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Abstract. Halo occupation distribution (HOD) models describe the number of galaxies that
reside in different haloes, and are widely used in galaxy-halo connection studies using the halo
model (HM). Here, we introduce and study HOD response functions R, that describe the
response of the HODs to long-wavelength perturbations O. The linear galaxy bias parameters
bY, are a weighted version of b + R, where b}, is the halo bias, but the contribution from R,
is routinely ignored in the literature. We investigate the impact of this by measuring the R,
in separate universe simulations of the IllustrisTNG model for three types of perturbations:
total matter perturbations, O = §,,; baryon-CDM compensated isocurvature perturbations,
O = o; and potential perturbations with local primordial non-Gaussianity, O o« fy,¢. Our
main takeaway message is that the RY, are not negligible in general and their size should be
estimated on a case-by-case basis. For stellar-mass selected galaxies, the responses Ri and
RY are sizeable and cannot be neglected in HM calculations of the bias parameters b9 and
b%; this is relevant to constrain inflation using galaxies. On the other hand, we do not detect
a strong impact of the HOD response R{ on the linear galaxy bias b]. These results can
be explained by the impact that the perturbations O have on stellar-to-total-mass relations.
We also look into the impact on the bias of the gas distribution and find similar conclusions.
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We show that a single extra parameter describing the overall amplitude of RY, recovers the
measured b, well, which indicates that R, can be easily added to HM/HOD studies as a
new ingredient.

Keywords: galaxy clustering, power spectrum, cosmological simulations, hydrodynamical
simulations
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1 Introduction

The halo model (HM) is one of the most popular frameworks to predict the statistics of
the large-scale structure (LSS) of the Universe (see ref. [1] for a review and ref. [2] for a
recent online calculation tool). The core assumption of the HM is that all mass elements of a
given tracer of the LSS, for example galaxies, are found in gravitationally-bound dark matter
haloes. The description of the galaxy distribution then becomes effectively a two step process.
The first step involves predicting the distribution of haloes in the Universe. Over the years,
increasingly accurate N-body methods led to significant advances on this front: gravity-only
codes agree to % levels nowadays [3, 4], and a number of accurate fitting formulae for dark
matter halo profiles [5, 6], abundance [7, 8] and bias [9, 10] are also available. The second
step involves describing the distribution of galaxies inside the haloes, which is an appreciably
harder task given the many intertwined astrophysical processes that govern the formation of
galaxies and their evolution. One way to tackle this problem is via so-called Halo Occupation
Distribution (HOD) models [11-21] that describe the galaxy-halo connection via empirical
parametrizations of aspects of the galaxy distribution inside halos such as their total number,
radial profile and velocity profile.

One common application of the HM and HODs is the direct analytical calculation of
N-point correlation functions of the galaxy distribution. In the simplest case of the 2-point
correlation function, the calculation is split into the correlation between galaxies that live
in the same halo and the correlation between galaxies in different haloes. The HM has also
popularly been used to calculate N-point functions of the total matter distribution, although
in this case, there is an important diffuse component that is not bound to haloes [22] (as well
as other problems [23]) that makes the calculation less accurate; see, however, refs. [24-26]
for augmented versions of the HM (some including baryonic physics effects) that have been
proving accurate enough for current parameter inference analyses. Another popular applica-
tion of the HM and HODs is the fast generation of galaxy mock catalogues, in which galaxies
are painted following some HOD formulae onto halo catalogues generated with gravity-only



simulations. The fact that gravity-only simulations require far less computational resources
than direct simulation of galaxy formation makes this a considerable computational advan-
tage. The parameters of the HOD can then be iterated over to reproduce the statistics
of some observed galaxy sample and learn about the galaxy-halo connection this way (see
e.g. refs. [27—45] for a number of examples of such analyses and ref. [46] for a review).

The mean number of galaxies (Ny(My, z)) that reside in haloes with mass M}, at redshift
z is a central ingredient in HOD modelling. Haloes are normally assumed to contain zero or
one central massive galaxy residing at the bottom of their potential wells. The haloes which
are massive enough can further contain a number of lower mass satellite galaxies that orbit
around the center (figure 3 below shows some the typical shapes of (Ng(Mp,2))). For the
most part in this paper we will consider galaxies as our specific example of a LSS tracer,
but we note that the philosophy behind HOD modelling holds generically to other tracers as
well. For example, in 21cm line intensity mapping, the relevant tracer is neutral hydrogen
(HI), in which instead of a HOD number, one would use a function describing the total HI
mass in haloes [47-49).

In this paper, we focus on the dependence of HOD numbers on the large-scale environ-
ment. The environmental dependence of HOD numbers has naturally been the subject of
past works in the literature (see e.g. refs. [17, 50-59]), which are often carried out in the
context of assembly bias (or secondary bias) [60-73], i.e., the dependence of galaxy clustering
on properties beyond their host halo mass My. In most of these studies, the environment
is normally defined over length scales of a few times the typical virial radii of dark matter
haloes (Reny ~ 1 — 10 Mpc/h) on which the r.m.s. fluctuations of the density field are of
order unity. Here, we focus instead on the dependence of (Ny(Mp, 2)) on the environment
defined over much larger linear scales (Reny = 50 — 100 Mpc/h, where the r.m.s. fluctuations
are much smaller than unity), which as we will see has important ramifications for how to
interpret galaxy biasing using the HM. We will go into more details in sections below, but
let us expose the context of our work briefly here.

At leading order in perturbation theory and for primordial adiabatic Gaussian scalar
fluctuations, the local number density of galaxies can be written as (see ref. [74] for a com-
prehensive review)

ng(z,@) = ng(2) [ 1+ b(2)0m(z, 7)), (1.1)

where ngy(z,x) is the number density of galaxies in a region around position  at redshift
z, ng(z) is the global average over all positions and d,,(2, ) is a linear total matter density
perturbation.! In this equation, bf is called the linear local-in-matter-density galaxy bias
parameter [75] and it quantifies how responsive the number density of galaxies is to the
presence of the perturbation d,,. Using the HM, the global mean number of galaxies is given
by integrating the global number density of haloes n,(Mj) weighted by the global HOD
number (Ny(Mp,)) (we leave the dependence on z implicit to simplify the notation):

ny = [ AMun (M) (N (03). (1.2)

From this equation, the local number of galaxies around position & can be worked out by
promoting both ny(Mj) and (Ny(My)) to be biased tracers of 6,,, i.e., to admit a description

"'We distinguish local from global averaged quantities by the presence or absence of the position @ in the
argument. In this short exposition of the problem we also skip writing the contribution from stochastic terms
that encapsulate the dependence of galaxy formation on the shorter-wavelength details of the environment.



analogous to that in eq. (1.1):

a(Mp, ®) = np(Mp) [1 + 07 (Mp)6yn ()]
(Ng(Mp, @)) = (Ng(Mp)) [1+ R (Mp)dm ()], (1.3)
where the parameters bf and RY are the equivalent of by but for the dark matter halo

abundance and the galaxy HOD number, respectively; we will refer to the parameter RY as
the HOD number response function. It therefore follows that

ng(x) = ng

1+ ni / Ay (M) (N (M) (V7 (M) + R‘{(Mh))dm(m)], (1.4)
9

which can be contrasted with eq. (1.1) to derive the galaxy bias parameter as

= o [ M )N, () ((00) + R(A)) (15)
The standard HM lore affirms that the bias of the galaxies is inherited directly from that of
the host haloes weighted by the HOD number. This is recovered by the last equation only
when R{ = 0, i.e., assuming that the mean galaxy HOD numbers (Ny(Mj)) are the same at
all positions in the Universe. There is however no prior reason to expect this to be the case;
in fact, given that the dynamics of structure formation are sensitive to whether structures
form in overdense, d,, > 0, or underdense regions, §,, < 0, it is actually physically plausible
to expect the mean number of galaxies inside haloes to display some of this sensitivity.? This
is an issue that is briefly alluded to in refs. [74, 76], but which to the best of our knowledge
has never been specifically addressed and tested in practice before. This motivates our main
goal in this paper, which is to measure the size and shape of HOD response functions like
RY using galaxy formation simulations and discuss the corresponding implications to the
modelling of large-scale structure using the HM and HODs.

