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Abstract We construct generalized coherent states (GCS) of a massive accelerated particle. This example is an important step
in studying coherent states (CS) for systems with an unbounded motion and a continuous spectrum. First, we represent quantum
states of the accelerated particle both known and new ones obtained by us using the method of non-commutative integration of
linear differential equations. A complete set of non-stationary states for the accelerated particle is obtained. This set is expressed
via elementary functions and is characterized by a continuous real parameter η, which corresponds to the initial momentum of the
particle. A connection is obtained between these solutions and stationary states, which are determined by the Airy function. We solved
the problem of constructing GCS, in particular, semiclassical states describing the accelerated particle, within the framework of the
consistent method of integrals of motion. We have found different representations, coordinate one and in a Fock space, analyzing
in detail all the parameters entering in these representations. We prove corresponding completeness and orthogonality relations.
Conditions for minimizing uncertainty relations were studied, and the set of the corresponding parameters was determined. From the
GCS, a family of states is isolated, which usually is called the CS. This family of states is parameterized by a real parameter σq , which
has the meaning of the standard deviation of the coordinate at the initial time instant. The CS minimize the Robertson–Schrödinger
uncertainty relation at all the time instants and the Heisenberg uncertainty relation at the initial time. The probability density
is given by a Gaussian distribution with the standard deviations σq (τ ) at the time τ . Coordinate mean values are moving along
classical trajectories of the accelerated particles and coincide with trajectories of the maximum of the wave packets. We prove the
completeness and orthogonality relations for the obtained GCS and CS. Standard deviations for the GCS and CS are calculated. On
this base, and considering the change in the shape of wave packets with time, we define general conditions of the semi-classicality
and a class of the CS that can be identified with semiclassical states. As follows from these conditions, in contrast to a free particle
case, where CS can be considered as semiclassical states if the Compton wavelength of the particle is much less than the coordinate
standard deviation at the initial time moment, after a sufficiently long time period, the CS of the accelerated particle can be always
considered as semiclassical ones. It is interesting that this conclusion is matched with the one obtained in a recent work by Sazonov,
in studying the Caldirola–Kanai model. Namely, there were demonstrated that the force of resistance and viscous friction prevent the
spreading of a quasi-classical wave packet. Thus, the resistance force suppresses the quantum properties of the particle, increasingly
highlighting the classical features in its movement over the time.

1 Introduction

Coherent states (CS) play an important role in modern quantum theory as states that provide a natural relation between quantum
mechanical and classical descriptions [1–4]. They have a number of useful properties and as a consequence a wide range of
applications, e.g., in semiclassical description of quantum systems, in quantization theory, in condensed matter physics, in radiation
theory, in quantum computations and so on, see, e.g., Refs. [5–14]. Despite the fact that there exist a great number of publications
devoted to constructing CS of different systems, an universal definition of CS and a constructive scheme of their constructing for
arbitrary physical system is not known. In this relation, it should be noted that CS were first introduced and studied in detail for
systems with bounded motion and discrete spectrum like harmonic oscillator, charged particle in a magnetic field and so on. Formally
the problem of constructing CS for systems with quadratic Hamiltonians of the general form was solved in works by Dodonov and
Man’ko, using Malkin and Man’ko integral of motion method, see cited Refs.. However, it should be noted that sometimes to extract
appropriate sets of CS from the general results is not a simple task. Even for the simplest and physically important system as a
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free particle, the problem of CS construction was, in fact, solved relatively recently, in Ref. [15] following, in fact, the integral of
motion method, and its special version proposed in Ref. [16]. We believe that this situation is explained by the fact that the free
particle represents an unbounded motion with the continuous energy spectrum and a generalization of the initial (Glauber) scheme
in constructing CS of a harmonic oscillator was not so obvious in this case. In fact, a formal application of the integral of motion
method to systems with unbounded motion results in constructing the so-called generalized coherent states (GCS). In Ref. [15]
the attention was paid on the fact that among families of formally constructed GCS there may exist both semiclassical states and
quantum states which do not describe any semiclassical motion at all. Fixing special parameters which arise in the construction
of GCS can be distinguished from physical consideration she families of semiclassical states, in particular CS as well as squeezed
states.

