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Abstract
Reconstructing the network interaction structure from multivariate time series
is an important problem inmultiple fields of science.When the network dynam-
ics is represented as a linear combination of multivariate polynomials, the
reconstruction can be formulated as an optimisation problem. For large net-
works, this optimisation problem does not always have a unique solution,
leading to wrong reconstruction. We propose the Ergodic Basis Pursuit (EBP)
method, which leverages the statistical properties of the network dynamics
to accurately reconstruct sparse networks. The key idea is that the restricted
isometry property of the associated library matrix—a crucial condition for
ensuring unique reconstruction—can be derived from the ergodic properties of
the network dynamics. We show that when the data length scales quadratically
with node degree and logarithmically with network size the reconstruction is
unique. Compared to traditionalmethods, the EBP reconstructs sparse networks
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using significantly less data and is robust to noise. We validate its effectiveness
using experimental time series from optoelectronic networks.

Supplementary material for this article is available online
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1. Introduction

Networks of coupled dynamical systems are successful models in diverse fields of science
ranging from biology [Win01], chemistry [Kur84] to physics [SPMS17] and neuroscience
[ZLZK11]. The network interaction structure impacts the dynamics [STK05, PvST20], in fact,
many malfunctions are associated with disorders in the network structure [BWB+09]. While
in general one cannot measure the network structure, one might have access to a multivariate
time series of nodes’ states. Therefore, reconstructing the network structure from multivariate
data has attracted much attention by merging dynamical systems techniques [Tak06, Guc14]
and optimisation [CNHT17, WHK+18, ETvSP20].

When the network is moderately large, the amount of data required for successful recon-
struction is large, making the network reconstruction from data a non-trivial task. Indeed, in
general, the network reconstruction becomes ill-posed and unstable [NS08, NRP21]. Recent
strategies aim at incorporating the sparsity in the network interaction structure to formulate a
minimisation problem that searches sparse representations of the input data [NS08, CGT14,
HSWD15,MBPK16,WLG16, PYGS16]. The key idea is that sparsity may promote a decrease
in the data length required for the reconstruction [TW17, STW18]. Nevertheless, ensuring
exact network reconstruction, even in the presence of sparse interactions, remains an import-
ant open problem.

Here, we put forward a newmethod, whichwe call theErgodic Basis Pursuit (EBP)method,
that reconstructs sparse networks from a limited amount of data. Our method adapts the search
for sparse solutions to the statistical properties of the network. We formulate the EBP as a BP
problem adapted to the exponential mixing of the network dynamics.

1.1. Dynamics on complex networks and main assumptions

We consider network dynamics as

xi (t+ 1) = fi (xi (t))+α
N∑
j=1

Aijhij (xi (t) ,xj (t)) , (1)

for each i ∈ [N] := {1, . . . ,N}, where xi represents the state of node i, fi : Mi →Mi corresponds
to the isolated map over a bounded setMi ⊂ R, α is the coupling strength, Aij equals 1 if node
i receives a connection from j and 0 otherwise, and hij : Mi ×Mj →Mi is the pairwise coup-
ling function. We denote the state of the full network as x= (x1, . . . ,xN) ∈MN ≡

∏
i∈[N]Mi,

and x(t+ 1) = F(x(t)). This class of networks can be generalised to higher dimensions and is
common in applications such as laser dynamics [HZRM19]. We consider five assumptions on
the network dynamics.
Assumption (o) The multivariate time series of all nodes {x(t)}nt⩾0 is known. The triple ( f,A,h)
that defines the network dynamics in equation (1) is unknown.
Assumption (i) Network library. The isolated maps fi and the coupling functions hij lie in the
span of an ordered library L= {ϕ1,ϕ2, . . . ,ϕm} where ϕl : MN → R. We consider the polyno-
mials of two variables with degree at most r

L= {1}∪ {xpi }i,p ∪
{
xpi x

q
j

}
i,j,p,q

, (2)

where i, j ∈ [N] with i 6= j and we remove any redundancy, p ∈ [r],q ∈ [r− 1], and p+ q⩽ r.
The cardinality of L is given by m=

(N
2

)(r
2

)
+Nr+ 1. We discuss the ordering of L in

3
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section 5.1. We say that an ordered library L is a network library when the functions depend at
most on pairs of coordinates, see definition 1. Thus, nonzero coefficients in L can be identified
with directed edges in the network structure.
Assumption (ii) Sparse network. We assume that the network structure represented by A is
sparse. This implies a sparse representation of the network dynamics in equation (1) in terms
of the network library defined in assumption (i): for each node i,

xi (t+ 1) =
m∑
l=1

cliϕl (x(t)) for all t⩾ 0, (3)

where ci = (c1i , . . . ,c
m
i ) ∈ Rm is an unknown s-sparse vector, that is, at most s of its entries are

nonzero, see definition 3.
Assumption (iii) Exponential mixing.We assume (F,µ) satisfies exponential mixing conditions
[HS17] for the physical measure µ: given a constant γ > 0 for all ψ ∈ C1(MN;M) and µ-
integrable function φ, there exists K(ψ,φ)> 0 such that for any t⩾ 0

∣∣∣ˆ ψ · (φ ◦F t)dµ−
ˆ
ψdµ

ˆ
φdµ

∣∣∣⩽ K(ψ,φ)e−γt. (4)

This assumption is typical for chaotic dynamical systems.
Assumption (iv) Near product structure. Since we are dealing with pairwise interactions, given
a small ζ > 0 we assume that the network physical measure µ is close to a product measure ν,
i.e. d(µ,ν)< ζ, where d calculates the maximum difference between integrals with respect to
µ and ν over pair of functions in a suitable network library, see section 5.4 for the formal defin-
ition. We assume that each marginal of ν is absolutely continuous with respect to Lebesgue,
and the corresponding density is Lipschitz. In the weak coupling regime, this assumption is
fulfilled [ETvSP20, Tan22]. However, this assumption also holds in other scenarios as in exper-
imental data.

Notation.We introduce the notation [m] := {1,2, . . . ,m}. We denote bβc as is the largest num-
ber p ∈ N satisfying p⩽ β. We use Landau’s notation O(ε) such that: there exists ε0 ⩾ 0 and
K⩾ 0 such that 0⩽ |O(ε)|⩽ Kε for 0⩽ ε⩽ ε0.

The ℓp-norm on Rm is defined for 1⩽ p<∞ as ‖u‖p = (
∑m

l=1 |ul|p)1/p. The Euclidean
inner product on Rm is defined by 〈u,v〉=

∑m
l=1 ulvl for u,v ∈ Rm. For a matrix Φ ∈ Rn×m

and a subset S ⊆ [m], ΦS indicates the column submatrix of Φ consisting of the columns
indexed by S. We denote the transpose of Φ as ΦT. We denote the inner product in L2(µ) as
〈ϕ,ψ 〉µ =

´
ϕψdµ, the induced norm as ‖ψ‖2µ = 〈ψ,ψ 〉µ, and ‖ψ‖∞ := supx∈MN |ψ(x)|. Let

{Mi}i∈[N] be a collection of subsets of R. For J ⊂ [N] denote the canonical projection by

πJ :MN →
∏
i∈J

Mi. (5)

1.2. Reconstruction problem

The network dynamics is encoded on the unknown sparse coefficient vectors {c1,c2, . . . ,cN}.
To obtain these coefficients from the multivariate time series {x(t)}nt⩾0. We recast the problem
as a linear equation. Indeed, we consider the library matrix

4
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Φ(X) =
1√
n


ϕ1 (x(0)) · · · ϕm (x(0))
ϕ1 (x(1)) · · · ϕm (x(1))

...
. . .

