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Abstract
It is well established that the provision of explanations can posi-
tively impact the effectiveness of a recommender system. In many
proposals in the literature, these explanations are personalized in
that they refer to a user’s known individual preferences. Some re-
cent works, however, also indicate that personalization should also
happen at a higher level, where the system, in a first step, decides in
which specific way an explanation should be provided, depending,
for example, on the user’s expertise. In this research, we take the
first steps towards personality-aware explanations by exploring
how users perceive explanations tailored to reflect the Big Five
personality traits. To this purpose, we leverage the capabilities of
modern Generative AI tools to create personality-based explana-
tions at scale in the context of a music recommendation scenario. A
linguistic analysis of the generated explanations confirms that they
properly reflect expected language patterns associated with individ-
ual personality traits. Furthermore, a user study shows that users
tend to prefer certain linguistic framings over others, for example,
explanations that reflect low-neuroticism patterns. In addition, we
find that some explanation forms are more effective than others
regarding persuasiveness and perceived overall quality.
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1 Introduction
Recommender systems can benefit in various ways from being
able to explain their suggestions to users [21, 42, 46]. Accordingly,
a number of explanation approaches have been put forward in
the literature [15, 34, 36]. Many of these approaches are based
on personalizing the provided explanatory information [41]. For
example, instead of informing the user that a given item is popular
in general, various approaches relate user preferences with item
features (e.g., “because you like action movies” ) [4, 8, 44].

Recent works indicate that it can also be beneficial to apply
personalization at a higher level [2], because not every way of ex-
plaining a recommendation may be equally suited for every user.
Some users might prefer more detailed explanations, while oth-
ers like concise explanations [9, 18]. Similarly, some users might
prefer textual explanations over visual ones and vice versa [25].
An influential study by Millecamp et al. [30] actually revealed that
personal characteristics like need for cognition or domain expertise
may impact the perceived benefit of explanations. Furthermore, in
a recent work, Fatahi et al. [13] found that people with different
personality traits are receptive to different persuasive explanatory
messages provided by the system.

In the work by Fatahi et al. [13], the user perception of a pre-
defined set of persuasive messages was analyzed. These messages
implement established persuasive strategies from the literature [10].
In our present work, we wonder how users would perceive expla-
nations if they were written in the linguistic style associated with
specific personality traits. For example, an explanation designed
to match characteristics of high Openness might highlight unique
or imaginative aspects of a recommended item. In contrast, an
explanation reflecting Conscientiousness might adopt a more struc-
tured tone and emphasize technical or practical details. Rather than
tailoring explanations to individual users’ personalities, we focus
on how people respond to different trait-aligned framings of the
recommendation.

The long-term goal of our research is to develop design guide-
lines for explanations that consider the personality traits of individ-
ual users, analogously to what has been done in [13]. As a first step
towards this goal, we investigate to what extent modern Generative
AI technology—in our case in the form of ChatGPT—allows us to
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generate textual explanations for different personality traits at scale.
As an application use case, we focus on music recommendation, an
important application area of personality-aware systems [12]. To
study ChatGPT’s capabilities to generate personality-trait aware
explanations, we engineered appropriate prompts and performed a
linguistic analysis, which confirmed that the explanations matched
the linguistic patterns that one would expect according to the Big
Five personality model [17]. Furthermore, we conducted a user
study involving N=348 users to gauge the perception of such ex-
planations. The study revealed that not all types of explanations
are equally preferred by the users and that the quality assessment
of the explanations also varied. As a result, our study provides us
with the first important insights regarding our longer-term goal of
personality-aware explanations for recommender systems.

The paper is organized as follows. We discuss previous work
next in Section 2. Section 3 describes our methodology, and in
Section 4 we present our results. The paper closes with a discussion
of research limitations and future work.

2 Previous Work
The literature on explainable recommendations is generally rich,
and we refer readers to existing surveys in this area [21, 42, 46].
Here, we highlight selected recent studies that are closely related
to our work.

