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Abstract: Deep Learning models typically require large datasets to achieve high performance, which can
be challenging when applied to medical data due to the difficulty in acquiring sufficient observations, par-
ticularly when the data is imbalanced between categories like pathological and normal cases. To address
this, approaches like transfer learning, ensemble methods, and data augmentation through Generative Ad-
versarial Networks (GANs) can be utilized to improve classification tasks on small datasets. In situations
with imbalanced data, resampling techniques are also crucial. This research combines transfer learning
with resampling methods to boost the prediction accuracy of minority class samples in small, imbalanced
datasets. Additionally, techniques like data retracing and GAN-based augmentation are applied. The
dataset used includes small, imbalanced images of skin cancer, aimed at classifying them as malignant
or benign. The findings reveal that models using resampling techniques achieve better results, while those
without resampling underperform. This underscores the benefit of resampling in enhancing prediction,
particularly for the minority class. Furthermore, using GANs for data augmentation improves model
performance over those that do not incorporate this technique.
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Introduction

Convolutional Neural Networks (CNN) are models used to analyze images. But the
performance of these models can be affected by the number of observations, for example when
there are few observations available for training these models These models require a large
amount of data to perform well.

Several studies have been carried out with the aim of solving this problem. For example,
Nanni et al. (2022) et al present an ensemble with several activation functions for image classifi-
cation tasks with small data sets. Additionally, Saravanan et al. (2022) uses data augmentation
to augment the observations from the database used of brain tumors. Another widely used
approach is the use of transfer learning models, for example, Ju et al. (2022) propose a transfer
learning model to be used in a small database to identify defects in images.

Another approach that can be used as data augmentation is the generation of synthetic
data through Generative Adversarial Network (GAN), according to Chen et al. (2022) synthetic
medical images coming from a GAN can be used to supply the small number of images that make
up the most diverse medical image banks. Anjos et al. (2020) uses GAN to generate synthetic
data and after generation uses the data to diagnose lung cancer.

Recently models involving combinations of transfer learning models have been proposed,
Zheng et al. (2022) proposed a model using an Ensemble of Transfer Learning Models (ETCNN)
to classify mammography images, the authors also used data augmentation in the training set.
Vallabhajosyula et al. (2022) created an automatic detection model for detecting plant diseases,
using transfer models and using data augmentation in the training set.
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According to Hashemi et al. (2018) one of the biggest challenges in CNN training arises
when the data is unbalanced, which is common in many medical imaging applications, such as
lesion segmentation. Learning from an imbalanced data set presents a tricky problem in which
traditional learning algorithms perform poorly. Traditional classifiers usually aim to optimize
the overall accuracy without considering the relative distribution of each class Chakraborty and
Chakraborty (2020).

To solve the problem in unbalanced databases, resampling techniques can be used to bal-
ance the training database. For example, Roy et al. (2022) uses oversampling and undersampling
to balance the training set on a chest x-ray set to identify COVID-19.

This study aims to apply a new approach to improve the performance of CNN’s in small
unbalanced databases using transfer learning methods, ensemble, data augmentation with GAN
and resampling techniques (undersampling and oversampling).

This article is organized as follows: related work, the methodology and dataset, the
performance assessment and results, conclusions and information on future work are presented.

Related work

In the literature there are several works that use CNN’s to detect cancer or other diseases:
Alsaif et al. (2022) for detecting brain tumors, Samee et al. (2022) and Talatian Azad et al. (2022)
for detecting breast cancer and Alrashedy et al. (2022) for detection of COVID-19. These models
stand out in the area of image analysis for balanced databases and have provided scientific
advances in several areas of knowledge.

Several works have been proposed to solve the imbalance in small unbalanced databases.
The unequal (unbalanced) proportion of classes in image databases means that a CNN may have
difficulty in matching data from the class with the smallest number of observations. It is very
common to find medical data work that is unbalanced and some strategies are used to mitigate
this imbalance.

Many authors use resampling techniques such as oversampling and undersampling. Man-
junath et al. (2022) uses oversampling and undersampling to detect COVID-19 through X-rays.
Mukhin et al. (2022) propose a data balancing method for biomedical data using oversampling.
Ferreira and Suzuki (2024) explore the use of oversampling and undersampling combined with
Weighted Focal Loss in Extreme Gradient Boosting (XGBoost) to reduce expected misclassifi-
cation costs in credit scoring.