...
ϕ1 (x(n− 1)) · · · ϕm (x(n− 1))

 (6)

and arrange the trajectories into a matrix

X̄=

 x1 (1) · · · xN (1)
...

. . .
...

x1 (n) · · · xN (n)

 . (7)

We aim to find them×N matrix of coefficientsC, which has column vectors {c1,c2, . . . ,cN} ⊂
Rm from equation (3), such that

X̄=Φ(X)C. (8)

We identify edges from the reconstructed coefficient vectors. Here, we use the term recon-
struction to refer as obtaining the network dynamics and the network structure.

When the amount of data is large in comparison to the network size, the library matrix
Φ(X)might be full column rank (slim and tall) and equation (8) is overdetermined. So, unique
least square solutions can be sparsely approximated [BPK16, MBPK16, WHK+18], see SI
S-IV for details. For short time series, the matrix Φ(X) is at most full row rank (fat and short),
then equation (8) is underdetermined, having infinite number of solutions if at least one exists.
Sparse approximations can not be found by least-square, requiring another approach. One
approach that exploits the sparsity information is solving for each node i the BP problem

(BP) min
u∈Rm

‖u‖1 subject to Φ(X)u= x̄i, (9)

where x̄i is the ith column X̄. This implementation was used for networks of moderate size
[WLG16, STW18, STWZ20]. For large networks, this may lead to spurious linear dependen-
cies among the columnsΦ(X) [NS08, NRP21], and (9) does not have a unique sparse solution.
In figures 1(b) and (c) although the network is sparse, we show that the BP (in purple) requires a
minimum length of time series n0 that scales with the system size to reconstruct a ring network
in coupled logistic maps. Hence, the BP method is inappropriate for large-scale networks.

Consider the reconstruction problem for the noiseless case as in equation (8). To establish
conditions for the uniqueness of the reconstruction of s-sparse solutions, successful approaches
ensure that any set of 2s columns ofΦ(X) is nearly orthonormal, what is known as the restricted
isometry property (RIP) [CT05]. Our strategy is to introduce a new library matrix that satisfies
this property for a large set of initial conditions. To do this, we first introduce a new library
Lν by applying the Gram–Schmidt (GS) process in the span of L, using an inner product
〈·, ·〉ν defined with respect to the product measure ν (from assumption iv). Then, we observe
that the inner product between pairs of distinct columns of Φν(X) can be recast as Birkhoff
sums between product of basis functions in Lν . Since the network dynamics is ergodic and
ν is close to the network physical measure µ, these inner products are small when the length
of time series is sufficiently long. Finally, we use a concentration inequality to estimate the
minimal length of the time series such that Φν(X) is RIP at the desired sparsity level.
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This strategy is implemented with the following main results:

• Constructing the adapted network library. The new network library Lν , which is orthonor-
mal with respect to the product measure ν, preserves the appropriated sparsity of the original
problem, see theorem 5 in section 6.2.

• EBP. Using this and exploring the decay of correlations of the dynamics, we establish the
minimum length of time series n0 such that Φν(X) has the desired RIP constant. Then, EBP
can be formulated as a BP problem replacing the original library matrix Φ(X) by the new
library matrix Φν(X). Theorem 6 shows that the reconstruction is unique, i.e. EBP exactly
reconstructs the network structure, see section 7.

• Robust reconstruction. Finally, theorem 7 shows that the reconstruction via EBP is robust
against additive measurement noise, see section 8. EBP enables us to treat the noise level as
a tuning parameter to identify the network structure robustly.

Organisation of the paper. The paper is organised as follows. In section 2, we state the
informal statements of the aforementioned results, describing the key steps of the proof. In
section 3 we show numerical experiments in which the EBP outperforms the BP in coupled
logistic maps. Section 4 shows one can apply the EBP also to data coming from experimental
optoelectronic networks; this is possible because EBP has robustness against measurement
noise. In section 5, we briefly recall some established results in compressive sensing [FR13],
exponential mixing dynamics [HS17] and orthogonal polynomials [Sze39], providing all the
necessary background in these three fields. Then, the remainder of the paper is devoted to
proving the main results of the paper.

2. Main results: informal statements

2.1. Constructing the adapted network library

The first step is to introduce the new network library Lν via GS process with respect to the
inner product 〈ϕk,ϕl〉ν =

´
MN ϕkϕldν. More precisely, we perform a GS process in the span

of L and obtain a basis L̂= {φ̂1, . . . , φ̂m}. We define φi = ai φ̂i, where a2i = 1/
´
φ̂2
i dν, so

the new basis Lν = {φi }mi=1 is an orthonormal system with respect to product measure ν. We
call Lν the adapted network library, which preserves the sparse representation of the network
dynamics as follows:

Theorem 5 (Network library is preserved). The GS process maps an s-sparse representation
of F in L to an ωr(s)-sparse representation in the orthonormal network library Lν , where
ωr(s) =

(
b r2c
(
r−b r2c

)
+ r+ 1

)
s.

The proof uses that the GS process is a recursive method involving projections onto pre-
ceding functions. Since ν is a product probability measure, the projections of the GS are split
into products of integrals. Thus, Lν does not have functions that depend on more than two
variables and characterise a network library.

Remark 1. The GS process using the measure µ to obtain a new basis leads to the loss of
sparsity in the representation. Indeed, the new orthonormal basis would contain functions that
depend on all coordinates because µ is not a product measure.

6
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2.2. EBP

The library matrix associated with Lν is denoted as Φν(X) = Φ(Lν ,X). The sth restricted
isometry constant δs = δs(Φν(X)) is defined as the smallest δ ⩾ 0 such that

(1− δ)‖u‖22 ⩽ ‖Φν (X)u‖22 ⩽ (1+ δ)‖u‖22 (10)

for all s-sparse vectors u ∈ Rm. Next, we determine the minimum length of time series such
that Φν(X) is RIP with a desired small δs. Our second result is

Theorem 6.i (Φν(X) satisfies RIP). Consider d(µ,ν)< ζ for sufficiently small ζ. For large
network sizes and a large set of initial conditions if the length of time series n is at least

n0 =O
(
ωr (s)

2 ln(Nr)
)
, (11)

then Φν(X) satisfies (10) with δ2ωr(s) ⩽
√
2− 1.

The proof is presented in section 7 and the key steps are as follows. First, we note that the
Euclidean inner product between pairs of distinct columns of Φν(X) is given by

〈ui,uj〉=
1
n

n−1∑
t=0

(φi ·φj) ◦ (F t (x(0))) , (12)

where ui is the ith column of the matrix Φν(X), and the right-hand side is the Birkhoff sum of
the observable (φi ·φj). Then, we use the coherence [DH01, DET06] defined as

η (Φν) :=max
i ̸=j

|〈vi,vj〉|

over distinct pairs of normalised vi =
ui

∥ui∥2
(Euclidean norm) columns ofΦν(X), where 〈·, ·〉 is

given in equation (12). Using that µ and ν are close, by triangular inequality and the Bernstein-
type inequality, see [HS17], we control the coherence η(Φν) by approximating it by

´
φi ·

φjdµ. Since we know that δs ⩽ η(Φν)(s− 1) for any s⩾ 2 [FR13], we can determine a large
set of initial conditions such that the RIP of Φν(X) is less than

√
2− 1, see section 7.1.1.

