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Abstract

Optical metasurfaces enable compact, lightweight and planar optical devices. Their perfor-
mances, however, are still limited by design approximations imposed by their macroscopic
dimensions. To address this problem, we propose a neural network-based multi-stage
gradient optimization method to efficiently modulate nonlocal interactions between meta-
atoms, which is one of the major effects neglected by current design methods. Our strategy
allows for the use of these interactions as an additional design dimension to enhance the
performance of metasurfaces and can be used to optimize large-scale metasurfaces with
multiple parameters. As an example of application, we design a meta-hologram with a
zero-order energy suppressed to 26% (theoretically) and 57% (experimentally) of its original
value. Our results suggest that neural networks can be used as a powerful design tool for
the next generation of high-performance metasurfaces with complex functionalities.

Keywords: nonlocal interactions; meta-hologram; neural network; zero-order

1. Introduction
Metasurfaces offer versatile control of light beams in multiple dimensions, enabling

advanced optical functionalities such as metalenses [1–4], meta-holograms [5–7] and other
unique applications [8,9]. Even though there has been impressive progress in fundamental
research and applications, metasurface designs are still largely based on selecting meta-
atoms from a predefined library to modulate the phase at specific positions [10,11]. This
method provides a fast approach to design metasurfaces of macroscopic dimensions by
assuming that the optical properties of each meta-atom are the same in the metasurfaces as
they are in a periodic array (the so-called local periodic approximation). The downside of
the standard method is that it overlooks nonlocal effects [11], including interactions between
meta-atoms and leaky modes, thus limiting optical performance [12,13]. Furthermore,
nonlocal effects can enable unique functionalities, such as wavelength selection [14,15],
wavefront selection [16] and image processing [17,18]. Thus, there is a pressing need to
develop practical design strategies to control nonlocal effects.

Recently, inverse design methods such as adjoint-based optimization [19,20] have been
proposed to address these issues by incorporating nonlocal effects to adjust the complex

Photonics 2025, 12, 738 https://doi.org/10.3390/photonics12070738

https://doi.org/10.3390/photonics12070738
https://doi.org/10.3390/photonics12070738
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-6255-1479
https://orcid.org/0000-0002-5367-6974
https://orcid.org/0000-0003-1399-9792
https://doi.org/10.3390/photonics12070738
https://www.mdpi.com/article/10.3390/photonics12070738?type=check_update&version=1


Photonics 2025, 12, 738 2 of 21

amplitude of the meta-atoms, thus improving the design of phase-matching metasur-
faces. Despite their benefits, these approaches have important limitations. For example,
adjoint-based optimization requires full-structure simulations, making it computationally
expensive and unsuitable for large-scale devices [21–23]. The supercell method [24,25]
simplifies the design of specific devices, but it is cumbersome if complex functionalities are
to be accommodated. Deep learning methods have emerged as an alternative, enabling
rapid predictions of wavefront outputs by learning meta-atom responses under nonlocal
interactions [26–29]. Moreover, the direct generation capability of generative neural net-
works for structural design also provides a new perspective [30]. However, due to a strong
dependence on the dataset, this method is not easy to extend to other types of metasurfaces,
resulting in poor scalability. Additionally, the gradient optimization techniques based on
differentiable calculations utilize the prediction capability of neural network models to
design large-scale metasurfaces with different functions [31–33]. However, challenges such
as limited optimization parameters and gradient calculation errors from discrete datasets
still constrain device performance and functionality.

Here, we propose a new neural network-based multi-stage gradient optimization strat-
egy to modulate nonlocal interactions between meta-atoms. Currently, there are two main
approaches to optimize metasurface structures and mitigate nonlocal effects. One approach,
which is adopted here, takes the ideal performance of the metasurfaces as the optimization
target [23,31]. The other approach uses the actual phase response of the metasurfaces as the
optimization target [28]. Our strategy is based on a decomposition of a multi-parameter
optimization into sequential stages, with each stage employing a neural network trained on
continuous parameter variations. This approach reduces data requirements and minimizes
errors caused by discrete datasets, enabling optimization of more parameters. Additionally,
discretization methods are incorporated to ensure the optimized structure meets fabrication
requirements, significantly enhancing the practicality of gradient optimization. As an
example, we apply this method to optimize meta-holograms for zero-order suppression,
achieving a reduction to 26% (theoretically) and 57% (experimentally) of the original zero-
order energy. Compared to conventional solutions such as off-axis design strategies [5],
polarization detection methods [34,35], or supercell approaches [36], our approach avoids
limitations like reduced imaging range, lower efficiency, or increased system complex-
ity. We believe that this method offers a promising route to design large-scale complex
metasurfaces and effectively modulate nonlocal effects.