Another widely used approach is data augmentation, as CNN’s need large data sets.
Without the existence of many images in datasets, different deep learning models will not be
able to learn and produce accurate models (Khalifa et al., 2022). There are different types of
ways to augment data, for example, GANs have been widely used in computer vision for data
augmentation (Mirza and Osindero, 2014). According to Huang et al. (2020) these networks do
not require the data to follow any specific assumptions when modeling complex data, even with
some implicit distributions, being naturally suitable for the data generation task.

Several authors research the use of GANs for data augmentation, Dai et al. (2022) and
Lee and Park (2021) use data augmentation based on GANs to generate artificial data samples
for smaller classes. Ali-Gombe and Elyan (2019) propose a new data augmentation approach
using a GAN to deal with the class imbalance problem.

There are still works that use the combination of models and GANs, for example, Ding
et al. (2023) propose a hybrid structure (RGAN-EL) combining generative adversarial networks
and ensemble learning method to improve the performance of classifying unbalanced data.
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Huang et al. (2020) propose a new ensemble structure based on GANs and an effective
data cleaning way to solve the class imbalance problem for climate classification and they use the
combination of transfer learning models (ETCNNN) of learning and data augmentation based
on GAN, Chatterjee et al. (2022) make this use for the automatic classification of plastic bottles,
Baldine et al. (2024) for the classification of diseases in apple tree leaves, Bharathi Raja and
Selvi Rajendran (2023) for detecting diseases caused by pathogens, insects and parasitic plants
and Al-Rasheed et al. (2022) use it for automatic detection of breast cancer skin.

The main goal of this study is to show that using ETCNN with resampling and using
a GAN for data augmentation is highly effective for predicting minority class observations in
imbalanced databases.

Methodology

Below are details about the ISIC 2016 dataset, transfer learning models, preprocessing,
data augmentation with GAN, resampling, ensembles used, evaluation criteria and metrics, and
the method.

ISIC Challenge Datasets

The database used in this work is provided by the International Skin Imaging Collabora-
tion (ISIC) Challenge Datasets 2016 (Gutman et al., 2016), this is a small unbalanced database
on malignant or benign dermatoscopic lesions, an example of the images present in this database
is given in Figure 1. The distribution of images is presented in Table 1.

Figure 1: Sample mages of ISIC Dataset 2016: benign image (left) and malignant image (right).

Source: (Gutman et al., 2016)

Table 1: Number of elements belonging to each class in the ISIC dataset

Class Number of elements (benign) Number of elements (malignant) Total

train 727 173 900
test 304 75 379

Source: From the authors (2025).

The images had different sizes and presented noise, so a pre-processing step was necessary,
after pre-processing the final image had dimensions 256× 256.

Sigmae, Alfenas, v.14, n.4, p. 117-128, 2025.



Moraes Neto et al. (2025) 120

To solve the classification problem when there are few observations of a given data, data
augmentation techniques can be used. In order to obtain a good generalization of the model, a
GAN was used in this work to increase the number of samples in the minority class instead of
simply using common data augmentation.

GANs consist of two models. According to Chen et al. (2022), one model is the generator
(G), which generates new data, while the other is the discriminator (D), which evaluates whether
the generated data is real or synthetic.

Resampling was performed using undersampling and oversampling methods in the train-
ing set. As shown in Table 1, the subset size for undersampling consisted of 173 images from
both the malignant and benign classes, while for oversampling, 727 images were used for each
class.

Proposed transfer learning models

As highlighted by Goodfellow et al. (2016), Convolutional Neural Networks (CNNs) rep-
resent a class of Deep Learning architectures that incorporate the convolution operation in at
least one of their layers. In the scope of this study, we chose to use previously trained CNNs, an
approach known as transfer learning. The transfer learning models used in this research include:
VGG16 (von Wangenheim, 2018), Densenets (Huang et al., 2017), Inception Resnetv2 (Szegedy
et al., 2017), Resnets (He et al., 2016), Xception (Chollet, 2017) and MobileNet (Howard et al.,
2017). These models are available in the Keras package, and additional details can be found at
(Sarkar et al., 2018) For ResNet and DenseNet, some variations were tested. All experiments
were performed on Google Colab GPUs (GOOGLE, 2017). The main code is available at :
https://github.com/FernandooMoraes/Article-Ensemble-of-transfer-learning-models_

GAN.
For training the networks, the K-fold with 10 folds was considered, the training algorithm

used was Adagrad, we used dropout to avoid overfitting and earlystopping as a stopping criterion,
with 100 epochs, finally the loss function used was Cross-Entropy loss for binary classification.