Remark 2 (The GS in L versus QR decomposition of Φ(X)). The key idea is to control the
Euclidean inner product 〈·, ·〉 between distinct columns of the library matrix using the inner
product 〈·, ·〉ν in L2(ν). This allows us to orthogonalise functions, ensuring that Φν(X) has a
nearly orthonormal set of columns under the Euclidean inner product. A QR decomposition
directly on Φ(X) using the Euclidean inner product 〈·, ·〉 is insufficient to guarantee the RIP
condition or uniqueness of s-sparse solutions.

Since Φν(X) is RIP, we obtain

Theorem 6.ii (EBP has unique solution). The convex problem that we call the EBP

(EBP) min
u∈Rm

‖u‖1 subject to Φν (X)u= x̄, (13)

has a unique ωr(s)-sparse solution. That is, cν is the only solution of this minimisation problem
when x̄=Φν(X)cν .

The proof follows from theorem 6.i.

7
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Remark 3 (Minimum length of time series for networks). Note that ωr(s) is a linear function
with the sparsity level s, and consequently, it is a linear function of the degree ki of the node
i. Also, ωr(s)< (r+ 1)2s. The degree distribution and the condition in (11) can be used to
estimate the amount of data that ensures the network reconstruction using the EBP method.
Applying equation (11) we obtain the following estimates:

• Erdős–Rényi (ER) networks. The degree distribution is given by a Poisson distribution, so
by concentration inequality [CL06], most nodes have their degree close to the mean degree
〈k〉. Hence, to reconstruct a typical node in ER networks requires (in O(1)) the minimum
length of time series given by

n0 =O
(
(r+ 1)4 〈k〉2 ln(Nr)

)
. (14)

Note that 〈k〉= pN, where p is the probability of including an edge in the graph. In the phase
where the ER network becomes almost sure connected, p= K lnN/N with K⩾ 1 [CL06].
So,

n0 =O
(
(r+ 1)4 ln(N) ln(Nr)

)
.

• Scale-free networks. In scale-free networks, the same growth scaling (14) is valid for low-
degree nodes. However, hubs in Barabási–Albert networks have their degree proportional to
N

1
2 , so it requires

n0 =O
(
(r+ 1)4N ln(Nr)

)
.

• Regular networks. All nodes have the same degree. So, the same growth scaling (14) is
valid for any node in the network.

2.3. Robust reconstruction

We now extend the EBP to measurements corrupted by noise

y(t) = x(t)+ z(t) , (15)

where (zn)n⩾0 corresponds to independent and identically distributed [−ξ,ξ]N-valued noise
process, with probability measure ρξ. The probability measure of the process (yn)n⩾0 is the
convolution µξ := µ ∗ ρξ [Fol13], which converges weakly to µ as ξ→ 0. We assume that
µξ is estimated using a product measure ν. We use that µξ is close to ν to estimate a new
bound for the minimum length of the time series ñ0 such thatΦν(X) satisfies RIP with constant
δ2ωr(s) ⩽

√
2− 1.

Since we measure the corrupted data Y instead of X, we use the mean value theorem to
deduce that

Φν (Y) = Φν (X)+Λ(X, Z̄) , (16)

where ‖Λ(X, Z̄)‖∞ ⩽ mNr2K1ξ and K1 depends on the density of the marginals of ν. The
noisy observation in (15) can be recast as a perturbed version of the orthonormal version of (8)
column-wise

ȳ=Φν (Y)cν + ū, (17)

8
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where cν is the coefficient vector associated to the network library Lν and ū is ℓ2 bounded,
see section 8. Thus, we can state our final result:

Theorem 7 (EBP is robust). If the length of time series n⩾ ñ0, then the family of solutions
{c⋆ν(ϵ)}ϵ>0 to the convex problem (which we call the quadratically constrained EBP)

(QEBP) min
ũ∈Rm

‖ũ‖1 subject to ‖Φν (Y) ũ− ȳ‖2 ⩽ ϵ (18)

satisfies

‖c⋆ν (ϵ)− cν‖2 ⩽ K2ϵ (19)

for some K2 > 0 as long as ϵ⩾ ϵ⋆(n,N,m,cν), where

ϵ⋆ :=
√
nξ
(
1+mNr2K1‖cν‖∞

)
.

We probe the performance of the EBP against different synthetic data of coupled logistic
maps, and experimental data. In these experiments, ν is obtained using Gaussian kernel density
estimation from {x(t)}nt⩾0, see details in SI S-III. The GS process in the span of L is computed
using the inner product 〈·, ·〉ν with respect to the estimated product measure ν. Then, we con-
struct Φν(X) using the library Lν .

To quantify the reconstruction performance, we use different metrics. First, the relative
error ‖c⋆ν − cν‖2 The second metric is defined in terms of the estimated graph encoded in
{c1, . . . ,cN}. We create a weighted edge between node i and j using

Wij =max
k∈Sj

cki . (20)

We reconstruct a weighted subgraph using the node i, its neighbours, and the entry’s mag-
nitude of ci as the edge weight; see details in the SI S-I.2. Then, we introduce a weighted
false link proportion for each node. LetMi and M̂i be the subset of edges node i shares with
its neighbours of the original and estimated graph, respectively. The weights are denoted by
{Wij}i,j. So, we calculate the proportion of false positive (FP) and false negative (FN) at node
i as:

FPi =

∑N
j=1WijχM̂i∩Mc

i
((i, j))∑N

j=1

(
WijχM̂i∩Mc

i
((i, j))+χM̂c

i∩Mc
i
((i, j))

) ,
FNi =

∑N
j=1χM̂c

i∩Mi
((i, j))∑N

j=1χMi ((i, j))
,

(21)

where χU is the indicator function of the subset U . We denote the average over nodes of the
FP and FN proportions as 〈FP〉 and 〈FN〉, respectively.

To quantify reconstruction performance of the network discarding the weights, we utilise
false link proportions given by

FP=
number of edges (i, j) with Âij = 1 and Aij = 0

number of edges (i, j) with Aij = 0
,

FN=
number of edges (i, j) with Âij = 0 and Aij = 1

number of edges (i, j) with Aij = 1
,

(22)

9
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where A and Â correspond to the adjacency matrix of the original and estimate network struc-
ture, respectively. We say that the reconstruction was successful when FPi = FNi = 0 for all
i = 1, . . . ,N or FP= FN= 0.

3. Numerical experiment: coupled logistic maps

To compare the reconstruction performance of the EBP against the classical BP, we consider
coupled logistic maps, fi(xi) = axi(1− xi) with a= 3.990, via the pairwise coupling function
hij(xi,xj) = xi xj with overall coupling strength α= 5× 10−4. Figure 1(a) illustrates a ring net-
work with N= 10 nodes.