Silva et al. [39] used ChatGPT to generate both recommenda-
tions and corresponding explanations for users, and they compare
personalized and generic explanations in terms of perceived per-
sonalization, persuasiveness, and effectiveness. While personalized
recommendations led to higher user satisfaction, personalizing the
explanations of the recommended items had no measurable effect
on the studied user perceptions, including the perceived level of
personalization. A related observation was made earlier by Balog
and Radlinski [5], who found that ‘neutral’ (non-personalized) ex-
planations “performed particularly well” in their study that aimed to
investigate quality perceptions of different forms of goal-oriented
explanations. While our work also focuses on user perceptions of
different types of explanations, we differ from [5, 39] in that our goal
is to investigate the feasibility and perception of personality-aware
explanations.

The work by Matz et al. [28] is very close to ours, as they also
explore the capability of ChatGPT to generate psychologically-
tailored messages to users at scale based on the Big Five personal-
ity framework. Overall, several studies found that the generated
personalized messages exhibited more influence on users than
non-personalized ones. The focus of their work, however, is on
persuasion—encouraging behaviors in domains such as marketing,
health, and politics, whereas we study the perception of explana-
tions in the context of recommender systems. Furthermore, unlike
our work, Matz et al. [28] did not perform a lexical analysis to
verify whether the generated content reflects personality-specific
linguistic patterns.

Regarding further related works, Li et al. [27] also rely on Gen-
erative AI, in their case building on a GPT-based model, to create
explanations in natural language in an automated way based on
prompt learning. Unlike our work, however, the generated explana-
tions mostly revolve around item features and are not tailored to be

personality-aware. Fatahi et al. [13], as mentioned above, assess the
effectiveness of a fixed set of persuasion strategies depending on
user personalities. Like our study, they rely on the music domain
and the Big Five model, but the focus, similarly to [28], is on persua-
sion (see also [3, 13, 16, 23]), and differently from our work they do
not rely on Generative AI to create personality-aware explanations.
In a very recent work, Noughabi et al. [33] follow similar ideas
as [13], exploring the effectiveness of predefined personality-based
explanations with the goal of persuasion.

The work by Millecamp et al. [30] also targets the music do-
main, and they study how personal characteristics may affect the
perception of explanations. Their user study concluded that these
characteristics should be considered when designing explanations.
Instead of personality traits, they consider different personal factors
such as musical experience or visualization literacy. The primary
focus of the work by Berkovsky et al. [7] is how content selection
for explanations impacts the users’ trust in the system, but they also
study whether trust depends on user personality traits. However,
the consideration of personality traits is quite different from our
work, where our goal is to explore ways to make the explanation
content itself personality-aware.

Finally, we note that our user study concentrates on recommen-
dations in the music domain. In this area, the user personality traits
seem particularly important [12] and are correlated with the users’
preferred genres or song features [6, 14, 25, 29].

3 Methodology
We recall the two main research questions that we seek to answer
in this first step towards enabling personality-aware explanations
in recommender systems:
RQ1: Can ChatGPT generate explanations that reflect the expected

language patterns associated with specific personality traits
when prompted accordingly?

RQ2: How do users perceive explanations of different types in
dimensions such as quality and persuasiveness?

3.1 Generating and Assessing Explanations
Prompt Engineering Approach. We followed an iterative approach

to prompt engineering, considering the outputs of multiple LLMs
(ChatGPT, Gemini, LLaMA) during the process1 to evaluate their
ability to generate distinct explanations. Ultimately, we relied on
ChatGPT-4o, which was prompted to create five alternative explana-
tions for a given song2, each matching one of the five psychological
traits of the Big Five model [22] (Openness, Conscientiousness,
Extraversion, Agreeableness, Neuroticism). For each given trait, a
prompt was created that described behavioral characteristics asso-
ciated with the trait (e.g., “talkative”, “assertive” for extroversion).
Furthermore, the prompt instructed ChatGPT to exclude the song ti-
tle and artist name and to avoid directly mentioning the personality
terms in the explanation. The prompt for the extroversion-oriented
explanation reads as follows3.
1The model outputs were manually verified to ensure linguistic plausibility, internal
coherence, and adherence to framing constraints.
2The set of available songs is determined by the dataset that we used in the subsequent
user study.
3Translated to English as the study was conducted in Portuguese; the word limit was
chosen to avoid cognitive overload during the user study.
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“Write an explanation of why <Song> by <Artist> would be a
good choice for someone who is extroverted and enthusiastic (that
is, sociable, assertive, talkative, active, NOT reserved or shy). Use
exactly 50 words, do not mention the song’s name or artists. Explain
why the sound is perfect for these personality traits without explicitly
mentioning words like extroverted, enthusiastic, sociable, assertive,
talkative, active.”