Concretely, in this paper we measure responses of HOD numbers (N, (Mj})) using sep-
arate universe simulations of the IllustrisTNG galaxy formation model [77-79]. Separate
universe simulation is a technique that allows to efficiently measure the responses of LSS
quantities to long-wavelength perturbations by absorbing the effects of the perturbations
into appropriate modifications to the cosmology of the simulation and its box size. These
simulations have been run in previous works for the case of total matter density perturbations
dm [80], primordial baryon-CDM compensated isocurvature perturbations (CIP) o [81] and
potential perturbations with local primordial non-Gaussianity (PNG) fx.¢ [82] (we describe
these perturbations and simulations with more detail in the next section). We measure the
responses of the HOD numbers (Ng(M},)) of the simulated galaxies to these three types of
perturbations, as well as the response of the gas mass inside haloes for a few example elements
tracked in IustrisTNG. Our main finding is that the HOD response functions are not negli-
gible in general and can lead to sizeable effects on the corresponding galaxy bias parameters

2This is the general finding of a number of recent studies in the literature [51-57] using definitions of
the environment on 1 — 10 Mpc/h scales. For example, in very dense environments, mergers take place more
frequently, which boosts the number of substructures at fixed halo mass. In contrast, in less dense regions [58],
a larger fraction of the build up of halo mass is due to the infall of surrounding diffuse matter. In this paper,
we focus on environments defined over large linear scales (= 50 — 100 Mpc/h, where 4., < 1) relevant to the
calculation of b using the HM.



calculated using the HM. We also see that modelling the HOD responses as low order polyno-
mials (n < 2) in log M}, recovers the correct value of the bias parameters. This all motivates
the incorporation of HOD responses as an extra ingredient in traditional HOD studies.

The rest of this paper is organized as follows. In section 2, we introduce the three types
of long-wavelength perturbations we consider, as well as the separate universe simulations
that we use to measure the corresponding HOD number responses. Section 3 contains our
main results on the measurements of (N,(M},)) and its response functions, and the illustration
of the general necessity to take the responses into account within the HM to correctly recover
the measured bias parameters. We show results for samples with varying total and stellar
mass cuts, as well as for the distribution of hydrogen, carbon and oxygen as a few example
gas elements tracked in IlustrisTNG. We summarise and conclude in section 4.

2 Responses and separate universe simulations

Given any quantity @ in LSS, its response functions Rg can be defined with all generality
via the expansion

Qlz,x) = Q(2) |1+ Y R3(2)0(z,2) | + 9z, 2), (2.1)

o

where Q(z,x) denotes the value of the quantity measured in some local volume around
x, Q(z) is the corresponding cosmic average and the sum runs over all long-wavelength
perturbations O that can influence the quantity’s local value. This equation makes apparent
the physical meaning of the Rg as the response (hence the name) of @ to the presence of
the perturbations O. The response functions depend generically on redshift, as well as any
other variable @ may also depend on. In this equation, the perturbations O are assumed
to be sufficiently long-wavelength that they can be treated perturbatively [83]. In eq. (2.1),
¢?(z,x) is added to absorb all of the dependence of the value of Q(z,x) on the shorter-
wavelength part of the perturbations . We note that although this so-called stochastic
contribution €?(z, ) does not correlate with any of the O, it is still important to take it
into account in practical descriptions of the statistics of Q(z,x); in this paper we focus
solely on the response functions inside the squared bracket. We refer the interested reader to
ref. [74] for a comprehensive review of the application of the expansion of eq. (2.1) to galaxy
number densities as the quantity @ (popularly known as the galaxy bias expansion) and to
refs. [84-90] for an application of the same ideas to matter/galaxy power spectra.

In this paper we look into the responses to three types of long-wavelength perturba-
tions O:

1. The first are total matter density perturbations O = d,,(z, ), which originate from
adiabatic energy density fluctuations in the early Universe;

2. The second are baryon-CDM compensated isocurvature perturbations (CIP) O =
o(x) [91-102], which are characterized by perturbations in the baryon density that are
exactly compensated by the cold dark matter (CDM) to leave the total matter distribu-
tion unchanged. The power spectrum of CIPs, which cannot be generated by single-field
inflation models, is remarkably poorly constrained by the CMB data [103]. This has
motivated a number of studies of their impact on galaxy statistics, which have shown
to be possible to significantly improve on the current observational bounds [99-102];



3. The third type are perturbations of the primordial gravitational potential in local PNG
cosmologies, O = fy.¢(x); the value of fy, describes the amount of non-Gaussianity via
¢ = ¢a + fa [0F — (¢%)], where ¢¢ is a Gaussian random variable and () denotes en-
semble average [104]. The tightest observational bounds constrain fy, = 0.9+5.1 [105]
and there is significant interest in improving further on this bound given the power of
a detection of fy, # 0 to rule out multi-field models of inflation [106-113].

We will focus on the responses of galaxy number densities n, and galaxy HOD numbers
(Ng(Mp)). For these two quantities and for the three types of perturbations we consider,
the corresponding response expansions are given, respectively, by (recall, we distinguish the
local from the global quantities by the presence of the position x in the arguments)

g, 2) = 1 ()1 + B2 2) + B (o () + B(2) fu ()] (22)
and
(Ng(Mp, z,x)) = (Ng(Mp, 2)) [l—i-R?(Mh, 2)0m(z, @) + RL(My, z)o(x) +R35(th z)fNL(;S(:c)},

where we skipped writing the stochastic contributions explicitly since we do not study them
here.

In the remainder of this section, we outline the main specifications of the separate
universe simulations that we use in this paper to measure b% and R*gg. The separate universe
simulation technique builds on top of the assumption that the physics that determine the
quantity @ act on sufficiently small scales that they regard the large-scale perturbations O
as changes to the background (this is also called the peak-background split approach [114,
115]). Specifically, the separate universe ansatz states that the formation of structures locally
inside long-wavelength perturbations is equivalent to the formation of structures globally in
an appropriately modified cosmology. For the case of O = §,, the modified cosmology has
a different mean background total matter density, for O = o the cosmology has different
relative amplitudes of the cosmic fractions of baryons and CDM, and for O = fy,¢ the
modified cosmology has a different amplitude A of the primordial scalar power spectrum.

The simulations we use here have been described in previous works, and so we shall be
brief in descriptions and refer the interested reader to the cited literature for more details
and derivations. Next, we describe first the main numerical aspects that are common to all
simulations and then comment in turn on the specifics of the three types of separate universe
simulations we consider; the main idea and numerical details are summarized in figure 1 and
table 1. At the end of this section, we show the measurements of the halo bias b’é from the sep-
arate universe simulations (the equivalent of the b, in eq. (2.2), but for halo number counts).