2. Method
Neural network-based gradient optimization methods for metasurface design typically

rely on a single network model to optimize parameters. When using a dataset with
continuous parameters for training, the increased complexity of the dataset often limits
these parameters to the diameters of the meta-atoms’ nanopillars, which restricts the
optimization scope and effectiveness. Additionally, the optimized structural parameters
are often not compatible with conventional fabrication techniques. To increase the range of
optimizable parameters, for example, by varying the position of the nanopillars within the
meta-atoms, datasets with only preset discrete values are often used for training. However,
the lack of data between these discrete values leads to calculation errors in the continuous
gradient, which negatively impacts the optimization outcome.

Here, we use multiple Prediction Neural Network (PNN) models to independently
optimize different parameters, with each model learning the continuous dataset for its re-
spective parameters. This strategy improves gradient accuracy and enables optimization of
additional parameters. The optimization process is divided into coarse and fine adjustment
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stages and combined with discretization methods to stay within the range compatible with
fabrication requirements.

As an example of application, we optimize a meta-hologram to suppress its zero-order
energy. Compared to traditional holograms, meta-holograms offer smaller device sizes,
wider Field of View (FoV) and higher efficiency, making them more suitable for applications
in information storage [37–39] and optical encryption [40,41]. However, their imaging
quality is often degraded by the zero-order component [5,34]. Theoretically, the zero-order
component vanishes in an ideal phase hologram, but in practice it arises from two main
factors: ideal phase deviation caused by nonlocal interactions between meta-atoms and
variations in their transmittance. Although neural networks have been applied to the design
of meta-holograms [42], previous models are typically trained on meta-atom libraries and
neglect the influence of nonlocal interactions. In contrast, our method effectively reduces
the impact of nonlocal effects, enabling improved hologram performance.

Our optimization strategy is divided into two stages. In the first stage, the diameters
of the nanopillars are optimized with their positions fixed at the center of the meta-atoms.
In the second stage, the positions of the nanopillars are optimized within a predefined
range, but their diameters are fixed according to the previous optimization. The process for
each optimization stage follows the flowchart shown in Figure 1a. Here, the conventional
design based on the meta-atoms library (neglecting nonlocal interactions) is used to quickly
generate an initial structure. And then, our method optimizes this initial structure by ma-
nipulating its actual complex amplitude response under nonlocal interactions. To predict
the response of meta-atoms under nonlocal interactions, we use a sliding window to decom-
pose the metasurface structure into macrocells [27,28]. The complex amplitude response of
the central meta-atom is obtained by simulating a macrocell containing both the central
and neighboring meta-atoms (as shown in Figure 1b, crystalline silicon (c-Si) nanopillars
on a sapphire substrate are used as meta-atoms). To balance accuracy and efficiency, the
macrocell size is set to 9 × 9 meta-atoms (for more details on meta-atom and macrocell
design, see Appendix A). This approach allows any metasurface to be decomposed into a
series of macrocells, simplifying prediction and optimization via neural networks.

 

Figure 1. Illustration of the optimization method and the macrocell. (a) Illustration of the neural
network-based multi-stage gradient optimization method. (b) Schematic of the macrocell, where the
central meta-atom is influenced by neighboring meta-atoms. Inset, the optimized parameters of a c-Si
nanopillar within the meta-atom.