In figure 1(b), we evaluate the reconstruction performance employing the BP and the EBP
as we increase the length of time series n. The convex minimisation problem is solved by
employing the CVXPY package [DB16, AVDB18], in particular, ECOS solver [DCB13]. We
consider the network library in (2) with the degree at most 3, so by construction, there exists a
sparse representation of the network dynamics in this library. Let us denote n0 as the length of
time series such that we have a successful reconstruction, i.e. FP= FN= 0, see equation (22).
We observe that the FP of the BP goes to zero when n0 ≈ 400, roughly tenfold the system size.
On the other hand, EBP outperforms the BP method, reducing the necessary length of time
series to reconstruct the network. To evaluate the scaling with respect to the system size, we
calculate n0 as we increase N. In figure 1(c), we confirm that n0 scales with the system size
for BP instead of lnN of the EBP method. In section 3.1, we demonstrate that our estimates of
n0 predict the numerical observation when we vary the maximum degree of different network
structures.

3.1. Coupled logistic maps under different network structures

Here, we consider a different coupling function given by hij(xi,xj) = x2j and analyse for distinct
network structures, see figure 2. We observe that the EBP method outperforms the BP on all
occasions. If we compare the profile of the curves, all curves look similar to each other. The
difference is that in (b) and (d), EBP requires less data to reconstruct the network structure.
This phenomenon was predicted by our estimate in the expression (11). Since the maximum
degree is larger, the sparsity level s of the target sparse vector is also larger, implying that n0
grows.

3.2. Coupled logistic maps under noise

We evaluate the performance of both methods when the network trajectory is corrupted by
noise, as described in equation (15). To quantify the performance, we define the relative error
E(ϵ) defined to be ‖c⋆(ϵ)− c‖2 for the quadratically BP and ‖c⋆ν(ϵ)− cν‖2 for the quadratically
EBP (QEBP). The relative error is node-dependent, we report the average over nodes in the
network, denoted as 〈E(ϵ)〉.

The left panel in figure 3 shows the mean relative error with respect to ϵ. By theorem 7,
the mean relative error should change dependence with respect to ϵ, satisfying equation (19)
once ϵ is at least equal to the noise level, which is quantified by ‖ū‖2 in equation (17). We
observe that QEBP correctly captures the change of behaviour as illustrated by the inset of
the left panel. The vertical dashed line represents ϵ⋆, the value of ϵ at which the mean relative
error reaches its minimum over the interval [10−4,10−2]. The right panel of figure 3 displays

10
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Figure 1. Ergodic Basis Pursuit performance requires only short time series. (a)
Illustration of a ring graph with N= 10. (b) False positive (FP) of the reconstructed
ring network with respect to the length of time series n for a network size N= 40. (c)
The minimum length of time series n0 for a successful reconstruction versus system size
N. Basis pursuit (BP) and Ergodic Basis Pursuit (EBP) are shown in (purple) squares and
(green) circles, respectively. The network dynamics parameters are a= 3.990 and coup-
ling strength α= 5× 10−4. The shaded area corresponds to the standard deviation with
respect to 10 distinct initial conditions uniformly drawn in [0,1]N. The (black) dashed is
the scaling lnN for reference. The kernel density estimation of ν is used with bandwidth
χ= 0.05. The multivariate time series is generated without noise.

ϵ⋆ as the length of time series n increases. The noise level ‖ū‖2 is computed plugging the
true coefficient cν into equation (17). The behaviour of ϵ⋆ confirms the bounds established in
theorem 7.

4. Reconstruction of experimental optoelectronic networks

The data is generated from a network of optoelectronic units whose nonlinear component is a
Mach–Zehnder modulator [HZRM19]. The network is modelled as

xi (t+ 1) = βIθ (xi (t))−α
17∑
j=1

LijIθ (xj (t)) mod 2π, i = 1, . . . ,N, (23)

where the normalised intensity output of the Mach–Zehnder modulator is given by Iθ(x) =
sin2(x+ θ), x represents the normalised voltage applied to the modulator, β is the feedback
strength, θ is the operating point set to π

4 and L is the Laplacian matrix — Lij = δijki −Aij,
where δij is the Kronecker delta and ki is the ith node degree. The experiments were done
by varying the coupling strength between the nonlinear elements in an undirected network,
depicted in figure 4(a). We will show results for coupling α= 0.171875.

We have access to the noisy experimental multivariate time series {y1(t), . . . ,y17(t)}264t=1,
whose return map is depicted in figure 4(b). Thus, we are naturally in the setting of (18) the
randomly perturbed version of the EBP. For experimental data the noise level ξ is unknown.
So, we use the constraint ϵ in (18) as a parameter to tune and search for the correct incoming
connections.

The key idea is as follows. For large values of ϵ we have that c⋆ν(ϵ) = 0 is a solution to (18).
Next, for moderate values of ϵ, the coefficients corresponding to the isolated dynamics appear

11
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Figure 2. Comparison between BP and EBP under different network structures. (a) Ring
graph with maximum degree ∆= 2. (b) The minimum length of time series n0 for a
successful reconstruction versus system size N, and similarly in (d) and (f). (c) Lattice
graph with maximum degree ∆= 6. (e) Star graph where the maximum degree grows
with the system size. Basis pursuit (BP) and Ergodic Basis Pursuit (EBP) are shown in
(purple) squares and (green) circles, respectively. The network dynamics parameters are
a= 3.990 and coupling strength α= 1× 10−3/∆, so the coupling term in the network
dynamics is normalised as we vary N. The shaded area corresponds to the standard
deviation with respect to 10 distinct initial conditions uniformly drawn in [0,1]N. The
kernel density estimation of ν is used with bandwidth χ= 0.05. The multivariate time
series is generated without noise.

in c⋆ν(ϵ). As we decrease ϵ, we start observing correct connections that are present over mul-
tiple values of ϵ. We aim to identify those robust connections. This can be formulated as an
algorithm that we call relaxing path, which is described in appendix A.1. The algorithm con-
sists in solving (18) for multiple values of ϵ while checking which entries of c⋆ν(ϵ) that corres-
pond to connections persist as ϵ varies.

To apply these ideas to the experimental data, we first perform a pre-processing. Most of the
data are concentrated in a portion of the phase spacewith scarce excursions to other parts. Thus,
we first restrict the data to a portion of the phase space mostly filled, see further details in SI
S-II. After this procedure, we obtain a parabolic shape of the return map that corresponds to the

12
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Figure 3. Ergodic Basis Pursuit is robust against noise. The left panel displays the mean
relative error E(ϵ) over the set of nodes as the parameter ϵ is increased. The performance
error of the quadratically Basis Pursuit (BP) grows more rapidly than the quadratically
Ergodic Basis Pursuit (EBP), shown in (purple) squares and (green) circles, respectively.
The inset panel shows that the ⟨E(ϵ)⟩ for the EBP attains a minimum at ϵ⋆. Each point
corresponds to the average over 10 distinct initial conditions, and the shaded area is the
standard deviation. The network is a ring with N= 16 nodes. The right panel shows
ϵ⋆ and the noise level ∥ū∥2 as the length of the time series is increased. The kernel
density estimation of ν is used with bandwidth χ= 0.05. The multivariate time series
is generated without noise, and the noise is generated as i.i.d. withdrawn by a uniform
distribution from the interval [−ξ,ξ]N with ξ = 10−4.

