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Dynamical fermionization refers to the phenomenon when the momentum distribution of impenetrable bosons 
asymptotically reaches that of non interacting fermions on sudden release from the trap. Whereas on sudden 
change in trap frequency results to Bose-Fermi oscillation which has been experimentally confirmed in the 
case of the Lieb-Liniger model in the Tonks-Girardeau (TG) regime. Crystallization happens for sufficiently 
strongly interacting repulsive bosons with dipolar interactions in one spatial dimension. Crystallization resembles 
fermionization but distinctly different due to long-range interaction. The present work aims to distinguish 
dynamical crystallization from dynamical fermionization in the expansion and breathing dynamics of 𝑁 = 4
strongly interacting bosons in TG limit. Our results suggest that the 𝑁-fold complete splitting in one-body density 
for dipolar bosons makes a clear signature of crystallization in the Bose-Fermi oscillation. We investigate the 
many-body dynamics by employing multiconfigurational time-dependent Hartree method for bosons which solve 
the 𝑁-body time-dependent Schrödinger equation numerically exactly.
1. Introduction

The out-of-equilibrium dynamics of isolated strongly correlated 
many-body systems become one of the most challenging problems in 
quantum dynamics. The accurate time-dependent control of microscopic 
parameters for the ultracold trapped atomic gases offers a better un-

derstanding of the manipulation of many-particle quantum states and 
realization of non-equilibrium process [29,8,9]. One dimensional (1D) 
systems are the ideal test beds for the study of out-of-equilibrium dy-

namics due to strong interatomic correlations. In the reduced dimension, 
quantum effects are more important, and quantum fluctuations are also 
enhanced for strong interactions. The simplest way to study out-of equi-

librium process is the quantum quench.

Observation of dynamical fermionization–when the physical proper-

ties of impenetrable bosons (Tonks-Girardeau gas) dynamically achieve 
the properties of noninteracting fermions, is the most seminal ob-

servation in this field. It was theoretically predicted for the bosonic 
Lieb Liniger model with infinite repulsion [16,20,19], on sudden re-

lease of the trap, the momentum distribution evolves from bosonic to 
fermionic character [15,25,30,26,40]. This prediction was experimen-

* Corresponding author.

tally observed in the recent experiments [39,18,14]. The 1D expansion is 
achieved by turning off the longitudinal confinement–the gas develops a 
Fermi shape of the momentum distribution. Whereas an abrupt change 
in the trap frequency induces large amplitude breathing oscillation– 
‘Bose-Fermi’ oscillation. Over the past few years, the study of “dynamical 
fermionization” has been extended for one-dimensional spinor quantum 
gases [2] and 1D Bose-Fermi mixture [27].

However, a more interesting observation is the crystallization which 
emerges for strongly interacting bosons with dipolar interaction in one 
spatial dimension. Dipolar ultracold atoms have attracted much inter-

est which is corroborated by experimental realization of dipolar Bose 
Einstein condensate consists of chromium [17], dysprosium [24] and 
erbium atoms [1]. The long range dipole-dipole interaction and its 
anisotropic nature leads to rich and exotic many-body physics which 
are distinctly different from the Bose Einstein condensate (BEC) with 
contact interaction [10,12]. One such phenomenon is the crystallization 
in one- and two-dimensional system [4,43,42,6,5,13]. Crystallization is 
the consequence of strong repulsive long-ranged tail of the dipolar in-

teraction when the bosons exhibit maximal separation. Crystallization 
resembles fermionization as in both cases bosons either minimize or 
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escape spatial overlap due to strong interaction. However, unlike the 
fermionization with strong contact interaction, the energy of the crys-

tallized bosons does not saturate (explained later). These two phases 
have already been established as two hallmark phases of strongly cor-

related one-dimensional bosonic systems [7]. As a consequence, the 
𝑁 -fold splitting in one-body density for the fermionized bosons is in-

complete and restricted by the external trap. In contrast, the splitting is 
complete for dipolar bosons, due to the long-range tail in the dipolar in-

teraction, the interaction energy can overcome the confining potential 
and exhibit very fast spreading upon quench.