A major design challenge is that each optimization iteration requires simulating mil-
lions of macrocells to obtain the complex amplitude of a macroscopic metasurface. Thus,
traditional numerical simulation methods, such as the Finite Difference Time Domain
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(FDTD) method, become prohibitively time-consuming. Here, we show that PNN is an
efficient and practical tool to overcome this challenge. In the first optimization stage, the
Prediction Neural Network for Diameter (PNN-D) is used to obtain the complex amplitude
of metasurfaces with nanopillars of arbitrary diameters at the center of the meta-atoms. In
the second optimization stage, the Prediction Neural Network for Position (PNN-P) is used
to obtain the complex amplitude of metasurfaces with nanopillars at arbitrary positions and
preset discrete diameters. As shown in Figure 2, for these two networks, 24,000 macrocells
were simulated for training and 3000 for testing, by using x-polarized sources. Periodic
boundaries were applied, and due to translational symmetry, 81 macrocells were simu-
lated simultaneously in each run, expanding the dataset to 1.94 million instances. Both
networks consist of five convolutional layers and four fully connected layers (more details
in Appendix B). Implemented in PyTorch (version 1.7.1), the networks used Mean Absolute
Error (MAE) as the loss function and the Adaptive Moment Estimation (Adam) optimizer.
PNN-D was trained for 30,000 epochs, achieving errors of 0.0887 on the training set and
0.1023 on the test set. PNN-P was trained for 60,000 epochs, with errors of 0.0782 and 0.0791
on the training and test sets, respectively.

 

Figure 2. Illustration of network architecture and training process. The loss curves for the training set
(blue curve) and test set (red curve) during the training process, along with the network architecture
of the PNN-D and PNN-P.

The Figure of Merit (FoM) is then calculated using the predicted complex amplitude
distribution and the target complex amplitude distribution of the metasurface structure
under x- and y-polarized incident light. The corresponding definitions of the target com-
plex amplitude distribution can be found in Appendix C. The FoM for x- or y-polarized
incident light quantifies the difference between the predicted and target complex amplitude
distributions, as defined by:

FoMx =
1
n

n

∑
i=1

∣∣∣Ax,pred,i exp(jφx,pred,i)− Ax,tar,i exp(jφx,tar,i)
∣∣∣ (1)

FoMy =
1
n

n

∑
i=1

∣∣∣Ay,pred,i exp(jφy,pred,i)− Ay,tar,i exp(jφy,tar,i)
∣∣∣ (2)

Here, n represents the number of the meta-atoms, |·| denotes the magnitude of the
difference between complex amplitudes, Apred and φpred correspond to the amplitude and
phase of the predicted distribution, and Atar and φtar correspond to the target distribution.
The overall FoM is calculated from the FoMx and FoMy. The smaller the FoM is, the closer
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the complex amplitude distribution of the predicted structure is to the target complex
amplitude distribution.

FoM =

√
FoM2

x+FoM2
y

2
(3)

Finally, the gradient optimization is either continued to optimize the structural parame-
ters using the backpropagation algorithm or terminated, depending on whether the number
of iterations reaches the preset value or the FoM meets the termination condition. In the
backpropagation algorithm, the differentiable pipeline from the optimization parameters to
the FoM allows us to calculate the gradient of each nanopillar parameter with respect to the
FoM. We then use the Adam optimizer, a gradient descent method, to obtain the optimized
structural parameters. Discretization functions (see Appendix D for more details) are then
applied to adjust the parameters for subsequent optimization iterations. The parameters of
the final optimized structure can thereby meet the discretization requirements.

3. Result
We design and optimize the meta-hologram with a 1000 × 1000 pixel resolution

and a structural size of 350 µm × 350 µm, at the operating wavelength of 800 nm. The
Fourier holographic phase map is calculated from the target image using the Iterative
Fourier transform algorithm [43], and the initial meta-hologram is obtained through the
conventional meta-atoms library. It features eight fixed values for the diameter of 500 nm
high nanopillars, ranging from 126 nm to 224 nm, arranged in a meta-atom with a 350 nm
period (see meta-atom parameters in Appendix A). To simplify experimental fabrication,
the final optimized structure retains nanopillars with eight fixed discretized diameters
and a 9 nm step size in their positions. The diameters are identical to those used in the
phase matching method, while ensuring a minimum interval of more than 50 nm between
nanopillars. Considering these factors, the optimization of the diameter D ranges from
100 nm to 240 nm, and the position parameters ∆x and ∆y range from −36 nm to +36 nm.