Figure 4. Network dynamics of experimental optoelectronic data. (a) Original optoelec-
tronic networkwith two groups of nodes—dark grey node is marked for future reference.
(b) Return map for all nodes in the network. (c) Densities function ρi for each node i
(in light colour) estimated using each node’s time series. Clustering density estimation
displays two resulting densities corresponding to two groups of nodes, in blue and red.
The density estimation utilises a Gaussian kernel with bandwidth χ= 0.05.

restriction of the original optoelectronic network dynamics F onto the interval A= [3.4,4.5]
over 264-time steps, which we denote F̃= F|A. Hence, F̃ lies in the span of the quadratic
polynomials, andwe useL= {ϕpi (xi) = xpi : p= 0,1,2}. To perform aGS process, we estimate
the ν using all trajectories of a group of nodes through kernel density estimator, improving

13
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Figure 5. Reconstruction of the original network from experimental data. (a) Relaxing
path algorithm is performed in the node (in dark grey) from the left panel. There are three
different relaxing parameter values, where the edges are coloured accordingly: the true
edges (in grey) and false positives (in orange) while the thickness is the edge weight,
see equation (20). (b) The average over nodes of the false positive ⟨FP⟩ (in orange)
and false negative ⟨FN⟩ (in purple) proportions of the reconstructed network versus the
parameter ϵ. We varied the ϵ parameter through 25 values equally spaced in the interval
E = [0.20,0.33]. We employ ECOS convex optimisation solver [DCB13] to solve (18).

the estimate accuracy. We assume dν =
∏5

i=1 ρ1(xi)dxi ×
∏17

i=6 ρ2(xi)dxi is a product of two
densities, where ρ1 is one-dimensional Gaussian kernel density using the trajectories of nodes
1–5, illustrated in blue, and ρ2 is the corresponding density of the remaining nodes, illustrated
in red in the right panel of figure 4.

The left panel of figure 5 displays the relaxing path algorithm probing a node (the marked
dark grey node in figure 4) for three distinct ϵ values. For each ϵ, we use (20) to construct
from c⋆ν(ϵ) the weighted subgraph corresponding to the probed node’s neighbours. As we vary
ϵ all edge weights decrease in magnitude (edge thickness), in particular false connections (in
orange) that are not robust against variation of ϵ. In fact, for the smallest ϵ (in the left) we
observe a few false connections whose edge weights are smaller than the true connections (in
grey). As we increase ϵ, a few false connections start to vanish. Further increasing ϵ only the
robust connections are present and the algorithm stops. Since the algorithm is node-dependent,
we quantify the overall reconstruction performance in the parameter interval via a weighted
false link proportion for each node, expressed in the equation (21), and then average over all
17 nodes. The right panel of figure 5 shows that the algorithm identifies the original network
structure successfully within an interval of the parameter ϵ.

5. Mathematical analysis and preliminaries

In the remainder of this paper, we prove our main results theorems 5–7. To this end, we briefly
recall some definitions and established results from compressive sensing [FR13] and exponen-
tially mixing dynamical systems [HS17].

5.1. Network library

Consider a network dynamics in (1). Suppose that for each i ∈ [N] there exists mi ∈ N such
that the isolated map fi is in the span of the set {ϕpi : p ∈ [mi]} of functions ϕpi :Mi → R, i.e.

14
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fi =
∑mi

p=1 c
p
i ϕ

p
i . We denote the collection of all these functions as

I = {ϕpi : i ∈ [N] ,p ∈ [mi]} .

Similarly, for each i, j ∈ [N] there exist mi,mj ∈ N such that the pairwise coupling function
hij lies in the span of the set {ϕpqij : p ∈ [mi],q ∈ [mj]} of functions ϕpqij :Mi ×Mj → R, i.e. hij =∑mj

q=1

∑mi

p=1 c
pq
ij ϕ

pq
ij . We denote the collection of all these functions as

P =
{
ϕpqij : i, j ∈ [N] ,p ∈ [mi] ,q ∈ [mj]

}
.

We remove any redundancy in the collections I and P . In particular, we make explicit the
constant function 1 to avoid a trivial redundancy. We define the network library:

Definition 1 (Network library). We call network library the collection of functions

L= {1}∪I ∪P (24)

that represent the network dynamics map Fα in (1).

The network library can capture the network structure because the basis functions corres-
pond to pairwise interactions. For the node i dynamics, a nonzero coefficient of ϕpqij ∈ L are
associated with an edge between node i and j in the network. More precisely, the node i of the
network is identified by the labelled coordinate on Mi. The following definition identifies the
edge:

Definition 2 (Edge via network library). Let i ∈ [N] and Fi has a representation in L. Let
Li ⊂ L be a subset that contains all necessary basis functions such that Fi ∈ span Li. If ϕ

pq
ij ∈

Li for j ∈ [N], p ∈ [mi],q ∈ [mj], then there is an directed edge from j to i.

A priori, the network library has no natural ordering, so we can introduce an ordered net-
work library. We choose the following ordering: it first disposes of the constant function.
Then, it is followed by the functions in I, which are ordered fixing the i ∈ [N] and let-
ting run the index p ∈ [mi]. Finally, the set P is ordered, fixing an element of the index set
{(i, j) ∈ [N]× [N]} (which is organised in lexicographic order) and running through the index
set {(p,q) ∈ [mi]× [mj]} (also organised in lexicographic order), i.e.

Lo =
{
1,ϕ11 (x1) , . . . ,ϕ

m1
1 (x1) ,ϕ

1
2 (x2) , . . . ,ϕ

m2
2 (x2) , . . . ,ϕ

1
N (xN) , . . . ,ϕ

mN
N (xN) ,

ϕ1111 (x1,x1) , . . . ,ϕ
mNmN
NN (xN,xN)

}
.

(25)

We abuse notation and denote the ordered network library simply as L.
We also define an s-sparse representation of the network dynamics Fα in a network library.

Let us define an s-sparse vector.

Definition 3 (Sparse vector). A vector u ∈ Rm is said to be s-sparse if it has at most s nonzero
entries, i.e.

|
{
j ∈ {1, . . . ,m} : uj 6= 0

}
|⩽ s.

Each node in the network has its sparsity level in the library, but we consider an upper
bound in the sparsity level to depend only on one parameter s. To make notation easier in next
definition, let L= {ϕl :MN → R : l ∈ [m]} be the network library, where m is its cardinality.

15
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Definition 4 (Sparse network dynamics representation). Fα :MN →MN has an s-sparse
representation in L if there exists a set {c1, . . . ,cN} ⊂ Rm of s-sparse vectors such that the
coordinate i ∈ [N] is given by Fi =

∑m
l=1 c

l
iϕl, where ci = (c1i , . . . ,c

m
i ) ∈ Rm.

5.2. Sparse recovery

Here we outline the results of sparse recovery employed in the paper. The next proposition
states an equivalent expression to the restricted isometry constant.

Proposition 1. The sth restricted isometry constant δs is given by

δs = max
S⊂[m],card(S)⩽s

‖ΦT
SΦS − 1s‖2,

ΦS is the submatrix ofΦ composed by the columns supported in S ⊂ [m]. Moreover, given 0<
ε < 1 such that ‖ES‖2/‖ΦS‖2 ⩽ ε with S ⊂ [m],card(S), then Φ̂ = Φ +E has sth restricted
isometry constant δ̂s = δ̂s(Φ̂) given by

δ̂s ⩽ (1+ δs)(1+ ε)
2 − 1.