2.1 Numerical details

The simulations we use in this work were run with the moving-mesh code AREPO [116, 117]
and the IlustrisTNG galaxy formation model [77-79]. The latter is an improved version of
the Illustris model [118, 119] and it includes prescriptions for gas cooling and ionization, star
formation and feedback, and black hole growth and feedback; refs. [120-124] present and
discuss a number of the first key results obtained with IlustrisTNG.

In our main results, we consider simulations run at two mass resolutions. One, which we
label as TNG100-1.5, corresponds to a box size Lyox = 75Mpc/h and N, = 2 x 12503 tracer
elements; and another, labeled TNG300-2, with Ly = 205Mpc/h and N, = 2 X 12503, The



Separate Universe d,, Separate Universe o Separate Universe Ay

= == (1L T
— S, 1) — 5o () — L fa(x)

o) = o) [+ 0] A = A[1+6A]
pe(t) = pe(t)[1 = foor] 0A, = 4fndL

pm(t) = pm(t) [1+0(2)]

Figure 1. Summary sketch of the separate universe approach to the three types of long-wavelength
perturbations considered in this paper. On the left, local structure formation inside long-wavelength
matter perturbations d,, is equivalent to global structure formation in a separate cosmology with mod-
ified background matter density p,,. In the center, local structure formation inside long-wavelength
CIP perturbations o is equivalent to global structure formation with modified background baryon
pp and CDM p.. densities, at fixed total matter density. On the right, local structure formation in-
side long-wavelength primordial gravitational potential perturbations with local PNG is equivalent to
global structure formation in a cosmology with modified amplitude of the primordial scalar pertur-
bation power spectrum Ag.

initial conditions were generated at z = 127 with the N-GENIC code [125] using the Zel’dovich
approximation; the input linear matter power spectrum was calculated with the CAMB
code [126]. For the most part in this paper, we show results from the full hydrodynamical
simulations with [llustrisTNG (dubbed Hydro), although in section 3.1 we display also results
from their gravity-only counterparts (with half the number of mass elements; we dub these
as Gravity). There, we consider also an additional set of gravity-only separate universe
simulations available for the cases O = ¢, and O = fy.¢, with Lpox = 560Mpc/h and
N, = 12503; we label this resolution simply as Lyox ~ S00Mpc.

Gravitationally bound haloes are identified with a Friends-of-Friends (FOF) code run
on the dark matter tracer particles with a linking length b = 0.2 times the mean interparticle
distance. Inside each halo, subhaloes are found using the SUBFIND algorithm [127]. As
is standard, we define the main central subhalo to be that which resides at the bottom of
the potential of the FOF object, with all of the remaining subhaloes being called satellites.
When quoting mass values for these structures we always consider the summed mass from
all elements that belong to the halo/subhalo. For example, the total stellar mass of a halo is
the summed mass of all star particles that are assigned to the halo, which includes those that
also belong to its subhalos. Following the standard nomenclature in IllustrisTNG-related
literature, we refer to subhalos that contain any mass in stars as galazies.

2.2 The §,, separate universe

According to the separate universe ansatz, long-wavelength total matter perturbations are
regarded by smaller-scale structure formation as a uniform change in the total matter density.
Hence, the measurements of the responses to d,, can be carried out by comparing the results
from the Fiducial cosmology with those from cosmologies with modified cosmic total matter
density. If §7(¢) denotes the amplitude of the total (linear) matter perturbation at physical
time ¢, then the separate universe cosmology is characterized by

pm(t) = pm(t) [1+0L(t)], (2.3)



Name QmO ng QCO QAO h Ng As
Fiducial 0.3089 0.0486 0.2603 0.6911 0.6774 0.967 2.068 x 10~
High 6,, 0.3194 0.0502 0.2692 0.7146 0.6662 Fiducial Fiducial
Low 6, 0.2991 0.0471 0.2520 0.6691 0.6884 Fiducial Fiducial
High o Fiducial 0.0510  0.2579 Fiducial Fiducial Fiducial Fiducial
Low o Fiducial ~0.0462  0.2627 Fiducial ~Fiducial ~Fiducial Fiducial
High As TFiducial Fiducial Fiducial Fiducial Fiducial Fiducial 2.171 X 107
Low A, Fiducial Fiducial Fiducial Fiducial Fiducial Fiducial 1.965 x 1072

Table 1. Cosmological parameters of the simulations used in this paper. The High J,,, and Low &,,
simulations are used to measure responses to d,,; High o and Low o are used to measure the responses
to CIP perturbations o; and High A, and Low Ay are used to measure the responses to d.A; = 4 fy.¢d
(cf. sections 2.2, 2.3 and 2.4). These cosmologies were simulated with AREPO and IllustrisTNG at two
numerical resolutions: TNG100-1.5 with Lpox = 75 Mpc/h and TNG300-2 with Ly = 205 Mpe/h,
both with N, = 2 x 1250% mass elements. For all cases except High o and Low o, there is an
additional numerical resolution for gravity-only dynamics with Lpex = 560 Mpc/h and N, = 12503,
which we label simply as Lyox &~ 800Mpc. In all cosmologies, we approximate neutrinos as massless
(see refs. [128-130] for separate universe simulations where neutrinos and other scale-dependent effects
arising in quintessence cosmologies are taken into account).

where a tilde indicates a quantity in the separate universe cosmology. The correspond-
ing cosmological parameters are listed in table 1; the cosmologies High d,, and Low 0,
mimic the effects of positive and negative amplitude perturbations with present-day values
5Eigh(z =0) = +0.05 and ¥°"(z = 0) = —0.05, respectively (note that §;, evolves with time
according to linear theory). The size of the amplitude of these perturbations is chosen as a
compromise between having it to be large enough for the measurements to be high signal-to-
noise, but small enough to keep higher-order terms (e.g. O = §2,) in the response expansion
negligible.

The different values of h and the different relation between redshift and physical time in
the Fiducial, High é,, and Low J,, cosmologies imply a number of important adjustments to
the box size, FoF linking length, output times and setting up of the initial conditions. These
have been discussed at length in previous works [10, 80, 82, 84, 112, 128, 131-135], to which
we refer the reader for more details (see e.g. refs. [80, 82] for the descriptions of the actual
separate universe simulations we use here). When we quote units with h factors, we always
convert to the Fiducial cosmology.

From egs. (2.2) and (2.3), the bias parameter b{ and the (N, (M})) response R{ can be
formally defined as

b(2) = dln ng(2)

RO, 2) — A (VoM 2)

: : 2.4
dor(2) ls,(2)=0 dor(z) s (=0 24

which we evaluate by finite differencing the results from the Fiducial, High d,, and Low 0,
simulations. Concretely, we evaluate R{(Mj, 2) as

Rg,High Om (Mha Z) + R%LOW Om (Mha Z)
2 )

RY(Mp, z) =



with

. 1 (N, (M, z))High om
ngngh Om M, ,2) = _ g i __ _ ,
1 ( h ) (Sglgh(Z) <Ng( A [h’ Z)>F1du01a1
1 (Ny(My, z))lew om
RYLOW Om (A ) = o h 2.6
1 ( hs Z) 5%0W(z) [<Ng( “[h’ z))Fldumal ’ ( )

where (N, (M}))Cosmeloey denotes the galaxy HOD number measured in the corresponding
cosmology. The calculation of b{ is done analogously by finite differencing the total number of
galaxies in the simulation box, instead of the number of galaxies inside haloes with mass Mj,.
In doing so, one actually measures the so-called Lagrangian value b?’Lag', which is related to
the (Eulerian) value that we consider in this paper by bJ = b8 413

An important point to note is that we have only one realization of the initial conditions,
which prevents us from quoting error bars on our measurements in a statistical ensemble
sense. The size of the simulation boxes also makes it hard to estimate errors via resampling
of subvolumes. The responses High §,, and Low §,, are the forward and backward first-
derivatives and are therefore the same in theory. In practice, however, numerical noise and
binning effects can drive some differences, and so we take the different between High 4, and
Low 4y, as a rough estimate of the error in our measurements (ref. [82] verified that, at least
for by, these error bars are comparable in size to the estimate based on jackknife resampling
presented in ref. [134]).

