 6899.61
R 1.00 0.99

Where WAIC2 is the Watanabe-Akaike information criterion, and R is the potential scale reduction factor.

https://doi.org/10.1371/journal.pone.0299290.t002

Genotypes G15, G4, G18 and G11 presented the highest posterior genotypic values (Fig 1B)
and the highest probability of superior performance (Fig 1C). Genotypes G15, G4, G18, Gl11,
G3, G23, G22, G1, G19, G14, G2, G13 and G16 were selected at least in a few samples, while the
remaining 11 genotypes did not appear among the selected in any sample (Fig 1C). Genotypes
G15 and G4 offers low risk of bad performance if selected (probability of superior performance
equal to or higher than 75%). Genotypes G24 and G7 had the highest probability of superior sta-
bility, meaning that they have the less variable performance across harvests (Fig 1D).

The pairwise comparison graph presents two symmetrical sides, which indicate the proba-
bility of success (lower diagonal) and failure (upper diagonal) of the genotypes in the x-axis
being superior to the ones of the y-axis (Fig 2A). G15, for example, has a high probability of
beating all genotypes. On the other hand, G9 is beaten by all its peers, except for G21, which
wins three-thirds of the time. The greenish color indicates genotypes that tie in their perfor-
mance (probability close to 50%), like G18 and G11, G2 and G14, and G10 and G24 (Fig 2A).

The probabilities of a given genotype belonging to the group of selected ones in each harvest
varies for high performance genotypes (Fig 2B). Genotypes G15, G4, G18, and G11 consistently
displayed probabilities exceeding 50% across nearly all harvests. Conversely, genotypes G9 and
G21 exhibited nil probabilities throughout all harvests, implying that they are not recommended
due to their consistently poor performance (Fig 2B). According to the probability of superior per-
formance within the harvests, high production by certain genotype in one harvest did not guaran-
tee the same level of performance in subsequent harvests (Supplementary material-S2 Fig).

Probability of genotypic stability

The probability of encountering a Tahiti acid lime genotype with minimal variation for stabil-
ity was generally low. Only G24 exhibited values exceeding 0.3, indicating it to be the most sta-
ble genotype among those under evaluation (Fig 1D). The frequentist model (F-DG)
demonstrated the significance of GHI according to the LRT. Also, the variance components
exhibited similar magnitudes for both models (Table 3). The azovershadowed the O-;h and aﬁ,

with values of 2.21 for the F-DG model and 2.44 for the B-DG. The residual variance displayed
varying values across different harvests, ranging from 0.88 to 412.17 in the F-DG and from
0,63 to 384.17 in the B-DG (Table 3).

Persistence by the frequentist sense presented different results from the probability of supe-
rior stability of Bayesian models. However, in both contexts, the values were low. Genotypic
persistence in the frequentist context ranged from 5.7 to 3.4 (Fig 3). Except for G3, which pre-
sented the highest value and well above the others, the other genotype values were in a range of
1.1, showing the low ability of the F-DG to distinguish the persistence of these genotypes. The
correlation between the persistence rankings in the Bayesian context (Fig 1D) and those in the
frequentist context (Fig 3) exhibited a coefficient of 0.69. This suggests a statistically significant
correlation between the classifications provided by the two methods, considering a confidence
level of o = 0.05.

PLOS ONE | https://doi.org/10.1371/journal.pone.0299290 March 5, 2024 7/14


https://doi.org/10.1371/journal.pone.0299290.t002
https://doi.org/10.1371/journal.pone.0299290

PLOS ONE

Tahiti Acid Lime Breeding

A: Observed against generated data B: 95 % Highest posterior density interval
G154 —— —
0.100
G4~ ————
618 ———
G114 — e ——
E Generated data
G3 — e ——
E] Observed data — ———
0.075+ G224 —— —
G1+ — e —
G19 —— ——
G2 —— —
$ G14 — — —
4
>
‘ﬁ g 613 — — —
c 0.050+ °
3 C G166+ —— —
a @
O 67+ ———
G17 ———
G6 —co— D ——
G244 — ——
0.025 G10 o —— —
G5+ —— ——
G20 o ———
G8 — —— ——
G124 — e —
0.000+ J G21 ————
GO o  — e —

-50 0 50 100 150 -4 ) 0
Adjusted means Genotypic values
C: Marginal probability of superior performance D: Probability of superior stability
q
o 0.3+ e
Probability Probability
@ p(var(g) € @) @ p(var(ghi) €¢V)
®
0.75 4
0.2+
>
2 2
8 .50+ ﬁ
< ® 8
2 )
[ q =
a o
q
®
0.1
0.25
000+ T""ooooooooooo 0.0+ ]]
5355888555085505688855388 §5585558858885358865858565
Genotypes Genotypes

Fig 1. Bayesian distribution of the observed and generated data of the Tahiti acid lime dataset (A). Caterpillar plot of
the genotypic posterior effects (and their 95% and 97.5% HPDs, represented by the thick and thin lines, respectively) of
24 genotypes of posterior effects (B). Marginal probability of superior performance of the 24 genotypes (C). Probability
of superior stability of the 24 genotypes (D).

https://doi.org/10.1371/journal.pone.0299290.9001

Discussion

The consideration of the GHI is very important in the genetic evaluation of perennial species.
This is because gene expression varies in response to environmental factors across different
harvests [29]. The model selection based on WAIC2, coupled with the observed increase in
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Genotypes

Pr(gi >gr)
1.00
0.75
0.50
0.25
0.00

Gehotypes

Pr(gike Q)
1.00

0.75
0.50
0.25
0.00

Fig 2. Pairwise probability of superior performance among genotypes (A). Probabilities of superior performance within

environments (B).

https://doi.org/10.1371/journal.pone.0299290.g002

residual variance over successive harvests, provides robust evidence in favor of the suitability
of the heterogeneous residuals model for data fitting over the homoscedastic model. These

findings underscore the critical importance of appropriate modeling and accounting for

diverse sources of variation in repeated measures datasets.