Proof. See proof in [FR13, HS10].

Let the coherence of a matrix Φ be given by η(Φ) :=maxi ̸=j |〈vi,vj〉| defined over distinct
pairs of normalised (Euclidean norm) columns of the matrix Φ. The coherence upper bounds
the restricted isometry constant, and we use this fact in our proof:

Proposition 2 (Coherence bounds restricted isometry constant). If the matrix Φ ∈Mn×m

has ℓ2-normalised columns {v1, . . . ,vm}, then

δ1 = 0, δ2 = η, δs ⩽ η (s− 1) ,s⩾ 2.

Proof. See proof in [FR13].

The uniqueness of solutions of the EBP is a consequence of the following results.

Theorem 1 (Uniqueness of noiseless recovery [Can08, FR13]). Suppose y=Φc where c ∈
Rm is an s−sparse vector. Also, suppose that the 2sth restricted isometry constant of the matrix
Φ ∈Mn×m satisfies δ2s <

√
2− 1. Then c is the unique minimiser of

min
u∈Rm

‖u‖1 subject to Φu= y.

Proof. See proof in [CT05, FR13].

In case of measurement corrupted by noise, the following result holds:

Theorem 2 (Noisy recovery). Suppose y=Φc+ z with ‖z‖2 ⩽ ε, and denote c⋆ the solution
to the convex minimisation problem

min
ũ∈Rm

‖ũ‖1 subject to ‖y−Φ ũ‖2 ⩽ ε. (26)

Assume that δ2s <
√
2− 1. Then the solution to (26) obeys

‖c⋆− c‖2 ⩽ K0s
−1/2‖c− cs‖1 +K1ε,

for constants K0,K1 > 0 and cs denote the vector c with all but the s−largest entries set to
zero.
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Proof. See proof in [Can08, FR13].

5.3. Exponential mixing condition

We consider a class of chaotic dynamical systems—exponentially mixing systems—that satis-
fies a concentration inequality obtained in [HS17]. Here, we state this result applied to network
dynamics.

Definition 5 (Exponential mixing condition). The network dynamics (F,µ) satisfies the
exponential mixing condition for some constant γ > 0 if for all ψ ∈ C1(MN;R) and φ ∈ L1(µ)
there exists a constant K(ψ,φ)> 0 such that∣∣∣ˆ

MN

ψ · (φ ◦F n)dµ−
ˆ
MN

ψdµ
ˆ
MN

φdµ
∣∣∣⩽ K(ψ,φ)e−γn, n⩾ 0. (27)

We state an adapted version for network dynamics of the concentration inequality [HS17]
for C1(MN;R) observables.

Theorem 3 (Bernstein inequality for exponential mixing network dynamics [HS17].). Let
(F,µ) be an exponential mixing network dynamical system on MN for some constant γ > 0.
Moreover, let ψ ∈ C1(MN;R) be a function such that

´
MN ψdµ= 0 and assume that there exist

ς > 0, κ > 0 and σ ⩾ 0 such that ‖Dψ‖∞ ⩽ ς , ‖ψ‖∞ ⩽ κ, and ‖ψ2‖2µ ⩽ σ2. Let N ⊂ N be
defined as

N := [3,∞)
⋂{

p ∈ N : p2 ⩾ 808(3ς +κ)
κ

and
p

(lnp)2
⩾ 4

}
.

Then, for all ε> 0 and all

n⩾ n0 :=max
{
e

3
γ ,min

N
p
}
, (28)

we have

µ

(
x0 ∈MN :

∣∣∣1
n

n−1∑
k=0

ψ ◦F k (x0)
∣∣∣⩾ ε

)
⩽ 4e−θ(n,ε,σ,κ), (29)

where

θ (n,ε,σ,κ) :=
nε2

8(lnn)
2
γ (σ2 + εκ/3)

.

5.4. Semimetric between probability measures

We consider exponentially mixing systems that have near product structure. To be more pre-
cise, we introduce a semimetric between probabilities measures suitable to our results. Let
M(MN) be the set of probability measures on MN. We introduce a probability semimetric
[Rac91] between measures on M(MN) over a reference finite set of functions K that is com-
posed by functions on the given network library L. In other words, elements of K are of the
form ϕpqij ◦πJ with i, j ∈ J ⊂ [N] and πJ is the canonical projection on the subset J and
defined in equation (5). They are integrated over a lower dimensional space than the ambient
spaceMN, which motivates to define a semimetric out of it, rather than using other metrics on
M(MN).
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Definition 6. For any µ,ν ∈M(MN) we define the semimetric over a reference finite set of
functions K as

dK (µ,ν) = max
ψ∈K

∣∣∣∣ˆ
MN

ψdµ−
ˆ
MN

ψdν

∣∣∣∣ . (30)

dK(µ,ν) is a semimetric and not a metric because: it is symmetric, it satisfies the triangular
inequality, and when µ= ν implies that dK(µ,ν) = 0 but not the converse. Indeed, consider
the set K given by

K =

{
ψi :Mi → R : i ∈ [N] ,

ˆ
ψi dxi = 0,ψi (0) = 0

}
,

where we assume that 0 ∈Mi for any i ∈ [N]. Moreover, let δ0 be the Dirac measure at 0.
Consider the following two product measures

µ= LebN ν = δN0 .

It follows that dK(µ,ν) = 0 but µ 6= ν.
In what follows in section 7, it is useful to consider the following finite set K = (L ·L),

where (L ·L) = {(ψi ·ψj) : ψi,ψj ∈ L}, removing any redundancy.

5.5. Orthogonal polynomials

We recall some results for orthonormal polynomials. First, let us state an inequality for
orthonormal polynomials in one variable [Sze39, FO14]. Here we consider a system of
orthonormal polynomials {φp(x)}p⩾0 with respect to a measure ν that is absolutely continuous
to Lebesgue, whose density is ρ. Since we are in the one variable case, the index p corresponds
to the degree to which the coefficient xp is positive.

Theorem 4 (One variable Korous inequality [Sze39, FO14]). Let {φp(x)}p⩾0 be a general-
ised system of orthonormal polynomials w.r.t. the density λ(x) and {φ̃p(x)}p⩾0 be a system of
orthonormal polynomials w.r.t. the density λ̃(x) such that

λ(x) = ρ(x) λ̃(x) ,

with both density functions defined on the segment (a, b), where ρ(x)⩾ ρ0 > 0 and ρ is
Lipschitz with constant Lip(ρ). Then the following estimation

|φp (x) |⩽
1
ρ0

|φ̃p (x) |+
KLip(ρ)

ρ
3/2
0

(|φ̃p (x) |+ |φ̃p−1 (x) |) , (31)

where ρ0 =minx∈(a,b) ρ(x), x ∈ (a,b) and K=max{|a|, |b|}.

We also recall a result for the product of orthonormal polynomials [DX14].