2.3 The o separate universe

A long-wavelength CIP is regarded by the structures within it as a uniform change to the
cosmic fraction of baryons € and CDM ()., at fixed total matter §2,,. With the convention
that 0 > 0 corresponds to more baryons (less CDM), then the responses to CIPs can be
evaluated using separate universe cosmologies characterized by

Qo= o[l +0r] 5 Qo=0c0[l - fror], (2.7)

where oy, is the amplitude of the long-wavelength CIP and fj is the ratio of baryon-to-CDM
density in the fiducial cosmology; note that oy, is constant in time because on large-scales the
only relevant force is gravity, which acts equally on baryons and CDM. The implementation
of these separate universe simulations is straightforward with the only difference relative to
the Fiducial being just that the initial linear matter power spectrum should be generated
for different values of Qy and Qg (see also ref. [136] for a numerical study of CIPs in which
different transfer functions are used to generate the initial distribution of baryons and CDM).
We consider two CIP cosmologies, High ¢ and Low o, which correspond to o = +0.05 and
or, = —0.05, respectively (cf. table 1); these are the same simulations used previously in
ref. [81].
The response functions are defined as

_dln ny(2)
 dog

ORI, 5= TN

b5 (%)

or=0 or,=0

and we evaluate them via finite-differencing analogously to b{ and R{ above.

3This follows from the relation between number densities in Eulerian and Lagrangian space.



2.4 The A, separate universe

In cosmologies with local PNG (fy. # 0), long-wavelength perturbations of the primordial
gravitational potential are regarded by local structure formation inside them as a rescaling of
the amplitude A, of the scalar primordial power spectrum [137, 138]. Concretely, using the
separate universe picture, it can be shown that the responses to these types of perturbations
can be evaluated by comparing the Fiducial cosmology with cosmologies characterized by*

As= A [1+0A,] , where 0A, = 4fw o1, (2.10)

with ¢, being the amplitude of the primordial potential perturbation. The amplitude A; is
the only parameter that differs relative to the fiducial cosmology, which makes these separate
universe simulations also straightforward to setup: the only change is at the level of the
initial conditions, which should be generated with an initial matter power spectrum rescaled
by 1+ dAs. The two cosmologies we consider, High Ay and Low Ay, are characterized by
0As = +0.05 and 6.45; = —0.05, respectively (cf. table 1); these are the same simulations
used previously in ref. [82].
Similarly to the other two cases above, the responses to A are defined as

dln ng(2)

‘ dln (Ny(Mp, 2))
doAs sp—0

doAs 5As=0

bg)(z) =4 Ri(Mm z)=4 (2.11)
and we evaluate them via finite-differencing analogously to the responses to d,, and o de-
scribed already above. The factor of 4 in eqgs. (2.11) accounts simply for the fact that the
responses multiply fy.¢ in egs. (2.2) and (2.3), but the amplitude rescaling is given by

5-/43 = 4fNL¢-

2.5 The halo bias parameters

Figure 2 shows the halo mass and redshift dependence of the linear halo bias parameters b},
bl and bg. These are defined and measured analogously to the galaxy bias parameters, but
considering halo instead of galaxy number densities. The result is shown for the three numer-
ical resolutions available for gravity-only dynamics, which all agree to within the precision of
our measurements. In the left panels for b?, the black solid line shows the prediction from the
fitting formula of ref. [9], whereas in the center and right panels, for b and bg), respectively,
the solid black line shows the result obtained using the halo mass function fitting formula of
ref. [8] with the definition of b and bg in egs. (2.8) and (2.11), respectively. Specificaly, we
use the formula of ref. [8] to evaluate the mass function at the corresponding cosmologies in
table 1, and then compute the derivatives in eqgs. (2.8) and (2.11) using finite differences.
These measurements have been presented and discussed with more detail in ref. [82] for
i and bg and ref. [81] for b" (see also ref. [136]), to which we refer the reader for more details.

4Local PNG generates a primordial bispectrum that peaks in the squeezed limit, i.e., it generates a cou-
pling between long-wavelength and short-wavelength modes. Concretely, the long-wavelength mode acts as a
modified background to the local, short-scale power spectrum, which gets modulated as (see refs. [137, 138] or
section 7 of ref. [74] for the squeezed bispectrum derivation):

Pyy(ks, @) = [1+ dfud(kp)e ™ "] Pyy(ks), (2.9)

where Py (ks, ) is the local power spectrum of the primoridal gravitational potential, Pye(ks) is its spatial
average, and ks and kr denote short- and long-wavelength modes, respectively. Thus, on distance scales
sufficiently smaller than 1/kr,, the effects on structure formation are equivalent to a rescaling of the amplitude
of the primordial scalar power spectrum by 1+ 645, where 645 = 4 fx.¢L-
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Figure 2. Halo bias parameters b? (left), b" (center) and bg (right) as a function of total halo mass
at different redshifts (different panels) and for the three gravity-only resolutions we consider in this
paper, as labeled. The bias parameters are defined by the analog of eq. (2.2) for the halo (not galaxy)
number density. In the left panels, the solid black line shows the prediction from the b fitting formula
of ref. [9]. In the center and right panels, the solid line shows the result obtained by applying the
separate universe ansatz to the halo mass function fitting formula of ref. [8].
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We display them here for completeness and because the halo bias parameters are a crucial
ingredient in the HM calculation of the galaxy bias parameters that we show in the next
section. Perhaps the only aspect of figure 2 that may be less familiar and whose clarification
is worth repeating here has to do with the appreciably different mass dependence of bg, which
is monotonically decreasing, compared to that of both b% and bg, which is monotonically
increasing. As explained in ref. [81], this is due to the fact that a boost in €, at fixed ,,,
slows down the growth of total matter perturbations on sub-horizon scales between radiation
domination and baryon-photon decoupling. This lowers the amplitude of the total matter
power spectrum after decoupling for £ > keq, which effectively suppresses the subsequent
formation of nonlinear structures at later times. On the other hand, boosts in p,, and A
both enhance hierarchical structure formation overall, hence the monotonic increase of both
bt and bg with total halo mass.

We have checked (not shown) that the values of b? and bg measured from the full
Hydro versions of the simulations are consistent with those shown in figure 2 for the Gravity
case. The same is true for b although in this case the Hydro results tend to slightly, but
systematically, underpredict the Gravity results at lower masses (cf. figure 1 vs. figure 2 in

ref. [81]).

3 HOD responses and their impact on galaxy bias

In this section we present our results on the HOD number responses and their importance
in the calculation of galaxy bias using the HM. We have already exposed the problem we
wish to address in the Introduction for the case of O = 4, perturbations, but let us re-derive
eq. (1.5) again from a slightly different angle and generalize to the case of the O = fx.¢ and
O = o perturbations as well.