In this article, we, using the integral of motion method, construct GCS of a massive accelerated particle. This example is a next
important step in studying CS for systems with an unbounded motion and a continuous spectrum. Besides of its physical importance
there is a didactic advantage of using accelerated particle CS in teaching of quantum mechanics. On this example, we once again
demonstrate the existence of GCS that describe both semiclassical and purely quantum motions. In this regard, it should be said
that the problem of constructing semiclassical states describing an unbounded motion with some time-dependent Hamiltonians, was
considered in relatively recent works based on various approaches; see e.g., Refs. [17–20]. This interest stresses the importance
of the problem under consideration. We consider constructing GCS, in particular, semiclassical states describing an accelerated
particle, within the framework of the above-mentioned consistent method of integrals of motion mentioned above. In Sect. (2), we
study quantum states of the accelerated particle both known and new ones obtained by us using the method of non-commutative
integration of linear differential equations. In Sect. (3), we construct GCS of the accelerated particle, in different representations
analyzing in detail all the parameters entering in the constructions. We prove the corresponding completeness and orthogonality
relations. Standard deviations and conditions of the semi-classicality are discussed in Sec. (4). Here we define the so-called CS and
a class of CS that can be identified with semiclassical states. In the Conclusion (5), we tried to list technical and physical results
obtained in this article that are important in our opinion.

2 Some exact solutions of the Schrödinger equation

One of the adequate approaches to the quantum description of the rectilinear accelerated motion of a nonrelativistic particle seems to
be the consideration of the motion of the particle in an uniform external field. Let we have one-dimensional motion along the x-axis,
and let F be the constant force acting on the particle. The potential energy U can be taken as U � −Fx , such that the corresponding
Hamiltonian reads ( p̂x � −i�d/dx):

Ĥx � p̂2
x

2m
− Fx � − �

2

2m

d2

dx2 − Fx . (1)

In particular, if the particle has an electric charge e such a force can be caused by an electric field of the intensity E , i.e., F � eE .
For example, for the particle of mass m near the Earth’s surface, where the gravitational field is almost constant, it is acted upon by
a constant force F � −mg, where g is the gravity of Earth.

Below, we recall known stationary solutions of the Schrödinger equation with the Hamiltonian (1) and construct new non-
stationary solutions of the corresponding time-dependent Schrödinger equation using the method of non-commutative integration
of linear differential equations [21–23].

2.1 Stationary states

In the coordinate representation, stationary states ψE (x) satisfy the Schrödinger equation ĤxψE (x) � EψE (x),

d2ψE (x)

dx2 +

(
2m

�2

)
(E + Fx)ψE (x) � 0. (2)

In the potential field under consideration the energy levels form a continuous nondegenerate spectrum, +∞ > E > −∞. The
corresponding motion is finite toward x � −∞ and infinite toward x � +∞. Introducing a dimensionless variable

ξ �
(
x +

E

F

)(
2mF

�2

)1/3

, (3)

one can reduce Eq. (2) to the form ψ ′′(ξ) + ξψ(ξ) � 0. A solution of the latter equation, which is finite for all x, reads (see Ref.
[24]):

ψE (x) � ψ(ξ) � AAi(−ξ), Ai(ξ) � 1

π

∫ ∞

0
cos

(
1

3
u3 + uξ

)
du. (4)
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The function Ai(ξ) is the so-called Airy function, see Ref. [25], and A � [2m/(�2
√
F)]1/3 is a normalization factor which provides

the normalization of the functions ψE (x) to the delta function of the energy,∫ ∞

−∞
ψE (x)ψE ′(x)dx � δ

(
E ′ − E

)
. (5)

2.2 A complete set of non-stationary solutions

It is convenient to introduce the dimensionless operators q and p̂q and the time τ as:

q � xl−1, p̂q � −i∂q � l

�
p̂x , τ � �

ml2
t (6)

such that

Ĥx � �
2

ml2
Hq , Hq � p̂2

q

2
− Fqq , Fq � ml3

�2 Fx .

In new variables (6) the evolution is described by the Schrödinger equation of the form:

i�∂t
(x , t) � Ĥx
(x , t) =⇒ Ŝχ(q , τ) � 0, Ŝ � i∂τ − Ĥq ,

χ(q , τ) � √
l


(
lq ,

ml2

�
τ

)
, |
(x , t)|2dx � |χ(q , τ)|2dq . (7)

Some solutions of the Schrödinger equation (7) can be constructed using the method of non-commutative integration of linear
differential equations. To this end we note that symmetry operators Ŷa , [Ŷa , Ŝ] � 0, a � 1, 2, 3, 4, of the Schrödinger equation
(7),

Ŷ1 � −i , Ŷ2 � ∂q − i Fqτ , Ŷ3 � τ∂q − i

2

(
Fqτ

2 + 2q
)
, Ŷ4 � ∂τ + FŶ3

form a four-dimensional solvable Lie algebra with nonzero commutation relations

[Ŷ2, Ŷ3] � Ŷ1, [Ŷ3, Ŷ4] � −Ŷ2. (8)