The ensemble is performed as follows: if at least i models classify an instance as the
minority class, the final prediction is assigned to this class. The parameter i varies from 1 to 13.

It should be noted that all models were trained with images from the training set, and, at
the end, we proceeded to create the ensembles. It is important to highlight that the application
of data augmentation, undersampling and oversampling is performed only on the training set of
each fold.

The flowchart of the methodology used in this study is presented in Figure 2. The
methodology consists of the steps: Pre-processing, K-fold, resampling, data augmentation with
GAN, modeling of the 13 transfer learning CNNs, ensembles and model evaluation.

To evaluate the fit of the model in the classification problem, some performance measures
are used based on the confusion matrix. The evaluation measures used were: precision (P),
specificity (S) and F Beta Score. The F-beta score is a widely used performance measure for
binary classification with unbalanced data (Lee et al., 2021). According to the same author, if
β < 1 the metric emphasizes precision, whereas when β > 1 it prioritizes recall.

In this work we will adopt an F2-score metric as an alternative to mitigate this balancing
effect in the malignant class.
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Figure 2: Representation of the modeling used step by step.
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Source: from the authors (2025).

Results and Discussion

In this section the results on ISIC are presented. For modeling, 13 transfer learning
models were used and after this 13 combinations were used to predict dermatological images of
skin lesions.

Figure 3 shows the accuracy and recall metrics for the individual models and the proposed
modifications. Since only 20% of the observations in the original dataset belong to the malignant
class, identifying these cases is challenging. This is reflected in a recall value close to 1 and an
accuracy of approximately 80%.

This pattern of trade-off is well documented in the literature. According to Chakraborty
and Chakraborty (2020) and Hashemi et al. (2018), CNNs trained on imbalanced datasets tend
to prioritize the majority class, leading to inflated accuracy metrics that fail to reflect the model’s
performance on the minority class.

In turn, Figure 4 displays the Precision and Specificity metrics. Note that all individual
models have specifications for identifying malignant observations. However, the proposed meth-
ods exhibit superior performance, particularly in the cases of pigments 1 and 2, which achieved
values above 20%.

Finally, Figure 5 presents the results of the F2-scores for resampling methods (under-
sampling and oversampling) without data augmentation. Note that the F2-score of the best
combination in oversampling reaches approximately 60%, outperforming the individual models.
In the case of subsampling, it is also verified that the F2-score of the proposed changes exceeds
the performance of the individual models. These results reinforce the benefits of ensemble ap-
proaches. Comb 1 and Comb 3 clearly outperformed individual models in terms of F2-score,
demonstrating better sensitivity to the minority class. This corroborates the findings of Zheng
et al. (2022) and Ding et al. (2023), which emphasize the advantages of ensemble learning in
medical image classification under imbalance.
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Figure 3: Result of Accuracy and Recall of models and combinations used with no data aug-
mentation and resampling.
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Figure 4: Result of Precision and Specificity of models and combinations used with no data
augmentation and resampling.
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Figure 5: Result of F2-score of models and combinations used with resampling and no data
augmentation.
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Table 2 presents the results referring to F2-score in the scenario I (no resampling) and
in undersampling scenario II (best among scenarios with resampling). In scenario I, the model
with the best F2-score is Inception Resnet V2, considering the combinations the best F2-score is
combination 1. For scenario II, the model with the best F2-score Resnet 50, for the combinations
the one with the best F2-score is combination 3.

Table 2: Result of the best F2-score for the models and combinations with data augmentation
for scenario I and II.

Models Scenario I Scenario II

Inception resnet v2 0.34 0.31
Resnet50 0.21 0.39
Comb 1 0.46 0.23
Comb 3 0.30 0.60

Source: From the authors (2025).

From this result, it is concluded that the best F2-score are obtained by using Ensemble
Tranfer learning with resampling and data augmentation using GAN. As reported by Huang et al.
(2020) and Chatterjee et al. (2022), GANs can help mitigate scarcity by generating diverse and
plausible synthetic samples. In the two scenarios shown, ETCCN had better F2-scores than the
individual models. Furthermore, it is important to note that although the best Undersampling
models have approximately 60% F2-score, this metric is low.

Table 3 compares the proposed method with previous work on the ISIC 2016 datase on
the same test set, Zhou et al. (2020) achieved a marginally higher F2-score, and Codella et al.
(2017), who achieved high specificity and precision. it’s crucial to acknowledge the inherent
limitations of comparing across diverse datasets and preprocessing methodologies.
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Table 3: Comparison with other works using the test dataset provided by ISIC 2016.