Due to the difficulty of simulating the large-scale metasurfaces, we use the prediction
results from the PNN-P to obtain the complex amplitude of the metasurfaces. Then, we
apply the Fast Fourier Transform (FFT) to simulate the hologram intensity distribution
in the k-space. In Appendix E, we verify on a smaller meta-hologram with a size of
87.5 µm × 87.5 µm that the prediction results from the PNN-P closely match the simulation
results from the FDTD method from Ansys, Inc. Furthermore, as shown in Appendix E,
due to nonlocal interactions between meta-atoms and variations in their transmittance, the
complex amplitude distribution of the ideal phase hologram without zero-order energy
differs significantly from the simulated results of the original metasurfaces. In our method,
we directly optimize the structure by fine-tuning the meta-atoms with the explicit goal
of suppressing the zero-order energy. The optimization of the structural parameters may
significantly affect the internal modes of the nanopillars and the nonlocal interactions
between them (more details in Appendix I). As a result, the complex amplitude distribution
of the optimized structure more closely resembles that of the original metasurface rather
than the ideal hologram, while still achieving effective zero-order suppression.

The simulation of the initial structure reveals a prominent zero-order component
in k-space, significantly brighter than the image area, as shown in Figure 3a. Then, the
neural network-based multi-stage gradient optimization is performed (Figure 3b). The two
optimization stages are terminated upon completing the 600 iterations for optimizing the
diameter and position, and the FoM reaches 6.6×10−4. Comparison between the intensity
distribution in the k-space of the optimized structure and that of the original reveals that
the zero-order component is significantly reduced, as shown in Figure 3c. The proportion of
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zero-order energy decreases to 26% of its original value (Figure 3d), effectively improving
the imaging quality by minimizing the zero-order energy.

Figure 3. Optimization results of the meta-holograms. (a) Simulated hologram intensity distribution
of the metasurface structure using the phase matching method in the k-space. (b) FoM during
the optimization process with eight fixed values for the nanopillar diameter and a 9 nm step size
for the nanopillar positions. The iterations for diameter optimization are shown as blue dots, and
the iterations of position optimization are shown as red dots. (c) Simulated hologram intensity
distribution of the optimized metasurface structure in the k-space. (d) Hologram intensity distribution
along kx = 0 in the (a,c). Inset shows the ideal reconstructed image of the meta-holograms.

By using this method, many meta-atoms and complex wavefront distributions can
be designed with relatively little computational time, even less than the simulation time
required for the entire metasurface in FDTD (more details in Appendix F). It is worth
noting that, during the optimization process, if the position step size is changed to a stricter
requirement of 1 nm for fabrication, then the obtained optimization results are similar, as
shown in Appendix G.

SEM (Zeiss Auriga) micrographs of the structure of size 350 µm × 350 µm and fabri-
cated using electron beam lithography are shown in Figure 4a. To minimize the impact of
incident light outside the structure, a square aperture diaphragm of 350 µm is used, aligned
and fixed with the metasurface.
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Figure 4. Experimental results of the meta-holograms. (a) The SEM of the metasurface structure.
(b) The captured hologram intensity distribution before and after optimization under 800 nm inci-
dent light.

The imaging optical setup is used to capture the hologram intensity distribution of the
meta-holograms with an 800 nm laser light source. The power of the zero-order light is
obtained by measuring the intensity within a circle of diameter 3 × FWHM of the zero-order
light in the CMOS imaging plane. The proportion of zero-order energy after optimization
is reduced to 57% of its initial value in the experiment (more details in Appendix H),
compared to 26% in the simulation. This discrepancy is mainly attributed to fabrication
errors, which are not accounted for in the optimization process. Specifically, deviations in
the diameters of the nanopillars have a significant influence on the zero-order component,
as shown in Appendix J. As shown in Figure 4b, the zero-order over-exposure area in the
hologram intensity distribution of the original structure is significantly larger than in the
optimized structure, thus leading to a more pronounced impact on the image quality.