In this article, we like to explore the out-of-equilibrium dynamics 
of strongly correlated dipolar bosons– termed as “dynamical crystal-

lization” and compare them to the dynamical fermionization from a 
many-body perspective. Dynamical crystallization is an well established 
technique in the experiments [28,36], which provide the coherent con-

trol of the many-body systems. Rydberg atoms are the ideal test bed 
which exhibit unique properties, the strong van der Waals interaction 
can be manipulated to create many-body phases in neutral ultracold 
atom samples. The dynamic process of crystallization in the transverse 
field of Ising model has also recently been explored [41].

We prepare the initial state at the ground state of a few interacting 
bosons in a harmonic oscillator potential. We make the system trapless 
by the sudden removal of the trap and explore the signature of crystal-

lization in the dynamical phases of the many-body wave function. We 
also initiate the breathing oscillation on sudden reduction of trap fre-

quency and observe very rich dynamical evolution in momentum space. 
The usual Bose-Fermi like oscillation and frequency doubling are ob-

served in both dynamical crystallization and dynamical fermionization. 
However, the repulsive long-range tail of the dipolar interaction domi-

nates the crystallization process–maximally separated bosons are identi-

fied in the entire dynamics. The 𝑁 -fold splitting in the one-body density 
unequivocally identifies the dynamical crystallization and distinguishes 
it from the dynamical fermionization. The dynamics for one-body cor-

relation nicely present how the crystallization happens. We additionally 
present the spreading of density and dynamical fragmentation to distin-

guish the two dynamical processes.

We solve the 𝑁 -body time-dependent Schrödinger equation numer-

ically with very high precision using the multiconfigurational time-

dependent Hartree for bosons (MCTDHB) which calculates the many-

body wave function numerically exactly [3,38,22,21,23]. The key mea-

sures are one-body densities in real and momentum space and Glauber 
correlation function.

2. Hamiltonian and set up

The time-dependent Schrödinger equation for 𝑁 interacting bosons 
is given by

𝐻|𝜓(𝑡)⟩ = 𝑖
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ (1)

We use dimensionless unit defined by dividing the Hamiltonian by 
ℏ2

𝑚𝐿2 , 𝑚 is the mass of a boson, 𝐿 is the length scale. 𝐻 is the 𝑁 -particle 
Hamiltonian

𝐻 =
𝑁∑
𝑖=1

ℎ(𝑥𝑖) +
∑
𝑖<𝑗

𝑊 (𝑥𝑖 − 𝑥𝑗 ) (2)

where ℎ(𝑥𝑖) = −1
2

𝜕2

𝜕𝑥2
𝑖

+ 𝑉 (𝑥𝑖) is the one-body Hamiltonian. 𝑉 (𝑥𝑖) =
1
2𝜔0𝑥

2
𝑖

is the external harmonic trap. 𝑊 (𝑥 −𝑥′) is the two-body interac-

tion. For contact interaction 𝑊 (𝑥 −𝑥′) = 𝜆𝛿(𝑥 −𝑥′), 𝜆 is the interaction 
strength and is determined by the scattering length and the transverse 
confinement. The quasi-1D regime is ensured by strong transversal con-

finement which provides a cigar-shaped density of atoms. For dipolar 
interaction 𝑊 (𝑥 − 𝑥′) = 𝑔𝑑

|𝑥−𝑥′|3+𝛼0
, 𝑔𝑑 is the pure dipolar interaction 

𝑑2 𝑑2 𝜇
2

strength; 𝑔𝑑 = 𝑚

4𝜋𝜖0
for electric dipoles and 𝑔𝑑 = 𝑚 0

4𝜋 for magnetic 
Physics Letters A 523 (2024) 129806

dipoles, 𝑑𝑚 being the dipole moment, 𝜖0 is the vacuum permittivity, 
and 𝜇0 is the vacuum permeability. 𝛼0 is the short-range cutoff to avoid 
singularity at 𝑥 = 𝑥′. We choose 𝛼0 = 0.05 and check the consistency 
when the dipolar interaction is augmented with a contact potential. 
Choice of 𝛼0 = 0.05 also corresponds to 𝑎⟂ = 0.37 and an aspect ratio 
= 42.5 [37,13]. In general, the dipole-dipole interaction potential in 1D 
also includes a contact term owing to the transverse confinement, how-

ever that can be safely neglected for strong interaction strengths [11]. 
We focus on 𝑁 = 4 interacting bosons and consider two specific cases 
of strongly interacting limit 𝜆 = 25 and 𝑔𝑑 = 25.