F2-score Specificity Precision

Zhou et al. (2020) 0.49 0.99 -
0.69 0.95 -

Majtner et al. (2016) 0.87
Lopez et al. (2017) - 0.79 0.80
Codella et al. (2017) 0.55 0.93

- 0.94 0.21
Gutman et al. (2016) - 0.92 -

- 0.94 -
Oversampling 0.53 0.88 0.20

Source: From the authors (2025).

Our approach, integrating transfer learning, GAN-assisted data augmentation, and a
carefully calibrated resampling strategy, appears to mitigate the impact of the ISIC 2016 dataset’s
class imbalance, resulting in a performance profile that is demonstrably robust. However, further
investigation is warranted to establish more consistent and reliable metrics. While preliminary
results suggest an advantage, a more comprehensive analysis incorporating a wider range of eval-
uation criteria and potentially exploring the relative contributions of each component within the
ETCNN architecture is necessary to definitively conclude the extent of our model’s superior-
ity. It’s essential to move beyond qualitative assessments and towards rigorous quantitative
validation to fully characterize the model’s performance characteristics.

Even if some metrics are lower than those reported in prior work, the proposed methodol-
ogy offers valuable insights for future research, especially by highlighting the practical challenges
encountered in real world scenarios with limited data availability.

A thorough analysis of the results indicates that the absence of resampling and data
augmentation makes it difficult to accurately classify malignant cases. The combined approaches
demonstrate superior metrics across all scenarios when compared to individual models. It is
noteworthy that the combination that achieved the highest F2-score was observed in scenario
II, where there was an increase of around 53% in the data through the application of the GAN
technique.

Results showed that combining transfer learning models with resampling and data aug-
mentation techniques using GANs performed better in predicting the minority class in imbal-
anced databases. The primary contribution of this study lies in the introduction of an improved
ETCNN, employing resampling and data augmentation with GAN to enhance the detection of
malignant cancer in the analyzed dataset. This methodology has proven particularly effective
in improving the detection of malignant lesions.

In summary, our findings support the view that tackling class imbalance in small medical
datasets requires a multipronged approach. The ETCNN, combined with data augmentation via
GANs, presents a promising methodology. The proposed framework offers a solid foundation for
further research and practical deployment in real world, resource constrained medical contexts.

Final considerations

In this study, we introduce an approach that combines transfer learning models with
resampling and data augmentation techniques. The goal is to build a CNN model capable
of accurately identifying malignant cancer in small, imbalanced datasets. To demonstrate the
effectiveness of these combinations, we conducted an experiment using a dataset of dermoscopic
lesions, where we observed that the combined approaches stood out in the studied context.
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We generally conclude that the proposed methodology has the ability to accurately
predict observations belonging to the minority class in imbalanced datasets, making it a valuable
tool for medical image analysis.

It is worth noting that the problem faced in this study is the difficulty of obtaining a
significant number of observations in medical data sets, especially with an unequal distribution
between the different classes (pathological and normal). To mitigate this problem, the research
uses transfer learning techniques, ensembles, data augmentation through GANs, and resampling
techniques.

This approach is especially useful for medical applications where obtaining a large number
of balanced observations can be challenging, such as detecting skin cancer from dermoscopic
images.

In future work, we plan to compare the performance of the current model, trained on
imbalanced data, with a forthcoming model trained on balanced data, incorporating more real
images in the malignant class. dditionally, we aim to conduct further studies on the proposed
model, exploring alternative generalization functions, applying various resampling methods, and
expanding the range of transfer learning models utilized.

This work explored the use of transfer learning models widely recognized for their perfor-
mance in image classification tasks. The selection of these models, despite the existence of more
recent and complex architectures, was motivated by their proven robustness and effectiveness
in similar situations. The study exclusively used the ISIC 2016 dataset, which serves as a solid
basis for skin cancer classification, especially in small and unbalanced databases. However, it is
recognized that this approach may limit the assessment of the generalizability of the proposed
method. Future research should investigate newer models and diversify datasets to validate the
methodology in different scenarios.

In summary, our findings support the view that tackling class imbalance in small medical
datasets requires a multipronged approach. The ETCNN, combined with data augmentation via
GANs, presents a promising methodology. The proposed framework offers a solid foundation for
further research and practical deployment in real world, resource constrained medical contexts.
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