In addition to the five personality-based explanations, a feature-
based prompt and explanation served as the control condition, fo-
cusing on non-emotional song attributes such as rhythm, structure,
and instrumentation. To support reproducibility, all exact prompts
are publicly available in the online material.4

Assessment Approach. We performed a linguistic and statistical
analysis to determine if the central words in the generated explana-
tions correspond to concepts that one would find in the psychology
literature to describe a given personality trait [20, 26, 43]. For this
analysis, we first removed stop words from the text. Then, we
analyzed the word frequencies and found that a relatively small
fraction of the terms accounts for most of the observed term fre-
quencies. Following the Pareto principle, we focused on the top 20%
of terms by frequency and omitted the rest. This cleaning process
also contributes to the stability of the subsequent statistical tests.

Following the approach by Oakes and Farrow [35], we then ap-
plied a Chi-Squared test of independence to examine the association
between specific words in the explanations and the given personal-
ity traits. This test allowed us to determine whether the distribution
of words across trait-specific explanation sets differed significantly
from what would be expected. Standardized residuals were calcu-
lated to interpret the strength and direction of these associations.
To assess the lexical alignment with the psychology literature, we
developed an enriched trait lexicon by combining prior word lists
with an expanded set based on Goldberg’s Big Five markers [17]
and supplemented it with terms adapted from the psychology lit-
erature [22, 26, 40, 43]. Each top word was matched to a trait if its
stemmed form aligned with a lexicon term, and Precision, Recall,
and F1-scores were calculated to quantify the overall alignment
with established psychological descriptors5.

3.2 Assessing User Perceptions
To study user preferences and perceptions (RQ2), we designed a
within-subjects online experiment in which each participant was
shown six music recommendations in the form of ChatGPT-based
explanations. The six conditions consisted of five personality-based
explanations, each generated for a different trait, plus the explana-
tion solely based on song features. To answer RQ2, the participants
were instructed (a) to select their most preferred recommenda-
tion/explanation (Preference), a choice which directly determined
the song they would listen to on the following screen, thus allowing
us to observe actual user behavior, and (b) to answer a set of 5-point
Likert-scale questions regarding their preferences and behavioral
intentions. Specifically, for task (b), participants were asked for
each recommendation (i) if they would like to add the song to their

4https://github.com/personalities-and-explanations/RecSys25
5Top words were translated into English when necessary and stemmed using the
Porter stemmer to standardize word forms.

playlist (Persuasiveness), (ii) how they rate the quality of the recom-
mendation (Quality), and (iii) to what extent the recommendation
matches their musical taste (Accuracy)6.

Regarding the overall study workflow, participants first provided
their informed consent, which was developed in compliance with
the relevant national regulations. Then, they were asked to select
at least seven songs they liked from a pre-filtered list of songs re-
leased between 2000 and 2020. The collaborative filtering algorithm
SLIM [32] was then used to provide personalized recommendations.
These recommendations were shown as generated explanations
(without disclosing song or artist names) as described above. The
item-based SLIM model allowed us to generate personalized recom-
mendations for new users without model retraining. The explana-
tions were generated on the fly through OpenAI’s API. The order
of the explanations was randomized for each participant. Screen
captures of the user interface are provided in the online material,
along with a description of the song dataset used.