3. Numerical method

In MCTDHB, the many-body wave function |𝜓(𝑡)⟩ of 𝑁 interacting 
bosons is expanded as the linear combination of time-dependent perma-

nents [3,38,33,32]

|𝜓(𝑡)⟩ =∑
𝑛

𝐶𝑛(𝑡)|𝑛; 𝑡⟩. (3)

The time-dependent permanents {|𝑛; 𝑡⟩} are obtained by distributing 𝑁
bosons over 𝑀 time-dependent orbitals {𝜙𝑖(𝑥, 𝑡)}. The permanents are 
symmetrized bosonic many-body states and are referred to as “config-

urations”. The vector 𝑛 = (𝑛1, 𝑛2, … , 𝑛𝑀 ) represents the occupation of 
the orbitals and 𝑛1 + 𝑛2 +⋯ + 𝑛𝑀 = 𝑁 preserves the total number of 
particles. The sum in Eq. (3) runs over all configurations of 𝑁 particles 
distributed in 𝑀 orbitals. Eq. (3) spans the full 𝑁 -body Hilbert space in 
the limit of 𝑀 → ∞. Thus MCTDHB is exact by its construction. How-

ever, for practical computations, we restrict to the number of orbitals 
and convergence in several measures like the one- and two-body density 
matrix, which determines the required number of orbitals.

The expansion coefficients {𝐶𝑛(𝑡)} and the orbitals {𝜙𝑖(𝑥, 𝑡)}, both 
are time-dependent and are determined by the time-dependent vari-

ational principle. A set of coupled equations of motions for {𝐶𝑛(𝑡)}
and {𝜙𝑖(𝑥, 𝑡)} are obtained by requiring the stationarity of the action 
of the time-dependent Schrödinger equation concerning the variations 
of the expansion coefficients and the orbitals [21,34,31]. MCTDHB is 
fundamentally different from exact diagonalization which uses the time-

independent orbitals as the many-body ansatz. We stress here that MCT-

DHB delivers solutions of the Schrödinger equation with much more 
accuracy than exact diagonalization methods at the same dimension-

ality of the considered space. As in exact diagonalization, the time-

independent basis built from the eigenstates of a one-body problem, 
are not further optimized to take into account the dynamics and cor-

relations in the considered system, which necessarily arise due to the 
presence of interparticle correlation. In this sense, the Hilbert space and 
basis used in exact diagonalization are fixed and not optimized.

We solve the set of coupled MCTDHB equations implemented in the 
MCTDH-X software [23]. For the present computation of 𝑁 = 4 strongly 
interacting bosons in TG limit, the convergence is established in the key 
measures with orbital 𝑀 = 24.

4. Quantity of interest

From the time-dependent wave function, the reduced one-body den-

sity matrix is defined as

𝜌(1)(𝑥|𝑥′; 𝑡) = ⟨𝜓(𝑡)|𝜓̂†(𝑥′)𝜓̂(𝑥)|𝜓(𝑡)⟩ (4)

where 𝜓̂(𝑥) is the bosonic field operator which annihilates a particle at 
the position 𝑥. The diagonal part of the one-body density matrix,

𝜌(𝑥; 𝑡) = 𝜌(1)(𝑥|𝑥′ = 𝑥; 𝑡) (5)

is the usual one-particle density at time 𝑡 which probes the spatial dis-

tribution of the bosons in the post quench dynamics.

To calculate the reduced one-body density matrix in momentum 

space one needs to follow Ref. [35]. It is defined as
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Fig. 1. One-body density of 𝑁 = 4 strongly interacting bosons trapped in a 
harmonic oscillator potential of frequency 𝜔0 = 1.0, for contact interaction of 
strength 𝜆 = 25 (a) and for dipolar interaction of strength 𝑔𝑑 = 25 (b). In Fig. (a), 
four distinct but non isolated peaks mimic the density of four non interacting 
fermions. In Fig. (b), four fold splitting exhibits the crystal phase. Computation 
is done with 𝑀 = 24 orbitals. All quantities are dimensionless.