We define an irreducible λ-representation (see Refs. [22, 23] ) of the Lie algebra (8) by operators that act on functions of a variable
η ∈ (−∞, ∞) and are parameterized by two real parameters j0 and j1 ≥ 0,


1 � i j0, 
2 � i(−η j0 + j1), 
3 � ∂η, 
4 � i

2
η(η j0 − 2 j1). (9)

We will look for a complete set of solutions to the Schrödinger equation, which is parameterized by η, in the form:

χ(q , τ |η) �
∫ +∞

−∞
d j0

∫ +∞

0
d j1 χ(q , τ |η, j0, j1)

where functions χ(q , τ |η, j0, j1) are found as a solution to a system of first-order differential equations(

a + Ŷa

)
χ(q , τ |η, j0, j1) � 0. (10)

Then the general solution of the Schrödinger equation (7) is given by the following integral:

χ(q , τ) �
∫ +∞

−∞
C(η)χ(q , τ |η)dη (11)

where C(η) is an arbitrary function such that the integral in (11) converges.
A solution of Eq. (10), we seek in the form:

χ(q , τ |η, j0, j1) �(2π)−1/4w( j1)δ( j0 − 1)

× exp

{
− i

2

[
τη2 − 2η(τ Fq − j1) − 2η(q + τ j1) + Fqτ

2(η − j1) +
F2
q

3
τ 3

]}
. (12)

Substituting representation (12) into Eq. (7), we obtain j2
1 w( j1) � 0, which implies w( j1) � δ( j1). Taking this into account and

integrating χ(q , τ |η, j0, j1) over the parameters j0 and j1, we finally obtain:

χ(q , τ |η) � (2π)−1/4 exp

{
− i

2

[
(ητ − 2q)(η + τ Fq ) +

F2
q

3
τ 3

]}
. (13)

123
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These constructed solutions don’t have a finite norm and are parameterized by the real parameter η. However, the solutions satisfy
completeness and orthogonality relations: ∫ +∞

−∞
χ∗(q , τ |η)χ(q , τ |η′)dq �δ(η − η′)

∫ +∞

−∞
χ∗(q , τ |η)χ(q ′, τ

∣∣η)dη �δ(q − q ′). (14)

One can find a connection between solutions (13) and the stationary states (4) in dimensionless variables (6). Stationary states χε(q ,
τ ) in the dimensionless variables, satisfy the equation

Ŝχε(q , τ ) � 0, Hqχε(q , τ ) � εχε(q , τ ). (15)

We will search these solutions in the form:

χε(q , τ ) � 1√
2π

∫ +∞

−∞
Q∗

ε (η)χ(q , τ |η)dη. (16)

Then it follows from Eq. (15) that functions Qε(η) must satisfy the equation

i
(
Fq
3 − 
4

)
Qε(η) � εQε(η) (17)

which has the following solutions:

Qε(η) � (2πF2
q )−1/4 exp

[
i

2F

(
η3

3
− 2εη

)]
∫ +∞

−∞
Q∗

ε (η)Qε′ (η)dη � δ(ε − ε′). (18)

Finally, taking into account Eq. (18), we obtain the explicit form for the stationary states χε(q , τ ):

χε(q , τ ) � 1√
2π

∫ +∞

−∞
Q∗

ε (η)χ(q , τ |η)dη � χε(q) exp(−iετ)

χε(q) � 21/3

F1/6
q

Ai(−ξ), ξ �
(
q +

ε

Fq

)(
2Fq

)1/3,

Ĥqχε(q) � εχε(q) (19)

where Ai(ξ) is the Airy function; see Eq. (4). Equation (19) represents the relationship between the new non-stationary solutions
(13) and the stationary states χε(q , τ ).

One can calculate the Wigner function W (pq , q , τ ) that corresponds to solutions (13),

W (pq , q , τ ) � 1

2π�

∫ +∞

−∞
χ∗
(
q − q ′

2
, τ

∣∣∣∣η
)

χ

(
q +

q ′

2
, τ

∣∣∣∣η
)
e−i pqq ′

dq ′

� 1

2π�
δ
(
η + Fqτ − pq

)
. (20)

The obtained representation reveals the physical meaning of the parameter η. It is the particle momentum at the initial time moment.
Note that the Wigner functions for a particle in a variable uniform field were obtained in Ref. [26].

Note that the constructed solutions (13) form a complete and orthogonal set and are parameterized by a continuous real parameter
η. Moreover, these solutions are expressed via elementary functions, which can be useful in various applications.