4. Discussion and Conclusions
In conclusion, we propose a neural network-based multi-stage gradient optimization

method that takes the ideal performance of the metasurface as the optimization target.
This approach enables efficient modulation of nonlocal interactions, thereby significantly
enhancing the overall performance of the metasurface. This multi-stage optimization
strategy, using multiple network models, resolves the trade-off between gradient calculation
accuracy and the number of optimized parameters. Additionally, discretization ensures that
the optimized parameters meet preset fabrication requirements. Together, these features
provide a practical and fast approach for optimizing large-scale metasurfaces.
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Through simulations and experiments, we applied this method to suppress the zero-
order component of meta-holograms by optimizing the complex amplitude of the meta-
atoms considering nonlocal interactions. We showed a theoretical zero-order energy reduc-
tion to 26% of its original value, and the intensity dropped to the same level as the image
area. Experimentally, the zero-order energy was reduced to 57%. To reduce the discrepancy
between the experimental and theoretical results, the method’s robustness can be enhanced
by incorporating error-aware training or robustness strategies [19]. This approach may
reduce the impact of fabrication errors on the optimized structure, making the optimization
method more practical for real-world applications. Unlike other methods [5,34,36], our
approach adjusts the diameters and positions of nanopillars within the meta-atoms, without
additional optical components or restrictions on phase units. This makes ours a versatile
method to control nonlocal interactions, enabling efficient applications of metasurfaces
with intricate complex-amplitude designs. To further test the generality of our method,
we used it to optimize a beam deflector and improve its deflection efficiency (more details
in Appendix I). By extending the network to predict the complex amplitudes for multiple
wavelengths and different polarization components, our method can be applied to the
regulation of complex polarization distributions and broad-spectrum responses in imag-
ing, sensing, and communication, like polarization converters or achromatic metalenses.
Moreover, by integrating it with differentiable computational processes, like diffraction
calculations [31], more applications with complex light field distributions can be realized,
like multi-focus [44] or multi-topological beam focusing [45].
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Appendix A. The Design of Meta-Atoms and Macrocell
We construct a meta-atoms library consisting of 500 nm high c-Si nanopillars on a

sapphire substrate, arranged with a 350 nm period for an 800 nm incident light, as shown
in Figure A1. The sapphire substrate has a refractive index of 1.76 (and no absorption),
while crystalline silicon has a refractive index of 3.69 and an extinction coefficient of 0.006.
We note that crystalline silicon on sapphire has been used for full-color imaging in the
visible range with high performance [46]. We simulate meta-atoms with different diameters
in Ansys FDTD, setting periodic boundary conditions and an x-polarized plane incident
source. Eight nanopillars with diameters ranging from 126 nm to 224 nm are selected,
and the lowest transmittance among the selected nanopillars exceeds 80%, as detailed in
Table A1.
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Figure A1. The phase (blue dots) and transmittance (red dots) of the selected eight nanopillars, along
with the phase (blue line) and transmittance (red line) of the meta-atoms library under periodic
boundary conditions.

Table A1. Transmittance and phase of the eight selected nanopillars.

Diameter (nm) 126 146 156 166 174 182 198 224

Phase (rad) −5π/8 −3π/8 −π/8 π/8 3π/8 5π/8 7π/8 −7π/8

Transmittance 0.98 0.93 0.85 0.82 0.85 0.90 0.91 0.93

For the macrocell, a point monitor is positioned 200 nm above the structure to record
the complex amplitude response of the central meta-atom. Meta-atoms outside the macro-
cell area have minimal influence on the central meta-atom; hence, periodic boundary
conditions are applied in the macrocell simulation. During the decomposition of the meta-
surface into macrocells, the metasurface is treated as a periodic structure, allowing empty
regions of the macrocells at the edges of the metasurface to be filled with meta-atoms from
the adjacent period.

Appendix B. Neural Network Architecture
The neural networks, PNN-D and PNN-P, feature a structure consisting of five con-

volutional layers (Conv) followed by four fully connected layers (FC). This architecture is
designed to predict the real and imaginary components of the complex amplitude response.
To enhance the generalization ability of the networks, we employ batch normalization
layers and dropout layers. However, the inputs of these networks are different. For PNN-D,
since only the diameter of the nanopillar is used as input, the size of the input tensor is
9 × 9 × 1; in PNN-P, however, both the diameter and position of the nanopillar are used as
inputs. Therefore, the size of the input tensor is expanded to 9 × 9 × 3. Detailed parameters
are provided in Figure A2.
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Figure A2. The neural network architecture for PNN-D and PNN-P.