𝜌(1)(𝑘|𝑘′; 𝑡) = ⟨𝜓(𝑡)|𝜓̂†(𝑘′)𝜓̂(𝑘)|𝜓(𝑡)⟩ (6)

and the diagonal part of it

𝜌(𝑘; 𝑡) = 𝜌(1)(𝑘|𝑘′ = 𝑘; 𝑡) (7)

calculates the one-particle momentum distribution at time 𝑡. Thus, we 
investigate the dynamics by measuring two key quantities: real space, or 
𝑥-space density dynamics, and momentum, or 𝑘-space density dynamics. 
To measure the degree of coherence we calculate the one-body Glauber 
correlation function

𝑔(1)(𝑥,𝑥′; 𝑡) = 𝜌(1)(𝑥,𝑥′; 𝑡)√
𝜌(𝑥, 𝑡)𝜌(𝑥′, 𝑡)

(8)

5. Results

5.1. Initial state

We perform the calculation for 𝑁 = 4 repulsive interacting bosons 
trapped in the harmonic oscillator potential with 𝜔0 = 1.0. We do the 
numerical simulation in the domain of 𝑥𝑚𝑖𝑛 = −32 to 𝑥𝑚𝑎𝑥 = +32 for con-

tact interaction, whereas to accommodate the effect of long-range tail of 
the dipolar interaction we do the calculation in the range of [−64,+64]
and fix the number of orbitals to 𝑀 = 24 which assure convergence of 
the fermionized and crystallized state in the parabolic trap. To investi-

gate the stationary property we propagate the wave function in imagi-

nary time using MCTDH-X software to solve the MCTDHB equations of 
motion, the system relaxes to the ground state. In Fig. 1(a), we plot the 
one-body density for the fermionized state with 𝜆 = 25 whereas Fig. 1(b) 
corresponds to the crystal state with 𝑔𝑑 = 25. Fig. 1 discusses the sim-

ilarity and contrast of these two states from a many-body perspective. 
The emergence of four maxima, which corresponds to the number of 
bosons in the trap, both for the contact and dipolar interaction confirms 
that the Tonks-Girardeau (TG) regime is achieved. However, the density 
modulations in the crystal state are significantly different compared to 
3

the fermionized state. For contact interaction, the density-maxima are 
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Fig. 2. The figure showcases the captivating time evolution of the density pro-

file during the expansion of four strongly interacting bosons initially trapped 
in a harmonic oscillator (HO) potential and suddenly released. Fig. (a) and (b) 
correspond to density dynamics in 𝑥-space for contact interaction (𝜆 = 25) and 
dipolar interaction (𝑔𝑑 = 25). Computations are done with orbital 𝑀 = 24. Fig. 
(c) and (d) correspond to density dynamics in 𝑘-space for contact and dipolar 
interaction. See the text for details. All quantities are dimensionless.

not isolated due to binding nature of energy for contact interaction (ex-

plained later). The density modulation is maximum at the center of the 
trap where the potential is zero. Whereas the outermost humps are less 
modulated due to the larger distance from the center of the trap. How-

ever, for bosons with dipolar interaction in Fig. 1(b), the maxima are well 
separated due to the long-range tail of the interaction. In contrast with 
the fermionized state with contact interaction, for crystallized dipolar 
bosons, the value of the density at the minima between the humps tends 
to zero and the spreading of the density profile is broadened. Thus crys-

tallization occurs due to the long-range tail of dipole-dipole interaction, 
the bosons form a lattice structure which allows them to minimize their 
mutual overlap.