Table 3. Variance components estimates for a frequentist heterogeneous (diagonal) residual variance model (F-DG) and a Bayesian heterogeneous (diagonal) resid-
ual variance model (B-DG). For the Bayesian model, it includes the corresponding lower (L) and upper (U) highest posterior density (HPD), considering a confidence

level o = 0.05.
Parameter F-DG B-DG
Component L-HPD Component U-HPD

az 221 1.31 2.44 4.22

‘72;, 0.81 0.44 0.76 1.09

oi 0.24 0.11 0.26 0.42

I H1 1.19 0.89 1.24 1.67
H2 0.88 0.63 0.91 1.29
H3 0.86 0.70 0.97 1.33
H4 5.60 4.48 5.88 7.69
H5 3.07 2.72 3.60 4.72
Heé 4.22 3.37 4.52 5.99
H7 10.26 8.53 11.23 14.78
HS8 20.17 20.57 26.71 34.32
H9 412.17 328.66 418.67 531.69
H10 136.74 113.61 146.63 186.56
Hl11 404.45 324.73 413.08 521.54
Hi12 473.61 384.17 492.71 621.24

0. genotypic variance, a;,: genotypes-by-harvesters interaction, ¢>: variance of the environmental permanent effect, and o?: residual variance for the 12 harvesters (H1

to H12).
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Fig 3. Persistence of 24 genotypes of Tahiti acid lime via the frequentist model with diagonal residual variance.
https://doi.org/10.1371/journal.pone.0299290.9003

Comparing the genotypic values associated with a posteriori probability ensures greater
confidence in the analysis of the performance of the Tahiti acid lime genotypes. Bayesian prob-
ability measures offer breeders the opportunity to delve into the probability of a particular
genotype surpassing others, including scenarios where a candidate genotype may outperform
a widely adopted cultivar [11]. This probability-based approach aids decision-making, espe-
cially when the difference between genotypes’ performance is small. These probabilities are
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dependent on the selection intensity, a value that is often predefined in breeding programs,
depending on the stage [30]. Thence, probabilities are an intuitive metric and offer an
enhanced reliability for recommendations, since it provides information about the risks. Its
application simplifies decision-making processes and opens avenues for application in various
domains beyond plant breeding [11]. Defining a probability value as a threshold would be very
useful for practical purposes, as it would make it easy to classify comparisons as significative or
non-significative. However, due to the different selective intensities that can be employed, and
the diversity of selection candidates, the threshold depends on each reality and dataset the
analysis is adjusted for.

Genotypes with the highest probability of superior performance, namely G15 (Iconha x
Citrandarin riverside), G4 (Itarana x Citrumelo swingle), G18 (Bearss Lime x Citrandarin riv-
erside), and G11 (BRS Passos x Citrumelo swingle), emerged as strong candidates for recom-
mendation. These genotypes, as determined through probabilistic methods, possess alleles that
impart adaptation to the changes in environmental conditions encountered through the har-
vests, maintaining consistently good performance. Indeed, the probability of superior perfor-
mance is a measure of stability in an agronomic sense. The presence of GHI imposes changes
for the selection of superior genotypes based on a single or a few harvests. Therefore, consider-
ing the genotype's performance across multiple harvests is advisable for making well-informed
decisions when selecting genetically superior candidates.

Initially employed in forage species to assess the maintenance of productivity levels through
multiple cuts [24], the concept of persistence is also relevant in the context of perennial fruit
crops [31], given the perennial behavior of both. We can make a parallel between persistence
and the probability of superior stability, as both represent ecological stability, i.e., invariance of
performance. In the Bayesian framework, the probability of being selected among the four
most stable genotypes was, in general, low (values below 0.4). This metric had a 50% agree-
ment rate in identifying the top four most persistent genotypes with the frequentist persis-
tence. Both approaches selected G24 and G3 among the four most persistent genotypes.

Certain advantages of the Bayesian model deserve attention. The incorporation of priors
enhances confidence in selecting materials with varying levels of persistence [11, 32]. Further-
more, Bayesian models offer the advantage of obtaining variance components with associated
high probability density intervals. These credibility intervals provide a more intuitive means of
quantifying component uncertainty. Also, from an asymptotic perspective, Bayesian credibility
intervals outperform frequentist confidence intervals [18], since frequentist confidence inter-
vals may prove inaccurate for small or moderate sample sizes and may, in certain instances,
fail to converge to the true parameter value as the sample size increases [33]. Likewise in mixed
model, Bayesian models work well in common situation of plant breeding, such as unbalanced
data, heterogeneous residual variance [6, 34, 35].

Conclusion

By applying probabilistic Bayesian models in Tahiti acid lime in the genetic evaluation, we esti-
mated the probability of superior performance of a genotype and the pairwise probabilities of
superior performance between genotypes for both across and within harvests. Genotypes G15,
G4, G18 and G11 were considered superior, and genotypes G24, G7, G13 and G3 were consid-
ered the most stable ones. Therefore, we believe that Bayesian probabilistic models can assist
to more accurate recommendation in perennial fruit crops evaluated along many harvests,
since it allows a more direct and precise interpretation of the performance and persistence of
the candidate’s genotypes.
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S$1 Fig. Climatic data of precipitation (mm) and temperature (°C) from July 2017 to July
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(TIF)

S2 Fig. Pairwise probability of superior performance among genotypes within harvest.
(TIF)
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