Appendix C. The Definition of the Target Complex Amplitude
Distribution

For x-polarized incident light, the complex amplitude is directly predicted by the
networks. For y-polarized incident light, the macrocell is first rotated by 90 degrees before
prediction, as shown in Figure A3. As shown in Figure A4, after applying the Fast Fourier
Transform (FFT), the spatial spectrum amplitude distribution in the k-space is modified
by replacing the image area with the meta-hologram image from the initial structure but
without the zero-order component, constructing the desired spatial spectrum amplitude
distribution. The Inverse Fast Fourier Transform (IFFT) is then used to calculate and update
the target complex amplitude distribution in each iteration.

 
Figure A3. The simulation result of the structure under y-polarized incidence (left), and that of the
structure rotated by 90◦ under x-polarized incidence (right).
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Figure A4. Flowchart illustrating the target complex amplitude calculation process.

Appendix D. The Definition of Discretization Functions
To achieve a final optimized structure retaining nanopillars with eight fixed discretized

diameters, identical to those used in the phase matching method, we design discretization
functions based on the sigmoid function. The eight fixed discretized diameters are normal-
ized to the range [0, 1] using min–max normalization within the optimization range of 100
nm to 240 nm, as shown in Table A2. For the n-th iteration in the diameter optimization
stage, the discretization function is defined as:

D(d) =


d mod(n, 40) ̸= 0

b1 −
a1

2
+

k−1
∑

i=1

ai

1 + exp[−βd(d − bi)/ai]
mod(n, 40) = 0

, (A1)

where mod(·) means the remainder, d is the set of the optimized diameters of the nanopillars
after applying the gradient descent method, D is the set of diameters for subsequent
optimization iterations, k represents the number of preset discrete diameters, βd represents
the binary coefficient, and ai and bi are the difference and the average of two adjacent
normalized diameters (Table A2). Here, βd increases gradually during the optimization
process to ensure convergence of the optimized diameters to discrete values.

βd = 10 × 1.5⌊n/40⌋, (A2)

where ⌊ ⌋ means rounding downwards.

Table A2. Preset discrete values for diameter optimization.

Diameter (nm) 126 146 156 166 174 182 198 224

Normalized diameter 0.186 0.329 0.400 0.471 0.529 0.586 0.700 0.886

ai 0.143 0.071 0.071 0.057 0.057 0.114 0.186

bi 0.257 0.364 0.436 0.500 0.557 0.643 0.793
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Similarly, the nanopillar positions are normalized to the range [−1, 1] using min–max
normalization within the optimization range of −36 nm to 36 nm, as shown in Table A3. For
the n-th iteration in position optimization stage, the discretization function is defined as:

∆X(∆x) =


∆x mod(n, 20) ̸= 0

f1 −
e1

2
+

j−1
∑

i=1

fi
1 + exp[−βp(∆x − fi)/ei]

mod(n, 20) = 0
, (A3)

∆Y(∆y) =


∆y mod(n, 20) ̸= 0

f1 −
e1

2
+

j−1
∑

i=1

fi

1 + exp[−βp(∆y − fi)/ei]
mod(n, 20) = 0

(A4)

where ∆x and ∆y are the optimized positions of the nanopillars after applying the gradient
descent method, ∆X and ∆Y are the sets of positions for subsequent optimization iterations,
j represents the number of preset discrete positions, βp is the binary coefficient, set as
10 × 1.515, and ei and fi represent the difference and the average of two adjacent normalized
positions, as shown in Table A3.

Table A3. Preset discrete values for position optimization.