5.2. Expansion dynamics of fermionized and crystallized bosons

To study the expansion dynamics of the bosons from fermionized 
and crystal states, we suddenly remove the trap and allow the bosons 
to expand. In Fig. 2(a) and (b) we plot the dynamics of one-body real 
space density for contact and dipolar interaction respectively. The clear 
many-body features are revealed in the dynamics, both for contact and 
dipolar interaction, as four bosons move independently as four bright 
jets. However, the density dynamics is distinctly different of the two 
states, both for short-time and long-time dynamics. Initially at time 
𝑡 = 0, bosons with contact interaction (Fig. 1(a)) are in a more confined 
position than the bosons with dipolar interaction (Fig. 1(b)). On expan-

sion, four fermionized bosons cannot be distinguished clearly till time 
𝑡 = 2.0, after that, density exhibits four closed, confined peaks that fur-

ther travel ballistically, independent of each other. Whereas the bosons 
with dipolar interaction (Fig. 1(b)), exhibit four completely isolated po-

sitions of four bosons initially at 𝑡 = 0.0, which move further as four 
distinct bright jets independently. However, as a consequence of the re-

pulsive long-range tail of the dipolar interaction, they spread very fast. 
It is to be noted that the spreading for contact interaction is observed in 
the much smaller domain. We further suggest that the very fast spread-

ing for dipolar bosons is the consequence of rapid growth in energy 
which is in stark contrast for contact interaction as discussed later.

In Figs. 2(c) and (d), we plot the one-body density in momentum 

space for contact and dipolar interaction respectively. For contact in-
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Fig. 3. The figure showcases the captivating dynamics after confinement quench 
from 𝜔0 = 1.0 to 𝜔1 = 0.1. Computations are done with orbital 𝑀 = 24. Fig. (a) 
and (c) correspond to the real space and momentum space breathing dynamics 
for fermionized bosons. It clearly exhibits that periodic narrowing in momen-

tum space occurs at twice of the density oscillation. Corresponding breathing 
dynamics for crystallized bosons are presented in Fig. (b) and (d) for the real 
space and momentum space. Due to strong diverging nature of dipolar inter-

action Fig. (b) exhibits regular dynamics only in the first half cycle before it is 
being destroyed. Frequency doubling in momentum space is observed in Fig. (d) 
only in the first cycle before it is being destructed. All quantities are dimension-

less.

teraction (Fig. 2(c)), the one-body 𝑘-density is localized at the center. 
Then it splits into four–which expand further, and the width in mo-

mentum spreading is well converged. However, the two innermost jets 
are brighter than the two outermost jets. It is in close agreement with 
the observation made in Fig. 1(a), density modulation for fermionized 
bosons is not uniform, the innermost humps were stronger whereas the 
outermost humps were weaker. At 𝑡 = 8.0, four peaks become stabi-

lized and the density becomes exactly the same for four noninteract-

ing fermions. Thus 𝑡 = 8.0, is the time for dynamical fermionization. 
Fig. 2(d) for dipolar interaction, exhibits a clear signature of long-range 
tail in the dipole-dipole interaction. The one-body momentum density 
is completely fourfold and of equal intensity. It justifies Fig. 1(b), where 
the crystal state was diagnosed as four completely isolated peaks. How-

ever, in comparison with Fig. 2(c) for contact interaction, the width of 
momentum distribution for dipolar interaction is significantly larger in 
the entire dynamics.

5.3. Breathing oscillation of fermionized and crystallized bosons

A sudden change in the trap frequency to a nonzero value induces 
the so called breathing oscillation to the system. In the conventional 
experimental set up, few hundreds of atoms are trapped in quasi 1D 
scenario. The breathing mode is excited by quenching the axial confine-

ment from 𝜔0 to 𝜔1 (
𝜔0
𝜔1

> 1). The resulting cloud evolves over time 
and the absorption image provided the density profile in the real and 
momentum space. The momentum distribution oscillates between the 
Fermi like and Bose like.

In our present computation, we reduce the frequency to one tenth 
of the initial frequency; 𝜔0 = 1.0 to 𝜔1 = 0.1. The results for fer-

minized bosons are presented in Fig. 3(a) and (c). The real space density 
[Fig. 3(a)] exhibits the self similar breathing cycle without any damp-

ing. While Fig. 3(c) represents the rich structure of bosonic-fermionic 
oscillation in the momentum space. The cloud is Bose like when it is 
broadest and Fermi like when it is the narrowest. The momentum dis-
4

tribution width becomes minimum when the real space density is the 
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Fig. 4. Dynamics of one-body Glauber correlation function 𝑔(1)(𝑥, 𝑥′) for some 
selected times on sudden removal of the trap which initially confine four 
strongly interacting bosons with contact interaction in the Tonks-Girardeau 
limit. All quantities are in dimensionless unit.

broadest and the narrowest. The breathing dynamics also exhibit that 
the breathing frequency in real space is exactly double to the frequency 
in momentum space.