Within the HM framework, eq. (1.2) describes the total number of galaxies n4 in the Uni-
verse as the integral over the halo mass function n;, weighted by the HOD number (N, (My)):

ng = / dMpyng, (M) (N, (M), (3.1)

In keeping with the response expansion of eq. (2.1) and the separate universe argument, the
galaxy bias parameters are given by the logarithmic derivative of ny to the perturbations (or
changes in cosmology) O, i.e., b}y = dln n,/dO. Applying this to eq. (3.1) gives

vl = ;ga(z,)/thnh(MhﬂNg(Mh»
B Oin (M) | (N, (M)
= thnh(Mh)<Ng(Mh)>[ 00 T 90 }
— [ Qo )Ny (1)) oo (M) + B3], (32

where in the last equality we have used the definition of halo bias and the (N4(M},)) responses
as the logarithmic derivative of the halo abundances and HOD numbers, respectively. For
the case of O = §,,, this equation recovers eq. (1.5).

In our main results below, we compare the values of b% measured using the separate
universe simulations with the result of eq. (3.2), with and without the contribution from
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R%,(Mp,). In our numerical calculations, we evaluate the integral of eq. (3.2) over the range®
M, € [101%10'] Mg /h with the quantities np,, (Ny(Mp)), b and R, obtained by interpo-
lating the simulation measurements. Our HM predictions therefore display some numerical
noise inherited from the simulations. This is not ideal from a generic theory prediction
perspective (for instance, one could use the solid lines in figure 2 to describe b}é)), but it
facilitates our goal to demonstrate that taking into account all of the ingredients of eq. (3.2)
(as measured in the simulations) describes well the galaxy bias parameters (measured from
the same simulations).

In the remainder of this section, we present our numerical results in turn for (i) subhalos
selected by total mass, (ii) galaxies selected by stellar mass, and (iii) for a few example gas
elements tracked by the IllustrisTNG model.

3.1 Subhalos selected by total mass

We begin our exploration of the importance of the HOD number responses R% in eq. (3.2) by
considering the case of subhalos selected by their total mass M in the Gravity simulations.
This is not the most realistic scenario from an observational viewpoint, but it is interesting
to analyse nonetheless to subsequently compare with the results from other selection criteria
below. The higher degree of numerical convergence between different gravity-only resolutions
also facilitates the comparison, and in the Gravity case, we can make use also of the larger
volume Loy & 800Mpc set of simulations.

Figure 3 shows the mean galaxy HOD numbers (N4(M},)) measured in the simulations
of the Fiducial cosmology for three subhalo total mass samples: My, > 1011 M /h (dashed),
Mot > 102 My /h (solid) and Mo, > 10'3 Mg /h (dotted). The result is shown for the three
resolutions TNG100-1.5, TNG300-2 and Lpox ~ 800Mpc (which agree very well with one
another), and at different redshifts, as labeled. The redshift and mass dependence of the
HOD numbers in figure 3 is in line with the expectation. Namely, (Ny(M},)) transitions
from zero to one at around the minimum mass of the corresponding subhalo population (i.e.,
the main central subhalo cannot be more massive than the host halo), and towards higher
halo masses the HOD number increases in power-law fashion reflecting the larger number of
satellite subhaloes that reside in massive haloes.

The (N4(Mp)) curves shown in figure 3 and their response functions RY, (together with
the halo mass function nj, and halo bias b)) can be plugged into eq. (3.2) to work out the
HM predictions for the galaxy (or subhalo here) bias parameters bf,. The result is shown in
figure 4 for bY (left), b (center) and bg (right), and for different resolutions, redshifts and
minimum mass cuts, as labeled. The symbols with error bars show the b7, measured directly
from the separate universe simulations. The dashed lines show the outcome of eq. (3.2), while
the solid lines show the same but with the HOD responses artificially set to zero R, = 0; their
difference thus measures directly the importance of the RY). The shaded bands around the
dashed lines indicate the error due to the uncertainty in the HOD response measurements
alone. Overall, the figure shows that both HM calculations agree well with the separate
universe results, which is indicative of a small size of RY, for subhalos selected by their total
mass in gravity-only simulations.

This is also the range of halo masses we consider in the calculation of bias parameters and responses using
the separate universe simulations. We checked that for halo masses above this range our numerical results
become strongly affected by the noise originating from having very few such massive objects. On the other
hand, the integrand is negligible for mass scales below this range.
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Figure 3. Mean HOD number (N, (M},)) for three subhalo populations selected by their total halo
mass Moy > 10Y Mg /h (dashed), Mo, > 102 Mg /h (solid) and Mo, > 10 Mg /h (dotted).
The different panels are for different redshifts, and the different colors are for the three numerical
resolutions of the Gravity simulations, as labeled (the different resolutions agree so well that some
of the lines almost completely cover the others). The Mo > 10t Mg /h case is not shown for the
Lpox =~ 800Mpc resolution since these objects are poorly resolved. The My, > 1013 My /h is not
shown for the TNG100-1.5 resolution since there are very few objects with these higher masses.

Figure 5 shows a few illustrative cases of the HOD response functions to better under-
stand the result shown in figure 4 (we always limit ourselves to showing only a few illustrative
examples of HOD responses for brevity). In particular, the figure shows the HOD responses
measured from the TNG100-1.5 and TNG300-2 resolutions for the subhalo mass sample
Mot > 10'2 Mg /h and for O = 6, at z = 0 (left), O = o at z = 3 (center) and O = fy.¢ at
z = 2 (right). The vertical shaded bands mark the range in halo mass that contributes the
most to the integral of eq. (3.2), and therefore, where any departures of R}, from zero have
the strongest impact. Specifically, the integrand of eq. (3.2) is weighted by

W (Mp) = np(Mp){Ng(Mp)), (3.3)

which is negligible at both low M), (as (Ng(M}p)) — 0) and high M}, (as ny, is exponentially
suppressed). The width of the bands mark the range over which W (Mj,) is higher than 0.7
of its maximum value (note that these band widths are merely indicative and the integral is
naturally also sensitive to mass scales just outside of it). Indeed, at z = 0, the R{ measured
from both resolutions are compatible with zero near the vertical bands, hence the similarity
between the dashed and solid lines at z = 0 in the middle left panel of figure 4. On the other
hand, at z = 2, the Rg measured from the TNG100-1.5 resolution appears larger than zero,
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Figure 4. Galaxy bias parameters of the same total-mass-selected subhalo populations shown in
figure 3 for the Gravity simulations. The left, center and right panels show the result for b7, b2
and bg, respectively. The three rows are for each of the three subhalo populations, as labeled. In

each panel, the symbols with error bars show the bg, measured directly from the separate universe
simulations, and the dashed and solid lines show the HM prediction of eq. (3.2) with and without the
HOD number responses R, taken into account.

which explains the upwards shift at z = 2 in the middle right panel of figure 4. Similarly, at
z = 3, the RY of the TNG100-1.5 resolution also appears larger than zero, hence the upwards
shift of the dashed line at z = 3 in the middle center panel of figure 4. These small effects
are however likely caused by numerical noise in the measurements of RY,, as illustrated by
the fact that the shaded bands in figure 4 almost always enclose the solid lines.

Overall, the results in this subsection illustrate that the HOD numbers of total-mass
selected subhalos do not respond strongly to any of the three types of long-wavelength per-
turbations we consider in this paper. We have shown this here explicitly for the case of the
Gravity simulations, but we have confirmed (not shown) that the same conclusion holds in
the case of the Hydro simulations for galaxies selected by their total mass. In the subsections
below, the situation becomes more interesting as the responses RY, become larger when the
tracers are selected by properties beyond total mass.