Proposition 3 (Proposition 2.2.1 in [DX14]). Let ρ(x1,x2) = ρ1(x1)ρ2(x2), where ρ1 and ρ2
are two weight functions of one variable. Let {φp1(x1)}∞p⩾0 and {φ

q
2(x2)}∞q⩾0 with p,q ∈ N be

sequences of orthogonal polynomials with respect to ρ1 and ρ2, respectively. Then a mutu-
ally orthogonal basis of the space of orthogonal polynomials of degree r with respect to ρ is
given by:

φpq12 (x1,x2) = φp1 (x1)φ
q
2 (x2) , 0⩽ p+ q⩽ r.
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Furthermore, if {φp1(x1)}∞p⩾0 and {φ
q
2(x2)}∞q⩾0 are orthonormal with respect to ρ1 and ρ2,

respectively, then so is φpq12(x1,x2) with respect to ρ.

5.6. GS process

Let ν be a measure onMN that is absolutely continuous with respect to Lebesgue. We address
the problem of orthonormalizing the ordered network library L with respect to a measure ν.
Let us denote the inner product w.r.t. ν as

〈ϕk,ϕl〉ν =
ˆ
MN

ϕkϕldν ‖ϕl‖2ν = 〈ϕl,ϕl〉ν . (32)

We consider the GS process, which is a recursive method given as

φ̂1 = ϕ1

φ̂k+1 = ϕk+1 −
k∑
l=1

〈ϕk+1,φl〉νφl,

φk :=
φ̂k

‖φ̂k‖ν
, k⩾ 1.

(33)

From the ordered network libraryL the induced libraryLν = {φk :MN → R : k ∈ [m]} is given
by each kth orthonormal function written as a linear combination, whose coefficients are pro-
jections on the preceding orthonormal functions.

6. Network library is preserved under the GS process

To ensure that the EBP has a unique solution, the library matrix used in the reconstruction must
satisfy the RIP, as defined in equation (10). However, a priori, the library matrix associated
with the network library L, in which Fα has a sparse representation, does not satisfy RIP. Our
strategy is to introduce a new library Lν that is orthonormal with respect to a suitable measure
ν in L2(ν) such that the library Φν(X) satisfies RIP.

6.1. The set of pairwise polynomials of degree at most r

We consider a network library given by polynomials in N variables of degree at most r. This
also can be applied to trigonometric polynomials in N variables.

Given r⩾ 2, let us denote the exponent vector set

Vr :=
{
(p,q) ∈ [r− 1]2 : p+ q⩽ r

}
, (34)

which is organised in graded lexicographic order and denoted as (p ′,q ′)≺ (p,q). Moreover,
denote

Ir = {ϕpi (xi) = xpi : i ∈ [N] ,p ∈ [r]} ,

Pr =
{
ϕpqij (xi,xj) = xpi x

q
j : i, j ∈ [N] , i 6= j,(p,q) ∈ Vr

}
,
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where we remove any redundancy. We can unify the notation for both if we denote elements of
Ir as ϕp0i0 (xi,xj) = xpi . We define the set of pairwise polynomials in N variables with a degree
at most r

L= {1}∪Ir ∪Pr

=
{
ϕpqij (xi,xj) = xpi x

q
j : i ∈ [N] , j ∈ {0}∪ [N] , i 6= j

p= {0}∪ [r] ,q ∈ {0}∪ [r− 1] ,

p+ q⩽ r
}
,

whose cardinality is given bym=
(N
2

)(r
2

)
+Nr+ 1. In fact, the independent polynomial 1 con-

tributes with one term. The cardinality of Ir is Nr because for each i ∈ [N] there are r poly-
nomials in the subset {φp0i0 }p∈[r]. Finally, for Pr fix a pair i, j ∈ [N] with i 6= j. For each pair,
the degree of the pairwise polynomial is p+ q= d ∈ [r]. Since they are constrained through
their sum, for each degree d ∈ [r], the first component in the sum p ∈ {1, . . . ,d− 1}, which
also determines the value of q correspondingly. Then, there are total of

∑r
d=1 d− r possible

combinations. Rewriting it

r∑
d=1

d− r=
r(r+ 1)

2
− r

=
r(r− 1)

2

=

(
r
2

)
.

Running over all possible distinct pairs i, j, we obtain the total cardinality of Pr equal to(N
2

)(r
2

)
.

Here we adopt the following ordering: fix j,q= 0 and start with p= 0. Then, for each i ∈
[N], we run through p ∈ [r], covering all monomials that depend on one variable. Subsequently,
for each element in {(i, j) ∈ [N]2 : i ∈ [N], j = i+ 1, . . . ,N} (organised in lexicographic order),
we run through the exponent vector set Vr.

6.2. Network library is preserved

Given a trajectory {x(t)}nt=0 that is sampled from µα, the natural choice would be to orthonor-
malise with respect to µα itself. However, it does not necessarily preserve the sparsity of the
representation of Fα in the network libraryL. The next theorem states that the GS process over
L with respect to a product measure ν introduces a new network library Lν , and also, Fα is
still sparsely represented in Lν . In this new basis, the sparsity level depends on the maximum
degree r and the sparsity level of the representation in L.

Denote the product measure as ν =
∏N

i=1 νi and denote

E(xpi ) =
ˆ
M
xpi dνi (xi) , i ∈ [N] . (35)

Consider the following

Theorem 5 (Network library is preserved). Let ν be a product measure on MN that is abso-
lutely continuous with respect to the Lebesgue measure. The Gram-Schmidt process maps an
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s-sparse representation of Fα in the network library L to an ωr(s)-sparse representation in the
orthonormal network library Lν in L2(ν), with

ωr (s) =
(
b r
2
c
(
r−b r

2
c
)
+ r+ 1

)
s. (36)

We divide the proof into two parts: first, we show that the GS process maps the network
library L to another network library Lν that is orthonormal w.r.t. ν. The second part is to
calculate the sparsity level of the representation of Fα in Lν .

6.2.1. Proof of theorem 5. When we perform the GS process in L2(ν) as in (33), to orthonor-
malise L with respect to the measure ν, the first element in Lν is evidently 1. Following the
order in the network library L in (2), we can show that a general form of all polynomials that
depend on only one variable is given by the proposition below.

Proposition 4 (Formula of orthonormal functions in one variable). Let i ∈ [N] and p ∈ [r].
Then any φp0i0 ∈ Lν is given by

φ̂p0i0 (xi) = xpi −E(xpi )−
p−1∑
l=1

〈xpi ,φ
l0
i0〉νφl0i0 (xi) ,

φp0i0 (xi) =
φ̂p0i0 (xi)

‖φ̂p0i0 ‖ν
,

(37)

and

E
(
φ̂p0i0 (xi)

)
= E

(
φp0i0 (xi)

)
= 0. (38)

We prove this statement in two parts. First, we continue the GS process over the ordering
of L. So, fix i= 1 and run over p ∈ [r]. The next term after the constant function 1 is

φ̂10
10 (x) = ϕ1010 (x1)−〈ϕ1010,1〉ν1

= x1 −E(x1) ,

and consequently, φ10
10(x1) =

φ̂10
10(x1)

∥φ̂10
10∥ν

, which satisfies (37) and (38). To calculate the next ele-

ment φ20
10(x1), we follow (33):

φ̂20
10 (x1) = ϕ2010 (x1)−〈ϕ2010,1〉ν1−〈ϕ2010,φ10

10〉νφ10
10 (x1)

= x21 −E
(
x21
)
−〈x21,φ10

10〉νφ10
10 (x1) ,

and consequently, φ20
10(x1) =

φ̂20
10(x1)

∥φ̂20
10∥ν

. Following the ordering, we run over all functions of the

form φp010, repeating the GS process (33) to show that they satisfy (37) and (38).
The next functions involve coordinates that are different from i= 1. To prove that these

functions satisfy (37) and (38), we run a recursive argument. Fix i= 1 and j= 2, and let us
consider the orthogonal function for p ∈ [r] using GS process:

φ̂p020 (x2) = xp2 −E(xp2)−
r∑

l=1

〈xp2,φ
l0
10〉νφl010 (x1)−

p−1∑
l=1

〈xp2,φ
l0
20〉νφl020 (x2) .