The corresponding breathing dynamics for crystallized bosons is pre-

sented in Fig. 3(b) and (d). The cloud with dipolar bosons again exhibit 
Bose-Fermi oscillation in the same time scale but rich structure is ob-

served due to long-range tail of dipolar interaction. The breathing dy-

namics also manifest the frequency-doubling as observed for dynamical 
fermionization. The width of momentum is much broader and the many-

body features for crystallization are showcased in the entire dynamics.

5.4. Correlation dynamics

In this section, we analyze the process of dynamical fermionization 
and dynamical crystallization utilizing another key measure; one-body 
Glauber correlation function. The immediate consequence of the dif-

ferent behaviour of the energy as a function of interaction strength 
(shown later) is the different spreading characteristics of one-body cor-

relation function. The clear distinction is when the spread of one-body 
correlation is restricted with time, that with dipole-dipole interaction 
is very fast due to long range tail. In Fig. 4 and Fig. 5, we provide 
a comprehensive picture of one-body normalized correlation function 
for contact and dipolar interaction respectively for some selected time. 
We find, for contact interaction (Fig. 4), at 𝑡 = 0, the correlation is con-

fined around the center with distinct diagonal correlation and vanishing 
off-diagonal correlation. The two distinct outer humps and two unclear 

inner humps along the diagonal correlation signify the Tonks-Girardeau 
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Fig. 5. Dynamics of one-body Glauber correlation function 𝑔(1)(𝑥, 𝑥′) for some 
selected times on sudden removal of the trap which initially confine four 
strongly interacting bosons with dipolar interaction in the Tonks-Girardeau 
limit. All quantities are in dimensionless unit.

gas. On sudden removal of the trap, the correlation spreads with clear 
development of two inner humps. At 𝑡 = 8.0, when the density of four 
interacting bosons asymptotically evolve to the density for four nonin-

teracting bosons, dynamical fermionization happens. The corresponding 
correlation displays four clearly visible but not isolated humps along 
the diagonal which do not spread further. We infer that the confined 
spreading of correlation function is the unique signature of dynamical 
fermionization.

To characterize the dynamical crystallization we plot the one-body 
correlation function for selected times in Fig. 5. Initially at 𝑡 = 0, the 
correlation is confined around the center with four well isolated humps 
characterizing the crystallized state for four interacting dipolar bosons. 
On sudden expansion, the correlation spreads very fast towards the 
boundary.

5.5. Distinction of dynamical crystallization from dynamical 
fermionization

In this section, we will discuss how to distinguish the dynamical 
crystallization from the dynamical fermionization utilizing evolution of 
many-body states. In Fig. 6, we plot the energy as a function of interac-

tion strength. It clearly converges to the fermionization limit 𝐸𝑁
𝜆≃∞ = 

𝑁2

2 (for the present calculation it is 8.0 for 𝑁 = 4 interacting bosons). 
The energy for dipolar interaction diverges as a power law. Its imme-

diate consequence is the crystallized bosons have enough interaction 
5

energy to overcome the confining potential and spread very fast.
Physics Letters A 523 (2024) 129806

Fig. 6. The energy as a function of interaction strength which converges to the 
fermionization limit and energy for dipolar interaction which diverges with a 
power law. All quantities are in dimensionless unit.

Fig. 7. Dynamics of one-body density for some selected times on sudden removal 
of the trap which initially confine four strongly interacting bosons with contact 
interaction in the Tonks-Girardeau limit. All quantities are in dimensionless unit.

Fig. 8. Dynamics of one-body density for some selected times on sudden removal 
of the trap which initially confine four strongly interacting bosons with dipolar 
interaction in the Tonks-Girardeau limit. All quantities are in dimensionless unit.