3.2 (Ralaxies selected by stellar mass

We turn our attention now to the case of galaxies selected by their stellar mass. This is a
more observationally relevant exercise since the total stellar mass of galaxies can be estimated
from observations more robustly than their total mass. Figure 6 shows the HOD numbers
(Ng(Mp)) for three minimum stellar mass cuts at different redshifts for the TNG100-1.5 and
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Figure 5. Example HOD number responses measured for the subhalo population with M, >
102 My /h from the Gravity simulations. The different panels are for different perturbations O and
redshifts, and the different colors for the TNG100-1.5 and TNG300-2 resolutions, as labeled. The
vertical bands cover the mass range in which the weighting function of eq. (3.3) is larger than 0.7 its
maximum value; this roughly marks the range that contributes the most to the integral of eq. (3.2).

TNG300-2 resolutions of the Hydro simulations of the Fiducial cosmology, as labeled. The
lower mass sample M, > 10° Mg /h is shown only for the TNG100-1.5 resolution since these
objects contain O(10) star particles at TNG300-2 resolution and are not therefore as well
resolved. In turn, we do not show the M, > 1011 Mg /h case for the TNG100-1.5 resolution
since the measurements are noisier as a result of having much fewer of these objects in this
simulation box.

The shape and redshift evolution of the (Ny(Mp,)) in figure 6 is in line with the ex-
pectation discussed already above in figure 3 for total mass selection. A main noteworthy
difference here concerns the poorer agreement between the two resolutions: in figure 3, the
HOD numbers of the different resolutions are nearly indistinguishable, whereas in figure 6
at fixed halo mass M}, the TNG100-1.5 case displays a higher number of galaxies with
M, > 109 Mg /h, compared to TNG300-2. This reflects the well known fact that numeri-
cal convergence is harder to achieve in hydrodynamical simulations of galaxy formation like
IustrisTNG. In particular, the higher numerical resolution of the TNG100-1.5 simulations
makes star formation more efficient, which boosts the amplitude of the stellar mass function
(and consequently the corresponding HOD numbers, as shown in figure 6); see also figure A.1
of ref. [121] for a comparison of the stellar mass function at different numerical resolutions
in IllustrisTNG. As we will see next, however, the bias and HOD response results of the two
resolutions agree very well with each other. This is because the bias and HOD responses
are evaluated as ratios of quantities from simulations with the same resolution, which helps
to mitigate numerical resolution effects. This agreement is nontrivial and it supports the
numerical convergence of our results.

Figure 7 compares the galaxy bias parameters b% measured for the stellar-mass selected
samples with the corresponding HM predictions of eq. (3.2); the latter are again shown for
the cases in which the measured RY, are taken into account (dashed) and when they are
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Figure 6. Mean HOD number (N, (Mj,)) for three galaxy populations selected by their stellar mass
M, > 10° My /h (dashed), M, > 101© Mg /h (solid) and M, > 10 Mg /h (dotted), at different
redshifts and numerical resolutions, as labeled. This is the same as figure 3, but for stellar mass
selection in the Hydro simulations, instead of total mass selection in the Gravity simulations. We do
not show the M, > 109 Mg /h case for the TNG300-2 resolution since this includes objects with very
few star tracers and may not be well resolved. We also skip showing the M, > 10'* My /h case for
the TNG100-1.5, since there are very few objects with these masses in this simulation box.

artificially set to zero (solid). Similarly to the case of total mass selection discussed in the
previous subsection, the values of b under stellar mass selection do not appear dramatically
affected by the HOD number response function RY. This is seen by the comparable amplitude
between the dashed and solid lines in the left panels of figure 7, with both agreeing well with
the separate universe simulation measurements of bJ. The left panel in figure 8 shows RY
at z = 0 for the intermediate mass sample M, > 1010 Mg /h, and it illustrates indeed how
(Ng(Mp,)) does not respond strongly to total matter density perturbations d,, (the result is
compatible with R{ = 0 within the precision of our measurements).

In contrast, the values of b9 and bg of the stellar-mass selected objects are significantly
more affected by the corresponding HOD number responses, as shown by the larger difference
between the dashed and solid lines in the center and right panels of figure 7. The center and
right panels in figure 8 show, as an example, RJ at z = 1 and Ré’s at z = 3, which are
sizeable and vary between [0.5 — 2] and [1 — 6], respectively, within the halo mass range that
contributes the most to eq. (3.2). Note that the impact of the HOD responses on bJ and bg
can be quite dramatic in figure 7: the values of b‘Z) become non-zero at low redshift, while the
boost in b2 can be as large as to result in a change of sign at low redshift.
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Figure 7. Galaxy bias parameters of the same stellar-mass-selected galaxy populations shown in
figure 6. This is the same as figure 3, but for stellar mass selection in the Hydro simulations, instead
of total mass selection in the Gravity simulations.

The reason why some R% are sizeable for stellar-mass selected samples (and small for
objects selected by their total mass) is interesting and can be traced back to the impact that
the O perturbations have on the relation between the stellar mass and total mass of the
galaxies, M, (M;o). Using the same simulations we use in this paper, ref. [81] showed that
the additional baryons supplied by CIPs provide more fuel for star formation, which works
to boost the amplitude of the M, (M) relation, i.e. there is more mass in stars at fixed
total mass. Further, ref. [82], using also the same simulations as in here, showed that the
O = fu¢ perturbations boost the star formation rate more than they boost the total mass
accretion rate, and thus, they typically enhance M, at fixed Mo, as well. On the other
hand, ref. [82] found that O = ¢, perturbations boost both M, and M. by roughly the
same amount, thereby preserving the median stellar mass at fixed total mass. If M, (M)
is higher in the separate universe cosmology than in the Fiducial, then the same minimum
stellar mass cut M, min in the two cosmologies corresponds to a lower minimum total mass
cut Miot,min in the separate universe cosmology. Since galaxies with lower total masses are
more abundant, that explains the positive response of RJ and RZ) that is manifested in
figures 7 and 8.

To make this point more specifically, recall from eq. (3.2) that the HOD number re-
sponses are defined as the logarithmic derivative of the HOD number w.r.t. the perturba-
tions O
OIn(Ng(M, > M min|Mp))

00 ’

RY(M, > My min| Mp) = (3.4)
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Figure 8. Example HOD number responses measured for the galaxy population with M, >
10'° Mg /h. This is the same as figure 5, but for stellar-mass selected galaxies (and different il-
lustrative Rp at different z), instead of total mass selected objects.

where we are specializing to the case of galaxy samples selected by a minimum stellar mass
cut. The corresponding HOD number can be written as

& d(N,(M,| M,
(Ng(My > My min| My)) :/ dng, S (M| Mh))
7 M*,min dM*
= dM*/ thOt
M*,min 0

d<Ng(Mtot‘Mh)>
thot

P (M, Miot), (3.5)

where d(Ny(M,|My,))/dM, denotes the number of galaxies in the stellar mass bin [M,, M, +
dM,] that reside in haloes with mass My, d(Ny(Miot|Mp))/dMior represents the same but
for the total galaxy mass bin [Mio, Miot + dMiot, and P (M., M) denotes the probability
of a galaxy with total mass M. to have stellar mass M,. Using egs. (3.5) and (3.4), it
is straightforward to demonstrate that even if the total-mass selected HOD numbers are
non-responsive, i.e.,

d <d<Ng(Mmt!Mh)>) o, (3.6)

do dM,oy

(which the previous subsection suggests is approximately the case) it is still possible to
have non-zero responses R, for the stellar-mass selected samples if the stellar-to-total-mass
relation of the galaxies responds, i.e., if

8P(M*7 Mtot)
00

Thus, the results from refs. [81, 82] that OP (M., Miot)/0O > 0 for O = fy.¢ and O = o,
i.e., galaxies contain more mass in stars at fixed total mass, imply positive HOD number
responses, which in turn causes the galaxy bias parameters to become larger, as indeed
shown in figure 7. Further, the finding of ref. [82] that OP (M., Miot)/0m ~ 0 explains why
RY ~ 0 also for stellar-mass selected galaxies.