Position (nm) −36 −27 −18 −9 0 9 18 27 36

Normalized position −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

ei 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

fi −0.875 −0.625 −0.375 −0.125 0.125 0.375 0.625 0.875

Appendix E. Prediction Results Compared with Simulation Results
We design and optimize a meta-hologram with a resolution of 250 × 250 pixels and a

structural size of 87.5 µm × 87.5 µm. The optimization process and settings are the same as
those used for the 350 µm × 350 µm metasurfaces described in the main text. The final FoM
is 7.42×10−4. We use the PNN-P to predict and FDTD to simulate the complex amplitude of
the metasurfaces. In FDTD, we set the Perfectly Matched Layer (PML) boundary conditions
and a 45◦ linearly polarized plane source, as shown in Figure A7. Then, we apply FFT to
simulate the corresponding hologram intensity distribution. As shown in Figure A5, the
results from both methods are similar. What is more, as shown in Figure A8, with the same
maximum intensity scale, the hologram intensity distribution of the original structure is
similar to that of the optimized structure, except for the zero-order component.
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Figure A5. Optimization results of the meta-holograms. (a) Simulated hologram intensity distribution
of the metasurface structure using the phase matching method in the k-space by FDTD and FFT.
(b) FoM during the optimization process with eight fixed values for the nanopillar diameter and a
9 nm step size for the nanopillar positions. The iterations for diameter optimization are shown as
blue dots, and the iterations of position optimization are shown as red dots. (c) Simulated hologram
intensity distribution of the optimized metasurface structure in the k-space by FDTD and FFT.
(d) Predicted hologram intensity distribution of the optimized metasurface structure in the k-space
by PNN-P and FFT. (e) Hologram intensity distribution along kx = 0 in the (a,c,d). Inset shows the
ideal reconstructed image of the meta-holograms.
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Figure A6. The complex amplitude distribution of different results. (a) Ideal phase hologram.
(b) Original structure in FDTD. (c) Optimized structure in FDTD.

 
Figure A7. The illustration of the simulation settings.

Figure A8. Simulated hologram intensity distributions of the original and the optimized metasurface
structures in the k-space by FDTD and FFT with the same maximum intensity scale.
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Appendix F. Calculation Time Efficiency
We collect the dataset on a dual-CPU server equipped with two 28-core Intel Xeon

Platinum 8176 processors from Intel, Santa Clara, CA, USA, over nearly 20 days. The neural
network models are trained on a GPU server equipped with an NVIDIA RTX 3080Ti„ from
NVIDIA, Santa Clara, CA, USA, with each model requiring approximately 8 h for training.
Optimization of two meta-holograms with different sizes is performed on the GPU server,
while FDTD simulations for the final optimized structures are executed on the CPU server.
However, due to the significant computational resource demands and challenges in loading
the largest structure into the simulation environment, the large structure could not be
simulated via FDTD on our server. The times spent on optimization and simulation for
each structure are listed in Table A4.

Table A4. Optimization and simulation times for optimized meta-hologram structures of differ-
ent sizes.

Structure Size
(µm × µm) Number of Pixels Optimization Time

(mins)
Simulation Time

(mins)

87.5 × 87.5 250 × 250 52 600
350 × 350 1000 × 1000 227 ---

Appendix G. Optimization with Eight Fixed Values for the Nanopillar
Diameter and a 1 nm Step Size for the Nanopillar Positions

As shown in Figure A9, reducing the step size from 9 nm (Figure A5) to 1 nm does
not significantly affect the optimization results. The intensity of the zero-order component
becomes nearly identical to that of the image area, with noise making it indistinguishable.
The FoM corresponding to the 1 nm step size was approximately 9.46 × 10−5. The results
indicate that although a smaller FoM means better optimization results, the effect of zero-
order suppression is already sufficient when the FoM is ~10−4.

 

Figure A9. Optimization result of the meta-hologram with size of 87.5 µm. (a) FoM during the
optimization process with eight fixed values for the nanopillar diameter and a 1 nm step size for the
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nanopillar positions. The iterations for diameter optimization are shown as blue dots, and the itera-
tions of position optimization are shown as red dots. (b) Simulated hologram intensity distribution
of the optimized metasurfaces structure in the k-space. (c) Hologram intensity distribution along
kx = 0 in the (b) and Figure A5a.