To visualize the spreading, we plot the one-body density dynamics 
in Fig. 7 and Fig. 8 for the contact and dipolar interactions respectively 
in the range 𝑥𝜖 [−32,+32]. It is clearly seen that for contact interac-

tion in the TG limit, the density spreading exhibits two phenomena: 
i) the two less prominent outermost peaks gradually become of same 
height as of the two innermost peaks at the time of fermionization. 
ii) expansion of the whole cloud. Even after attaining the dynamical 
fermionization, the fermionized bosons can be traced and do not hit the 
boundary used in the present simulation. Whereas the spreading of crys-

tallized bosons exhibit one phenomenon - the very fast overall spreading 
of the whole cloud and just after attaining the crystallization, they are 
lost after heating the boundary. This manifest the effect of long-range 
tail in the dynamics.

For tracing the fermionization and crystallization, we quantify the 
spreading of the density by the position of the outermost peak in the 

density 𝜌(𝑥) and plot it in Fig. 9. In both cases, spread of density follows 
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Fig. 9. The spread of the density quantified by the position of the outermost 
peak in the density 𝜌(𝑥). The spreading due to dipolar interaction is very fast 
due to long range repulsive tail. All quantities are in dimensionless unit.

Fig. 10. The eigenvalues of the reduced density matrix, i.e., the natural occupa-

tion for 15 orbitals out of 24 orbitals used in the computation. For strongly inter-

acting bosons, the number of significantly contributing orbitals is four which is 
equal to the number of bosons. For contact interaction, (a), when the fragmen-

tation is depleted, for dipolar interaction it is full-blown 4-fold fragmentation, 
(b). All quantities are in dimensionless unit.

power law, but for the dipolar interaction the spreading is very fast 
which causes immediate destruction of crystallized phase. Whereas for 
contact interaction, the confined spreading causes longer life time of the 
fermionized phase.

We now turn to analyze the eigenvalues of the reduced one-body 
density matrix to understand the dynamical fragmentation as presented 
in Fig. 10. For contact interaction, one natural occupation, 𝑛1, domi-

nates throughout the dynamics, while other three contributing orbitals 
exhibit the same population during the dynamics. For dipolar interac-

tion, all occupations 𝜌(𝑁𝑂)
𝑘

for 𝑘 ≤ 𝑁 contribute on an equal footing. The 
initial full blown 4-fold fragmentation signifies the crystal state which is 
almost maintained till it hits the wall. The emergence of complete frag-

mentation is the consequence of long-range dipolar interaction and the 
6

emergent depletion is the consequence of contact interaction.
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6. Summary and conclusions

We have presented numerically exact results for many-body expan-

sion dynamics and breathing oscillation of dipolar bosons and compari-

son is made with the fermionization. We solved the 𝑁 -body Schrödinger 
equation accurately and from first principles using the multiconfigura-

tional time-dependent Hartree for bosons (MCTDHB). Using the one-

body density in real space and momentum space we establish how 
the fermionization can be distinguished from crystallization. For 𝑁 -

interacting bosons with contact interaction in TG limit, a splitting into 
an 𝑁 -fold non isolated pattern forms in the one-body density which is 
a unique feature of fermionization. Whereas for 𝑁 -strongly interacting 
dipolar bosons crystallization is demonstrated by the isolated 𝑁 -fold 
pattern. This complete isolation is the consequence of the formation 
of Mott-insulator like many-body state where lattice potential can be 
substituted by the long-ranged dipolar interaction and the interparticle 
interaction stands as a lattice constant. On sudden removal of the trap, 
the dynamical crystallization is compared with dynamical fermioniza-

tion and the effect of long range interaction is portrayed in the dynamics. 
Whereas on sudden reduction of the trap, the bosons with contact in-

teraction exhibit with Bose-Fermi oscillation and result to frequency 
doubling in momentum space. Whereas for strong dipolar bosons, to 
capture the Bose-Fermi oscillation and frequency doubling, we need to 
make double the entire range of real space. The effect of long-range tail 
in the dipolar interaction is well manifested in the correlation dynam-

ics. The clear crystallization feature is observed in the entire dynamics. 
All these signatures can be measured experimentally utilizing the single-

shot absorption imaging. Thus a direct verification of our results can be 
performed in the recent experimental set ups in quasi one-dimension.
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