3 GCS of an accelerated particle

3.1 Integrals of motion

First, we pass to creation and annihilation operators â and â†,

â � q + i p̂q√
2

, â† � q − i p̂q√
2

,
[
â, â†] � 1. (21)

In terms of these operators, the Hamiltonian Ĥq reads:

Ĥq � 1

4

[
â†â + ââ† − (

â†)2 − â2
]

− Fq√
2

(
â + â†). (22)

123
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It can’t be reduced to the first canonical form for a quadratic combination of creation and annihilation operators, which is the
oscillator-like form, by any canonical transformation; this indicates that the spectrum of Ĥ is continuous, as shown in Ref. [13].

Let us construct an integral of motion Â(τ ) linear in the operators q̂ and p̂q ,

Â(τ ) � f (τ )q̂ + ig(τ ) p̂q + ϕ(τ). (23)

Here f (τ ), g(τ ) and ϕ(τ) are some complex functions on the time τ . For the operator Â(τ ) to be an integral of motion, it has to
commute with the equation operator Ŝ � i∂τ − Ĥq , [

Ŝ, Â(τ )
]

� 0. (24)

In case if the Hamiltonian Ĥq is self-adjoint, the adjoint operator Â†(τ ) is an integral of motion as well. We also demand[
Â(τ ), Â†(τ )

]
� 1 (25)

for Â(τ ) and Â†(τ ) to be annihilation and creation operators.
To satisfy Eq. (24), the functions f (τ ), g(τ ), and ϕ(τ) have to obey the following equations:

ḟ (τ ) � 0, ġ(τ ) − i f (τ ) � 0, ϕ̇(τ ) + i Fqg(τ ) � 0 (26)

where derivatives in τ are denoted by dots above. The general solution of Eq. (26) reads:

f (τ ) � c1, g(τ ) � c2 + ic1τ , ϕ(τ) � Fqc1
τ 2

2
− i Fqc2τ + c3 (27)

where c1,c2 and c3 are arbitrary constants. Note that the constant c3 in Eq. (23) is reduced as a result of the substitution z → z + c3,
therefore, without loss of generality, we further set c3 � 0. It follows from Eq. (25) that

2Re
(
g∗(τ ) f (τ )

) � 2Re
(
c∗

1c2
) � 1 =⇒ |c2||c1| cos(μ2 − μ1) � 1

2
(28)

where c1 � |c1|eiμ1 and c2 � |c2|eiμ2 , μ1 ∈ [0; 2π ), μ2 ∈ [0; 2π). Taking all that into account, we obtain:

q � g∗(τ ) Â(τ ) + g(τ ) Â†(τ ) − 2Re
(
g∗(τ )ϕ(τ)

)
,

i p̂q � c∗
1 Â(τ ) − c1 Â

†(τ ) − 2iIm
(
c∗

1ϕ(τ)
)
. (29)

3.2 GCS

Consider the eigenvalue problem Â(τ )|z, τ 〉 � z(τ )|z, τ 〉 for the annihilation operator Â(τ ). In the general case eigenvalues z(τ )
that correspond to eigenvectors |z, τ 〉 depend on the time τ . However, if Â(τ ) is the integral of motion and, at the same time |z, τ 〉
are normalized solutions of the corresponding Schrödinger equation Ŝ|z, τ 〉 � 0, these eigenvalues do not depend on time. A simple
proof of this statement follows from the fact that if Â(τ ) is the integral of motion its mean value in the state |z, τ 〉 does not depend
on time. Thus, 〈

z, τ

∣∣∣ Â(τ )

∣∣∣z, τ
〉
� z(τ ) � const � z.

A more formal proof, based on the equations Ŝ|z, τ 〉 � 0 and |z, τ 〉 �� 0 is given by a chain of relations:[
Ŝ, Â(τ )

]
|z, τ 〉 � Ŝ(z(τ )|z, τ 〉)

� i ż(τ )|z, τ 〉 + z(τ )Ŝ|z, τ 〉 � i ż(τ )|z, τ 〉 � 0 =⇒
z(τ ) � const � z . (30)

Thus, in what follows, the above-mentioned eigenvalue problem looks as follows:

Â(τ )|z, τ 〉 � z|z, τ 〉, 〈z, τ | z, τ 〉 � 1 (31)

where in the general case z is a complex number.
It follows from Eqs. (29) and (31) that

q(τ ) ≡ 〈z, τ |q|z, τ 〉 � q0 + p0τ + Fq
τ 2

2
, q0 � 2Re

(
c∗

2z
)

,

p(τ ) ≡ 〈
z, τ
∣∣ p̂∣∣z, τ 〉 � p0 + Fqτ , p0 � 2Im

(
c∗

1z
)

,

z �
〈
z, τ
∣∣∣ Â(τ )

∣∣∣z, τ 〉 � c1q(τ ) + ig(τ )p(τ ) + ϕ(τ) � c1q0 + ic2 p0 . (32)

123
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The mean values q(τ ) and p(τ ) correspond to the classical trajectory of accelerated by a constant force Fq particle. They satisfy
the classical Hamilton equations with the Hamiltonian Hq .