Appendix H. The Fabrication Process and the Optical Measurement
The sample is fabricated on a commercially available Silicon on Sapphire (SOS) wafer

with a 500 nm thick c-Si film. A 220 nm thick hydrogen silsequioxane (HSQ) electron beam
resist is spin-coated onto the film, followed by a 30 nm thick aluminum layer deposited
using a thermal evaporator. Electron beam lithography (Raith Vistec EBPG 5000+, from
Raith, Dortmund, Germany) is used to define the structure. After removing the aluminum
mask and developing the resist, inductively coupled plasma etching (PlasmaPro System
100 ICP180, from Oxford Instruments, Oxford, UK) transfers the pattern from the resist to
the silicon layer. Finally, the remaining HSQ resist is removed using hydrofluoric acid.

The imaging optical setup, shown in Figure A10, includes an 800 nm laser for incident
light and a CMOS (Kiralux CS895CU, from Throlabs, Newton, NJ, USA) from Thorlabs to
capture the image. In both the original structure and the optimized structure, the CMOS
images do not exhibit overexposure, and the exposure settings are the same, as shown in
Figure A11.

 

Figure A10. Schematic of the optical setups for capturing the reconstructed image.

 

Figure A11. The experimental results of the meta-holograms without overexposure. The captured
hologram intensity distribution of the (a) original structure and (b) optimized structure on a logarith-
mic scale. The hologram intensity distribution along (c) the horizontal and (d) vertical direction.
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Appendix I. Optimization of Beam Deflector and Nonlocal Interactions
To further test the generality of our optimization method, we optimize a beam de-

flector composed of four nanopillars. Through the phase matching method, we select
four appropriate nanopillars from Table A1 as the original structure. We optimize the
diameters of the nanopillars and ignore the discretization constraints. The optimization
objective is to maximize the +1st order intensity of the complex amplitude distribution of
the deflector predicted by the network, PNN-D. The diameters of the nanopillars before
and after optimization are shown in Table A5. The original and the optimized deflectors are
simulated in FDTD, with periodic boundary conditions and an x-polarized plane incident
source set up. The phase distribution of the Ex component on the xz plane and the far-field
intensity distribution are shown in Figure A12. The optimized beam deflector features
a smoother wavefront, which means higher deflection efficiency, increasing from 33.1%
to 68.4%. The electric field amplitude distributions inside the deflectors before and after
optimization are shown in Figures A13a and A13b, respectively. The near-field coupling is
manifested as a field distribution overlapping two (or more) nanopillars. For nanopillars
with smaller sizes, the electric field distribution outside the nanopillars is more pronounced,
which enhances near-field coupling. The effect of optimization can be seen by inspection of
the fields in Figure A13a,b: there is less field overlap between adjacent nanopillars in the
optimized structure (Figure A13b) than in the non-optimized structure (Figure A13a).

Table A5. The diameters of nanopillars in the original and the optimized beam deflectors.

Diameter (nm)
Original 166 182 224 146

Optimized 167 188 226 151

 
Figure A12. The simulation results of the (a) original and the (b) optimized beam deflectors. The left
side is the phase distribution of the Ex component; the right side is the far-field intensity distribution.
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Figure A13. The electric field amplitude distributions of the (a) original and the (b) optimized beam
deflectors in xz plane.

Appendix J. Influence of Diameter Deviations
Based on the optimized structure in Appendix E, we increase or decrease the diameters

of all nanopillars by 2 nm to evaluate the influence of diameter deviations on the zero-
order component. As shown in Figure A14, the zero-order component of the structure
significantly increases from 26% to 64%, which means the optimized structure is sensitive
to the deviations of the structural parameters.

 
Figure A14. The simulation results of the optimized meta-holograms with diameter deviations.
(a) Simulated hologram intensity distribution in the k-space of the metasurface structure after
increasing the nanopillar diameter by 2 nm. (b) Simulated hologram intensity distribution in the
k-space of the metasurface structure after decreasing the nanopillar diameter by 2 nm. (c) Hologram
intensity distribution along kx = 0 in (a), (b) and Figure A5a.
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Appendix K. Influence of Smaller Dataset
We tested the influence of smaller datasets, i.e., 970k and 485k samples, on our network

model. As shown in Figure A15, smaller datasets lead to overfitting, which means that
the network performs well on the training dataset but poorly on the new data from the
test dataset.

 

Figure A15. The loss curves for the training set (blue curve) and test set (red curve) during the
training process for different datasets, (a) 970k samples and (b) 485k samples.
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