£0. (3.7)

~ 18 —



In ref. [54], using also stellar-mass selected galaxies in IllustrisTNG, the authors detect
a dependence of the HOD numbers on the environment of the haloes; concretely, lower mass
haloes are more likely to host a central galaxy in denser environments. Further, the authors
find also that the M, (M) relation is slightly boosted in denser halo environments. The
apparent contradiction of these results with our finding of a negligible impact of O = §,, on
(Ng(Mp)) and M,(Mio) can be explained by the fact that in ref. [54] the environment is
defined over much smaller scales than we do here. Specifically, ref. [54] defines the environ-
ment on scales of & 5 Mpc/h, where the larger and nonlinear mass fluctuations can affect
more strongly the number of mergers and the star formation rate, compared to the lower
amplitude, linear fluctuations O = §,, < 1 we consider here.%

The nonzero value of some of the HOD number responses under stellar-mass selection
makes it interesting to ask how many more free parameters would be needed to describe
the galaxy-halo connection in HOD studies. To roughly address this question, we fitted the
RY, measured in the separate universe simulations with polynomials in log;yM}, of order n
over the range M, € [10'%;10'] Mg /h weighted by W (Mj). These were then plugged into
eq. (3.2) to evaluate b%,. The results are shown in figure 9 for n = 0,1,2 (colored dashed
curves) for the TNG300-2 resolution. Interestingly, the simplest Mp-independent fit (n = 0;
i.e., one extra parameter describing the amplitude of RY)) performs remarkably well for all
b¢, measurements shown, significantly improving over the RY, = 0 case for both O = fy.¢
and O = ¢. This is not entirely surprising since only a limited range in M} contributes
strongly to the HM integral over which RY, = constant has better chances of being a decent
approximation. Naturally, this is just a simple exercise and more work is needed to design
appropriate parametrizations of the RY,. Nonetheless, the result in figure 9 does suggest that
parametrizations of the RY, can be incorporated in HOD studies without drastically inflating
the dimensionality of the parameter space of the galaxy-halo connection. This simple result
adds on to efforts in the literature that aim to include environmental dependencies in HOD
studies [51, 55, 55, 56, 59, 65, 139-143].

3.3 Different gas elements

In this subsection, we go beyond the case of galaxies as tracers and consider the bias of the
gas distribution. This is interesting observationally given the growing interest in using line-
intensity mapping observations to constrain cosmology [144], which is a goal that is expected
to be realized with the data from upcoming surveys such as HETDEX [145], CHIME [146],
HIRAX [147] and SKA [148]. Rather than resolving the light emitted by individual galaxies,
line-intensity mapping surveys target the integrated emission from transition lines of atoms
and molecules in all galaxies and diffuse gas in the intergalactic medium. The most popular
of these lines is perhaps the 2lcm spin-flip transition of neutral Hydrogen [149-152], but
some attention is being devoted also to other emission lines from carbon monoxide (CO),
ionized carbon ([CII]), oxygen (O) and Ly« [153].

The bias parameters of the gas b%a * are defined analogously to as in eq. (2.2), but with
the gas density pgas instead of the galaxy number density n,. Further, for the case of the
gas distribution, instead of a mean HOD number, the relevant halo occupancy quantity is the
mean mass of the gas inside halos with mass M}, (Mg.s(Mp)). Its response functions are
defined similarly to as in eq. (2.3), and we label them as R%®. The gas bias expression in

5We stress also that although our results are consistent with RY = 0, there is still room within the noise
for the response to be nonzero. Additional realizations of separate universe simulations would be needed to
beat down the statistical error and determine R{ more precisely.
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Figure 9. Same as figure 7 for the TNG300-2 resolution (the blue data points and lines are the
same as in figure 7), but including also the HM model prediction of eq. (3.2) with the measured RS,
replaced by polynomial fits of order n =0, 1,2 (colored dashed lines), as labeled.

the HM is given by a simple generalization of eq. (3.2):

b = pl [ AN (M) M (M, 2)) [0 + RE* ()] (38)

Again, this equation is routinely used in forecast studies with RE®(M},) = 0. In this subsec-
tion we wish to determine the impact of this approximation.

We do not attempt a detailed modelling of the relevant ionized and neutral gas phases
in our simulations (see e.g. refs. [48, 154-156]). Rather, we consider simply a few of the gas
elements as followed by the IllustrisTNG model to build intuition about R%°, and leave a
more detailed modelling to subsequent work. Specifically, the example gas elements we look
into here are hydrogen (H), carbon (C) and oxygen (O); the corresponding (Mgas(Mp,)) are
shown in figure 10. The result is in line with the expectation that (Mg,s(M}p)) is a growing
function of halo mass. For the case of H (which is present at the initial conditions), this
simply reflects the fact that more massive haloes accrete in general more mass (including
that in the form of H). The elements C and O are released to the interstellar medium by
the stellar evolution and chemical enrichment models, and so the larger mass in C and O in
massive haloes follows naturally from these objects containing also more stars. This explains
also why the results from the two resolutions agree well for H, but less so for C and O, whose
abundance is more directly linked to star formation efficiency.

The gas bias parameters and a few illustrative responses R%a ® are shown in figures 11
and 12, respectively. The main takeaway points from these figures are similar to those from
figures 7 and 8. In particular, the response R}™ has an appreciably smaller impact on
the gas bias parameter b§*, compared to the impact of R&, Rias on bgs bias. The origin
behind these results is also similar to that discussed in the previous subsection for stellar-
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Figure 10. Mean halo gas mass as a function of total halo mass, (Mgas(M4)). The result is shown for
hydrogen (H), carbon (C) and oxygen (O), at different redshifts and for the two resolutions TNG100-
1.5 and TNG300-2, as labeled.

mass selected galaxies. For example, for the case of the total matter perturbations O = §,,,
the boost in baryon abundance and star formation inside haloes is roughly matched by the
boost in the mass of the haloes, which makes (Mgas(Mjy, 2)) weakly responsive (cf. the RY
result in the left panel of figure 12, which is compatible with zero). On the other hand,
given a positive CIP O = ¢, H becomes more abundant effectively by definition of a CIP
(more baryons at fixed total mass), and the additional fuel supplied for star formation also
subsequently increases the abundance of C and O. This makes the halo gas mass responses
R positive (the center panel of figure 12 shows RS at z = 1 as an example), which shifts
the gas bias parameters b** upwards in the center panels of figure 11.