Being written in the coordinate representation, Eq. (31) reads:
[
c1q + ϕ(τ) + g(τ )∂q

]
�z(q , τ) � z�z(q , τ), �z(q , τ) ≡ 〈q | z, τ 〉. (33)

The general solution of this equation has the form

�z(q , τ) � N exp

[
− c1

g(τ )

q2

2
+
z − ϕ(τ)

g(τ )
q + χ(τ , z)

]
(34)

where χ(τ , z) is an arbitrary function on τ and z and N is a normalization constant.
One can see that the functions �z(q , τ) can be written in terms of the mean values q(τ ) and p(τ ),

�z(q , τ) � N exp

{
i p(τ )q − c1

2g(τ )
[q − q(τ )]2 + φ(τ , z)

}
(35)

where φ(τ , z) is an arbitrary function on τ and z.
We now demand the functions �z(q , τ) satisfy the Schrödinger equation

Ŝ�z(q , τ) � 0 (36)

where the operator Ŝ is defined in Eq. (7). Thus, we fix the function φ(τ , z) to be:

φ(τ , z) � − i

2

∫ τ

0

[
p2(τ ′) +

f (τ ′)
g(τ ′)

]
dτ ′. (37)

The density probability ρ(q , τ) generated by the functions �z(q , τ) has the form:

ρ(q , τ) � |�z(q , τ)|2 � N 2 exp

{
− [q − q(τ )]2

2|g(τ )|2 + 2Reφ(τ , z)

}
. (38)

Considering the normalization integral, we find the constant N ,∫ ∞

−∞
ρ(q , τ)dq � 1 ⇒ N � (

2π |g(τ )|2)−1/4
exp(−Reφ(τ , z)). (39)

Thus, normalized solutions of the Schrödinger equation that are eigenfunctions of the annihilation operator Â(τ ) have the form:

�z(q , τ) � 1√√
2π |g(τ )|

exp

{
i p(τ )q − f (τ )

g(τ )

[q − q(τ )]2

2
+ iImφ(τ , z)

}
. (40)

whereas the corresponding probability density reads:

ρz(q , τ) � 1√
2π |g(τ )| exp

{
− [q − q(τ )]2

2|g(τ )|2
}

. (41)

In what follows we call solutions (40) the time-dependent generalized CS. It should be noted that, in fact, we have a family of states
parametrized by two complex constants c1 and c2 that satisfy restriction (28). Additional restrictions on the constants c1 and c2

transform these states into CS of the accelerated particle, see below.
Substituting the explicit form of trajectories (32) into Eq. (37), obtain the function φ(τ , z) in the following form:

φ(τ , z) � − i

2

(
F2
q

τ 3

3
+ Fq p0τ

2 + p2
0τ

)
− 1

2
ln

g(τ )

c2
. (42)

Thus we obtain a general formula for GCS of an accelerated particle,

�z(q , τ) � 1√√
2π

|c2|
c2

g(τ )

× exp

{
i

[
p(τ )q − 1

2
p2

0τ

]
− c1

g(τ )

[q − q(τ )]2

2
− i

2
Fq

(
Fq
3

τ + p0

)
τ 2

}
. (43)

Setting Fq � 0 in Eq. (43), we obtain the time-dependent generalized CS of a free particle, see Ref. [15].

123
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Next we will demonstrate that GCS satisfy the completeness condition. To this end we first consider the action of the displacement

operator D(z, τ) � exp
[
z Â†(τ ) − z∗ Â(τ )

]
on the vacuum vector |0, τ 〉 in the coordinate representation:

�̃z(q , τ) �D(z, τ)�0(q , τ) � exp

[
−|z|2

2
+ z Â†(τ )

]
�0(q , τ),

�0(q , τ) �〈q | 0, τ 〉 � 1√√
2π

|c2|
c2

g(τ )

× exp

⎡
⎢⎣− c1

g(τ )

(
q − Fq

τ 2

2

)2

2
+ i Fq

(
q − Fq

τ 2

6

)
τ

⎤
⎥⎦. (44)

Thus, taking the explicit forms of the mean values (32) into account, we obtain:

�̃z(q , τ) � exp

{
−|z|2

2
+
[
c∗

1

(
q − g∗(τ )

z

2

)
+ ϕ(τ)