4 Results
In this section, we present and discuss the outcomes of our analyses.

4.1 RQ1: Feasibility of Personality-aware
Explanations At Scale

We processed 2,646 generated explanations as described in Sec-
tion 3.1, leading to a set of 188 most relevant terms. We recall that
we used a chi-squared (𝜒2) test to determine whether the observed
frequencies significantly varied across different personality-based
explanation types. The test revealed a high 𝜒2 statistic (50978.37,
p < 0.0001, df = 935), suggesting that certain words were more
strongly associated with specific traits than expected by chance.
Cramér’s V (0.43) suggests a moderate to strong association. Based
on the standardized residuals, we then identified those terms that
strongly contribute to the observed 𝜒2 statistic, and thus are the
most distinctive and representative of each personality trait7. For
each explanation type, approximately 35 to 40 words showed a
significant association. We provide all the lists of relevant terms
and the residuals in the online material.

Comparing these terms with how the different traits are de-
scribed in the psychology literature, as described in Section 3.1, we
find a strong alignment. For Openness, words such as exploration,
stimulate, imagination, and innovative reflect novelty-seeking and
cognitive flexibility, consistent with descriptors like curious, imagi-
native, and adventurous, achieving the highest F1-score within the
Openness trait words (F1 = 0.269). For Conscientiousness, terms
like focus, precision, and planning align with established markers
of organization and self-discipline (F1 = 0.137). Agreeableness was
reflected in emotionally warm terms like empathy, genuine, and
understanding (F1 = 0.152). Extroversion was characterized by high-
energy social terms such as interaction, vibrant, and movement (F1 =
0.111). Notably, Neuroticism showed a divergence. The most impor-
tant terms, including help, relief and comfort, reflected emotional
stability rather than distress, achieving the highest F1-score within
6The exact questions are provided in the online material. To not overload the study
participants, we limited ourselves to three central questions regarding recommendation
and explanation quality. For more comprehensive evaluation frameworks, we refer
readers to [24, 37].
7Residuals greater than 4 were considered to be strong contributors [1].
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the Low Neuroticism trait words (F1 = 0.286). Apparently, Chat-
GPT in these cases targeted low neuroticism, while in other cases
it personalized the explanations for the high condition of the trait.
We attribute this behavior to ChatGPT’s general tendency to avoid
language associated with negative affect.

Overall, our analysis provides solid empirical evidence suggest-
ing that generative AI approaches like ChatGPT can create personality-
aware explanations at scale (RQ1).

4.2 RQ2: User Preferences and Perceptions
We recruited N=348 study participants8 by inviting followers of a
social book review site. Most participants (87%) were female, and
73% were between 26 and 35 years old. On average, they took 15
minutes to complete the study.

Preference. As described in Section 3.2, study participants were
asked to select their single most preferred explanation. Figure 1
shows the observed distribution. A 𝜒2 goodness-of-fit test indicated
that the choices were not evenly distributed (p<0.001). Follow-
up pairwise 𝜒2 tests with Bonferroni correction revealed several
significant differences. Feature-based explanations were preferred
over ones that target conscientiousness, openness and extroversion.
Conscientiousness-oriented explanations were less preferred than
those focusing on agreeableness and neuroticism.

Figure 1: Distribution of user preference across explanation
types.

Given these observations, we can confirm that how recommen-
dations are explained in terms of user preference makes a differ-
ence. While neutral, feature-based explanations were preferred
most frequently, other forms of explaining were found compelling
by many participants as well. The relatively strong preference for
low neuroticism and weak preference for high conscientiousness
seem ‘natural’ for the music domain, where music is often used as a
means to steer emotions (neuroticism) [31, 38] and musical choice
is often not a highly planned activity (conscientiousness).

Persuasiveness. For each recommendation, participants rated
how likely they were to add the song to the playlist. The aver-
age responses for Persuasiveness, Quality, and Accuracy are shown
in Table 1. A repeated-measures Friedman test revealed a significant
difference in ratings across explanation types (𝜒2(5) = 45.05, p<.001).
8This is the set of participants who completed all necessary steps and passed an
attention check during the study.

Bonferroni-corrected post-hoc Wilcoxon tests point to a number of
significant pairwise differences. In line with the findings regarding
Preference, it was found that the conscientiousness-oriented expla-
nation was significantly less persuasive than all other explanation
forms except for the openness-oriented explanations, which were
also found to be of limited persuasiveness.