The case of b3 displays a couple of interesting features. For C and O, at z > 1,
the result is in line with the expectation that the increased star formation, increases the
abundance of C and O, which shifts bias upwards. At lower redshift, however, the solid and
dashed lines on the C and O panels on the right of figure 12 approach one another, which is a
consequence of a lowering of the amplitude of Rias. This can be contrasted with the bf;5 panels
of figure 7 for stellar-mass selected galaxies, in which the impact of the corresponding HOD
response is approximately constant with redshift. Perhaps more interesting is the result for
H, for which bg is shifted downwards at lower redshift, which indicates a negative H mean
mass response Rg < 0 (cf. right panel of figure 12). A tentative explanation here could be
that the increased activity of baryonic processes such as feedback by active-galactic nuclei
(AGN) could at least partially help remove some of the existing H and the excess of C and
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Figure 11. Bias parameters of the gas elements H, C and O shown in figure 10. This is the same as
figures 4 and 7, but for gas as a LSS tracer, instead of galaxies selected by their total/stellar mass.

O produced by the enhanced star formation at higher redshift.” We leave a more detailed
investigation of these features to future work, in which a more robust modelling of different
gas phases can also be carried out. We anticipate that the richer the physics of the modelling
of the gas phases (including the smaller-scale details of ionization), the richer the set of
features that can be imprinted on R%Qa ®, and consequently, on the corresponding gas bias

parameters.

Our results in this subsection demonstrate overall that the response of the gas in-
side haloes can be sizeable and display a few interesting nontrivial features for O = o
and O = fy.¢ perturbations. We would like to emphasize that eq. (3.8) with Rias =0
is routinely adopted in fy, forecast studies (see e.g. refs. [144, 157-160] for recent ex-
amples). Our results here that Rias # 0 using the IllustrisTNG model therefore moti-
vates investigations of the impact of Rias # 0 on fy, forecasts. Concretely, the signa-
ture from fy, on the gas power spectrum is o b%asbias fxu, and hence, Rias > 0 would
drive bias upwards, which could potentially increase the signal-to-noise (in robust forecasts,
however, uncertainties on the bias parameters should be parametrized and marginalized
over [161, 162]).

"Positive CIPs also increase baryonic effects’ activity, but the size of the effect may be weaker compared
to the O = fx.¢ case and the larger gas fractions that are present since the initial conditions may make it
harder to visualize any suppression of its abundance.
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Figure 12. Example halo gas mass responses R%". This is the same as figures 5 and 8, but for
the gas in haloes (and different illustrative Rp at different z), instead of galaxies selected by their
total/stellar mass.

4 Summary and conclusions

The combination of the HM with HODs is a powerful framework that is widely used to study
the clustering of galaxies and construct fast galaxy mock catalogues. The HOD number
(Ng(Mp)) describes the mean number of galaxies of a given type that reside inside haloes
with mass Mj,. In this paper, we studied the dependence of (Ny(M})) on the long-wavelength
environment of the haloes as described by HOD response functions RY, where O denotes a
type of long-wavelength perturbation. The RY, are the analog of the galaxy bias parameters
by, but applied to the HODs, instead of galaxy number densities; cf. egs. (2.2) and (2.3).
Despite being a natural ingredient in the HM, the HOD response functions RY, have remained
largely ignored in the literature. This motivated us to measure them using galaxy formation
simulations and study the corresponding impact in HM applications.

We focused on the impact of the HOD responses in the HM prediction of galaxy bias b%,.
The latter is given by a weighted version of the sum of halo bias b’é and the HOD responses
RY,, as in eq. (3.2), but in virtually all existing such calculations in the literature, the HOD
responses are assumed to be zero, R% = 0. To test the validity of this approximation, we
used separate universe simulations of the lllustrisTNG galaxy formation model to measure the
HOD responses to three types of long-wavelength perturbations (cf. section 2): total matter
perturbations, @ = d,,; primordial potential perturbations with local PNG, O = fy.¢;
and baryon-CDM CIPs, O = ¢. Our main results consisted in comparisons between the
galaxy bias parameters b, measured directly from the separate universe simulations with the
HM galaxy bias prediction when the measured R?Q are appropriately taken into account or
artificially set to zero.

We have shown results from HlustrisTNG simulations run at two numerical resolutions
(cf. table 1) and for galaxies/subhalos selected by their total mass (cf. section 3.1) and stellar
mass (cf. section 3.2). Beyond galaxies as LSS tracers, we have also studied the impact of

the responses of the mean gas mass in haloes R%,)a ® on the corresponding gas bias parameters

bgy" (cf. section 3.3; we considered H, C and O as example case studies).
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Our main conclusions can be summarized as follows:

o For objects selected by total mass, the HOD number responses RY, are compatible with
zero in our simulations and impact bf, only weakly (cf. figure 4).

o For stellar mass selected objects, setting R{ = 0 in the HM remains a good approxima-
tion and recovers the measured b] well, but doing the same for RJ and Ri drastically
underpredicts b2 and bZ) (cf. figure 7). This can be explained physically by the boost
that O = o and O = fy.¢ induce on the stellar-to-total-mass relation of the galaxies
(cf. discussion in section 3.2).

o Likewise for the gas distribution, b$*" remains weakly affected by the mean mass re-
sponse R}™, but b8 and bias are affected strongly by Rg* and Rias (cf. figure 11). In
this case, the R%" can behave differently for different gas elements (e.g., Rg, Rg > 0,
but Rg < 0), which suggests a nontrivial interplay of physical processes that is worth
studying further.

e Polynomial fits to R% of order n < 2 recover well the measured b?g for stellar-mass
selected samples (cf. figure 9). This suggests that parametrizations of RY, can be added
to traditional HOD studies of the galaxy-halo connection without introducing too many
free parameters.

Our results indicate overall that R‘gf) = 0 is an approximation that is not always valid
and that it should be tested on a case-by-case basis. The sizeable effects we found on bJ
and bg find immediate applications in HM-based forecast studies of CIPs and local PNG: the
signals in these studies are often o< bJ, bg, and so misestimates of the bias parameters can
lead to biased conclusions. Within the precision attained by our separate universe simulation
measurements, the impact of the HOD responses to total matter perturbations remained
consistent with zero. As argued in section 3.2, this is the expected result if d,, perturbations
do not modify significantly the stellar-to-total-mass relation of the galaxies. This seems to
be at least approximately the case in the IllustrisTNG model (given our statistical errors),
but may be different in other models of galaxy formation. It would therefore be interesting
to measure R} in other state-of-the-art galaxy formation models like EAGLE [163, 164],
MAGNETICUM [165], BAHAMAS [166], or HORIZON-AGN [167].

We would like to emphasize the particularly welcoming aspect of the fourth bullet point
above that indicates that parametrizations of RY, are straightforward to include in HOD stud-
ies. In figure 9, we have seen that R% = constant provides a decent first order approximation,
in which case only one additional parameter needs to be added to traditional HOD studies.
It is important to note also that in this paper we have assumed that the HODs and their re-
sponses depend only on halo mass M, but it would be interesting to study RY, as a function
of additional properties such as halo concentration, halo formation time, halo spin, etc.

Our analysis can be extended further to include a selection of tracers that resembles
more closely the observations, including for example, an improved modelling of the gas phases
that are relevant for future line-intensity mapping studies, or galaxies selected by properties
such as star formation rate, color or AGN luminosity. With additional separate universe simu-
lations, it would be also possible to study higher-order response functions (which are defined
as higher-order derivatives w.r.t. O) and/or response functions associated with additional
perturbations such as large-scale tidal fields O = K;j(x) K" (z) [168-175], higher-derivative
operators O = V2§,,(x) [176] or the ionizing radiation field [177, 178].
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