]
z

}
�0
(
q − g∗(τ )z, τ

)

� exp

(
− i

2
q0 p0

)
�z(q , τ) . (45)

The states �z(q , τ) and �̃z(q , τ) differ by a phase factor only.
Now we will show that the states �̃z(q , τ) satisfy the completeness condition, which will give us the completeness condition for

GCS. To this end, It is useful to introduce the vacuum vector |0, τ 〉 at a given time instant, Â(τ )|0, τ 〉 � 0, and the corresponding
Fock space,

|n, τ 〉 �
[
Â†(τ )

]n
√
n!

|0, τ 〉, 〈n, τ |n, τ 〉 � 1 n � 0, 1, 2, . . .

Â(τ )|n, τ 〉 � √
n|n − 1, τ 〉, Â†(τ )|n, τ 〉 � √

n + 1|n + 1, τ 〉. (46)

Using representation (44) and definitions (46), one derives the following form for the states �̃z(q , τ):

�̃z(q , τ) � exp

[
−|z|2

2

] ∞∑
n�0

zn√
n!

〈q|n, τ 〉. (47)

With the help the completeness property of the states |n, τ 〉,
∞∑
n�0

|n, τ 〉〈n, τ | � 1, ∀τ (48)

one can find the overlapping of the CS and prove the corresponding completeness relations:
∫ +∞

−∞

(
�̃z′(q , τ)

)∗
�̃z(q , τ)dq � exp

(
z′∗z −

∣∣z′∣∣2 + |z|2
2

)
, ∀τ ;

∫ ∫ (
�̃z(q , τ)

)∗
�̃z
(
q ′, τ

)
d2z � πδ

(
q − q ′)d2z � dRezdImz, ∀τ . (49)

Equation (49) implies already the completeness relation for the GCS,∫ ∫
(�z(q , τ))∗�z

(
q ′, τ

)
d2z � πδ

(
q − q ′), ∀τ.

4 Standard deviations and conditions of semi-classicality

Calculating standard deviations σq(τ ), σp(τ ), and the characteristic quantity σqp(τ ), with respect to the GCS, we obtain:

σq(τ ) �
√

〈(q̂ − 〈q〉)2〉 �
√〈

q2
〉− 〈q〉2 � |g(τ )| ,

σp(τ ) �
√

〈( p̂ − 〈p〉)2〉 �
√〈

p2
〉− 〈p〉2 � | f (τ )| � |c1| ,

σqp(τ ) � 1

2

〈(
q̂ − 〈q〉)( p̂ − 〈p〉) +

(
p̂ − 〈p〉)(q̂ − 〈q〉)〉
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� i
[
1/2 − g(τ ) f ∗(τ )

]
. (50)

One can easily see that the GCS, for any set of the parameters c1 and c2, minimize the Robertson-Schrödinger uncertainty relation
[27, 28],

σ 2
q (τ )σ 2

p(τ ) − σ 2
qp(τ ) � 1/4. (51)

Let us consider the Heisenberg uncertainty relation for the GCS. Taking into account relations (28) for constants c1 and c2, we obtain

σq(τ )σp(τ ) �
√

1

4
+
[|c2||c1| sin(μ2 − μ1) + |c1|2τ

]2 ≥ 1

2
. (52)

Then using Eq. (50), we find σq(0) � σq � |c2| and σp(0) � σp � |c1|, such that at τ � 0 Eq. (52) implies:

σqσp � |c2||c1| �
√

1

4
+ [|c2||c1| sin(μ2 − μ1)]2 ≥ 1

2
. (53)

It follows from (28) that |ci | �� 0, i � 1, 2 say that the left-hand side of Eq. (53) is minimized when μ1 � μ2 � μ, which provides
the minimization of the Heisenberg uncertainty relation for the CS at the initial time instant,

σq(τ )σp(τ )
∣∣
τ�0 � 1

2
. (54)

In what follows, we consider the GCS with the above restriction μ1 � μ2 � μ. Namely, such states we call simply CS of a
accelerated particle. In this case relation (28), 2Re

(
c∗

1c2
) � 1, takes the form:

|c2||c1| � 1/2 =⇒ c∗
2 � c−1

1 /2. (55)

One can see that the constant μ does not enter the CS. Thus, in what follows we set μ � 0. Then

c2 � |c2| � σq , c1 � |c1| � σp � 1/(2σq ) ,

g(τ ) �
(

σq +
iτ

2σq

)
, σq(τ ) � |g(τ )| �

√
σ 2
q +

τ 2

4σ 2
q

. (56)

It follows from Eq. (56), that for any time instant τ the Heisenberg uncertainty relation for the CS takes the form:

σq(τ )σp(τ ) � 1

2

√
1 +

τ 2

4σ 4
q

≥ 1

2
. (57)

Finally, taking into account Eq. (32), we obtain the following coordinate representation for the CS of an accelerated particle:

�
σq
z (q , τ) �

exp

{
i

[
p(τ )q − p2

0
2 τ

]
− [q−q(τ )]2

4
(
σ 2
q +iτ/2

) − i
2 Fq

(
Fq

τ
3 + p0

)
τ 2

}

√(
σq + iτ

2σq

)√
2π

. (58)

We stress that, in fact, we have constructed a family of the CS parametrized by one real parameter σq . Each set of the CS in the
family has its specific initial standard deviations σq > 0. The CS from a family with a given σq can be also labeled by the quantum
number z,

z � q0

2σq
+ iσq p0 (59)

which is in one to one correspondence with the corresponding classical trajectory initial data, q0 � 2σqRez, p0 � (Imz)/σq . Thus,
we will take σq and z as independent parameters of the constructed CS.

If σq < 1/2 or σp < 1/2 the accelerated particle CS are, at the initial time instant, the so-called squeezed states; see Ref. [12].
The probability densities that corresponds to the CS (58) are:

ρ
σq
z (q , τ) � 1√

2πσ 2
q (τ )

exp

{
− [q − q(τ )]2

2σ 2
q (τ )

}
. (60)

One can see that at any time instant τ the probability densities (60) are given by Gaussian distributions with standard deviations σq
(τ ).
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Fig. 1 The shape of the wave
packet at the initial moment of
time for σq � 0.2 and q0 � 0

Fig. 2 Evolution of the probability
density for q0 � 0, p0 � 1,
σq � 0.4. Blue color shows the
particle distribution density at the
initial moment of time with initial
conditions q0 � 0, p0 � 1. The
standard deviation at the initial
time is chosen to be σq � 0.4.
Yellow color shows the evolution
of the distribution density of an
accelerated particle, which is
acted upon by a force F � 2 and
which is located at point q � 1
and has momentum p � 2.23.
Green color shows the evolution
of the distribution density of an
accelerated particle at the same
point q � 1 with momentum
p � 3.61, which is acted upon by
a force F � 6

Let us consider the shape of the particle wave packet (the shape of the probability density) at the initial time instant. Equation
(60) implies that this packet has the height L � 1/(

√
2πσq ) and the half-width �l � √

8 ln 2σq ,

�l � 1

L

√
4 ln 2

π
≈ 0.939

1

L
. (61)

The same relation holds true for the all the GCS.
Figure 1 shows the wave packet corresponding to the CS (58) at the initial time for σq � 0.2 and q0 � 0.
Now consider the change in the shape of the wave packet over the time. The coordinate mean values 〈q〉 � q(τ ) � q0 +

p0τ + Fqτ 2/2 are moving along the classical trajectory with the particle momentum 〈p〉 � p(τ ) � p0 + Fqτ and the constant
acceleration Fq . With the same momentum and the acceleration are moving the maxima of the probability densities (60). The
half-width �l(τ ) � √

8 ln 2σq (τ ) of a given Gaussian wave packet does not depend on the force F acting on the particle. This force
affects the magnitude of the shift of the wave packet as a whole along the coordinate axis q per time unit.

The maximum of the probability density (60) is located at the point q > q0 at the time

τ � τq �

⎧⎪⎨
⎪⎩

[√(
p0
Fq

)2
+ 2(q−q0)

Fq
− p0

Fq

]
, Fq > 0

(q − q0)/p0, Fq � 0

(62)

and is characterized by the standard deviation �q ,
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�q � σq (τq ) �

√√√√√σ 2
q +

1

4σ 2
q

⎡
⎣
√(

p0

Fq

)2

+
2(q − q0)

Fq
− p0

Fq

⎤
⎦

2

< �q
∣∣
Fq�0 �

√
σ 2
q +

(
q − q0

2p0σq

)2

. (63)

The spreading of the wave packet of an accelerated particle at a point q is less than the spreading of the wave packet of a free particle
arriving at the same point. This blurring decreases the larger the F:

�q � σq +
(q − q0)

4Fqσ 3
q

+ O

(
1

Fq

)3/2

. (64)

Let us illustrate what has been said with the graph, Fig. 2. We see that the greater the force F, the less the spreading of the wave
packet corresponding to the particle at point q � 1.

To consider the question which CS can be treated as representing a semiclassical particle motion, we have to return to the initial
dimensional variables x and t (6) and to the initial wave function 


σq
z (x , t) written in these variables,

�
σq
z (q , τ) � √

l

σq
z

(
lq ,

ml2

�
τ

)
.