An example for a conscientiousness-based explanation reads as
follows: “With energetic beats and encouraging lyrics, the melody
inspires perseverance and resilience, promoting focus during difficult
moments. The electronic harmony is meticulously structured, reflect-
ing precision and care [...]”. Intuitively, an explanation like this may
only have persuasive potential when the listener is in a particular
situation requiring focus and attention.

Quality. The same statistical tests as for Persuasiveness were
applied also for the participants’ quality rating—on a scale from 1 to
5—of the provided explanations. Statistically significant differences
were observed when considering all groups (p<0.001). Like for
Persuasiveness, the conscientiousness-oriented explanations stood
out in a negative sense. Post-hoc tests revealed that the quality
rating for these explanations was significantly lower than for the
other explanations, except for openness-oriented explanations.

DV/Construct Open. Cons. Extra. Agree. Neuro. Feature

Persuasiveness 3.89 3.82 4.01 4.03 4.13 4.07
Quality 4.23 4.14 4.32 4.34 4.33 4.35
Accuracy 3.95 3.91 4.03 4.09 4.16 4.15

Table 1: Mean scores for each explanation type.

Accuracy. Regarding whether the provided recommendation/
explanation matched the user’s general taste, we again found sig-
nificant differences between the groups (p<0.001). Like the other
measurements regarding the users’ perception, the explanations
tailored for conscientiousness and openness stood out by often
being considered to be of limited match with past user preferences.
Notably, the differences between the conscientiousness-focused
explanations were found to be significantly less relevant than the
ones tailored for neuroticism (p<0.001) and agreeableness (p<0.01),
and the feature-based explanation (p<0.001).

We recall here that the underlying recommended songs, on aver-
age, were similarly relevant, as they were based on a collaborative
filtering algorithm and presented in a randomized order. As a result,
we find that in our study, the design of the explanation may impact
the perceived fit of a recommended item. Following [37], this may
negatively impact the system’s perceived usefulness and the users’
satisfaction and trust.

5 Summary & Outlook
In this work, we explore the feasibility of personalizing explanations
according to individual personality traits with the help of modern
Generative AI technology. A statistical and linguistic analysis of
personality-aware explanations suggests that tools like ChatGPT
could be a reliable basis to create such explanations at scale. In
the subsequent user study, we found that the different forms of
explaining recommendations in a personality-aware form impact
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the users’ perception of the explanations, and we also observed
that not all forms of explaining were equally preferred.

In the music domain, the focus of our study, conscientiousness-
oriented explanations might not be the best choice in general, even
though they might work well in a particular listening context, such
as podcasts. Notably, explanations aligned with low neuroticism
were more frequently selected. This result may be closely tied to the
emotional nature of music consumption, which is often driven by
mood regulation rather than structured decision-making [19, 38].

Prior work has shown that people frequently turn to music to
manage emotions [11]. This contrasts with conscientiousness, a
trait linked to planning, structure, and task completion [45]. In
our study, explanations reflecting this style emphasized order and
productivity. While such framing may be appreciated in domains
like education or productivity settings [47], music is usually emo-
tional, not goal-oriented. In contrast, low-neuroticism explanations
may offer users a sense of emotional stability, which aligns better
with how people use music. These observations suggest that when
designing explanations, it is important to consider not just the per-
sonality framing, but also the emotional and functional context in
which the recommendation is being delivered.

Regarding study limitations, we recall that our population of
study participants is biased towards females in a certain age range.
Furthermore, since our pool of participants was all recruited from
followers of a social book review platform, it has yet to be investi-
gated if the findings regarding user perceptions would generalize
to user groups with different profiles.

Overall, we see our work as a further step towards personality-
aware explanations in recommender systems. As a part of our future
research, our goal will be to study the connection between the per-
sonality traits of individual users and their preferences for certain
personality-tailored explanations. One might, for example, assume
that a highly open person might prefer explanations that emphasize
terms that are related to openness in the explanation. Whether this
is the true case and if it is thus possible to automatically select the
“best” explanation type for each user, still has to be explored.
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