Taking into account that

x(t) � lq(τ ) � x0 +
px0
m

t +
Fx
m

t2

2
, p0 � l

�
px0 ,

px (t) � �

l
p(τ ) � px0 + Fx t ,

σx (0) � lσq(0) � lσ � σx , σ 2
x (t) � σ 2

x +
�

2

4m2σ 2
x
t2 , (65)

we obtain



σq
z (x , t) � 1√(

σx + i�
2mσx

t
)√

2π

× exp

⎧⎨
⎩
i

�

[(
px (τ )x − px2

0

2m
t

)
− Fx

m

(
Fx
3
t + px0

)
t2

2

]
− [x − x(t)]2

4
(
σ 2
x + �

2m it
)
⎫⎬
⎭ ,

ρ
σq
z (x , t) �

∣∣∣
σq
z (x , t)

∣∣∣2 � 1√(
σ 2
x + �2

4m2σ 2
x
t2
)

2π

exp

⎧⎨
⎩−1

2

[x − x(t)]2

σ 2
x + �2

4m2σ 2
x
t2

⎫⎬
⎭ . (66)

The shape of distribution (66) that corresponds to the semiclassical motion must change with the time slowly in a certain sense.
This change is associated with a change of the quantity σ 2

x (t), see Eq. (65). We suppose that the semiclassical motion implies the

quantity σ 2
x (t) (or equivalently �

2

4m2σ 2
x
t2) is much less than the distance square that the particle passes for the same time t. Then, the

semi-classicality condition reads:

�
2t2

4σ 2
x

�
(
px0 t +

Fx t2

2

)2

. (67)

It can be rewritten in a different form:

λ∣∣1 + λ
2π�

Fx
t
2

∣∣ � 4πσx , λ � 2π�

px
(68)

where λ is the Compton wavelength of the particle.
Thus, CS of a free particle (Fx � 0) can be considered as semiclassical states if the Compton wavelength of the particle is much

less than the coordinate standard deviation σx at the initial time moment, see Ref. [15]. However, if Fx �� 0 and after a sufficiently
long time period, CS of an accelerated particle can be always considered as semiclassical ones.

123



Eur. Phys. J. Plus         (2024) 139:923 Page 11 of 12   923 

5 Concluding remarks

We study quantum states of the accelerated particle both known and new ones obtained by us using the method of non-commutative
integration of linear differential equations. A complete set of non-stationary states (13) for the accelerated particle is obtained. This
set is expressed via elementary functions and is characterized by a continuous real parameter η, which corresponds to the initial
momentum of the particle. A connection is obtained between these solutions and stationary states, which are determined by the Airy
function (19).

We solved the problem of constructing GCS, in particular, semiclassical states describing the accelerated particle, within the
framework of the consistent method of integrals of motion. We have found different representations, coordinate one and in a
Fock space, analyzing in detail all the parameters entering in these representations. We prove the corresponding completeness and
orthogonality relations. Conditions for minimizing uncertainty relations, were studied and the set of the corresponding parameters
was determined. From the GCS a family of states is isolated, which usually is called the CS. This family of states is parameterized by
the real parameter σq , which has the meaning of the standard deviation of the coordinate at the initial time instant. The CS minimize
the uncertainty relation (51) at all the time instants and the Heisenberg uncertainty relation (54) at the initial time. The probability
density (60) is given by a Gaussian distribution with the standard deviations σq (τ ) and the constructed CS are wave packets that are
solutions to the Schrödinger equation for the accelerated particle. Coordinate mean values are moving along classical trajectories
of the accelerated particles and coincide with trajectories of the maximum of the wave packets. We prove the completeness and
orthogonality relations for the obtained GCS and CS.

Standard deviations for the GCS and CS are calculated. On this base, and considering the change in the shape of wave packets
with time, we define general conditions of the semi-classicality and a class of CS that can be identified with semiclassical states. As
follows from this conditions, in contrast to a free particle case, where CS can be considered as semiclassical states if the Compton
wavelength of the particle is much less than the coordinate standard deviation σx at the initial time moment, see Ref. [15], after
a sufficiently long time period, the CS of the accelerated particle can be always considered as semiclassical ones. It is interesting
that this conclusion is matched with the one obtained in Ref. [18] in studying the Caldirola–Kanai model. Namely, there were
demonstrated that the force of resistance and viscous friction prevent the spreading of a quasi-classical wave packet. Thus, the
resistance force suppresses the quantum properties of the particle, increasingly highlighting the classical features in its movement
over time.
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