Note that if all inner products of the form 〈xp2,φl010〉ν are zero, above equation satisfies (37).
We state the following lemma:
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Lemma 1. Let i, j ∈ [N], p,q ∈ [r]. Suppose thatφp0i0 is an orthonormal polynomial with respect
to ν, i.e. it satisfies (37) and φp0i0 ∈ Lν . Then,

〈ϕq0j0 ,φ
p0
i0 〉ν = 0.

whenever i 6= j.

Proof. By Fubini’s theorem, we have that

〈ϕq0j0 ,φ
p0
i0 〉ν =

ˆ
MN

ϕq0j0 (xj)φ
p0
i0 (xi)dν (x1, . . . ,xN)

= 〈ϕq0j0 ,1〉ν〈φ
p0
i0 ,1〉ν .

Since φp0i0 satisfies (37), it is orthonormal to 1, and the claim holds.

We use above lemma 1 to the inner product 〈xp2,φl010〉ν , whereφl010 satisfies (37).We conclude
that for any p ∈ [r]: φp020 also satisfies (37) and (38). We run iteratively, choosing i ⩾ 2 and
j = i + 1, and repeating the argument to conclude the proof of proposition 4.

For polynomials involving two variables, it is enough to construct them from the orthonor-
mal polynomials in one variable as follows:

Proposition 5 (Formula of orthonormal functions in two variables). Let r⩾ 2, i, j ∈ [N]
with i 6= j and (p,q) ∈ Vr. Then

φpqij (xi,xj) = φp0i0 (xi)φ
q0
j0 (xj) . (39)

Proof. The measure ν =
∏N

i=1 νi. For each marginal ν i, let ρi be the density function. Then,
we apply proposition 3 for every distinct pair of nodes i, j ∈ [N].

To constructLν we combine propositions 4 and 5. TheGS process induces a set of orthonor-
mal polynomials in one variable that satisfies the ordering of L. The ordering of polynomials
in two variables in Lν also satisfies, by construction, the ordering in L. This proves the first
part of theorem 5.

To prove the second part of the theorem, we also use that Lν is constructed via the GS
process. Let u,uν ∈ Rm be vectors with m=

(N
2

)(r
2

)
+Nr+ 1 given by

u= (1,x1, . . . ,x
r
1,x2, . . . ,x

r
2, . . . ,x1x2, . . . ,xN−1x

r
N)

and

uν =
(
1,φ10

10 (x1) , . . . ,φ
r0
10 (x1) ,φ

10
20 (x2) , . . . ,φ

r0
20 (x2) , . . . ,

φ11
12 (x1,x2) , . . . ,φ

r−1,1
N−1,N (xN−1,xN)

)
.

Each coordinate of u is an element of L that can be written as a linear combination of
elements in Lν . In fact, we rewrite (37) as
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xpi = ‖φ̂p0i0 ‖νφ
p0
i0 (xi)+E(xpi )+

p−1∑
l=1

〈xpi ,φ
l0
i0〉νφl0i0 (xi) , (40)

which expresses the polynomials in one variable as a linear combination of orthonormal poly-
nomials in one variable. For the two variables polynomials of the form xpi x

q
j , we replace each

term in the multiplication by (40) and

(i) Replace any multiplication of orthonormal polynomial of the form φp0i0 (xi)φ
q0
j0 (xj) by the

orthonormal polynomial in two variables equation (39).
(ii) Use these identities that follow from Fubini’s theorem:

〈xpi ,φ
l0
i0〉ν〈x

q
j ,φ

k0
j0 〉ν = 〈xpi x

q
j ,φ

lk
ij 〉ν ,

E(xpi )〈x
q
j ,φ

k0
j0 〉ν = 〈xpi x

q
j ,φ

k0
j0 〉ν

and

‖φ̂p0i0 ‖ν‖φ̂
q0
j0 ‖ν = ‖φ̂pqij ‖ν .

Then, we can recast the GS process as the following linear equation

uT = uTνRν , (41)

where T denotes the transpose and Rν ∈ Rm×m is a triangular matrix given as

Rν =

1 V1 V2

0 U1 U1
2

0 0 U2

 . (42)

Here V1 ∈ RrN and V2 ∈ R(
N
2)(

r
2) are given by

V1 =
(
v1 v2 . . . vN

)
V2 =

(
v12 v13 . . . vN−1,N

)
,

where for each i, j ∈ [N] with i 6= j, vi ∈ Rr and vij ∈ R(
r
2):

vi = (E(xi) , . . . ,E(xri ))

and

vij =
(
E(xi)E(xj) ,E(xi)E

(
x2j
)
,E
(
x2i
)
E(xj) , . . . ,E

(
xr−1
i

)
E(xj)

)
.

Also, U1 ∈ RNr×Nr and U2 ∈ R(
N
2)(

r
2)×(

N
2)(

r
2) are block diagonal matrices defined as follows:

U1 = diag(U1, . . . ,UN) U2 = diag(U12, . . . ,UN−1,N) ,
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where for each i, j ∈ [N], Ui ∈ Rr×r and Uij ∈ R(
r
2)×(

r
2) are given by

Ui =


‖φ̂10

i0 ‖ν 〈x2i ,φ10
i0 〉ν . . . 〈xri ,φ10

i0 〉ν
0 ‖φ̂20

i0 ‖ν . . . 〈xri ,φ20
i0 〉ν

...
. . .

. . .
...

0 . . . 0 ‖φ̂r0i0‖ν



Uij =


‖φ̂11

ij ‖ν ‖φ̂10
i0 ‖ν〈xi,φ10

j0 〉ν ‖φ̂10
j0 ‖ν〈x2i ,φ10

i0 〉ν . . . ‖φ̂10
j0 ‖ν〈x

r−1
i ,φ10

i0 〉ν
0 ‖φ̂12

ij ‖ν 0 . . . 0
0 0 ‖φ̂21

ij ‖ν . . . ‖φ̂10
j0 ‖ν〈x

r−1
i ,φ20

i0 〉ν
...

... 0
. . .

...
0 . . . 0 0 ‖φ̂r−1,1

ij ‖ν

 ,

and U1
2 ∈ RNr×(N2)(

r
2) is a block matrix

U1
2 =



U1
12 U1

13 . . . 0
U2

12 0 . . . 0

0 U3
13 . . .

...
...

. . .
. . . UN−1

N−1,N
0 . . . 0 UN

N−1,N

 ,

where for each i ∈ [N], j = i, . . . ,N:

Ui
ij =


‖φ̂10

i0 ‖νE(xj) ‖φ̂10
i0 ‖νE

(
x2j
)

〈x2i xj,φ10
i0 〉ν . . . 〈xr−1

i xj,φ10
i0 〉ν

0 0 ‖φ̂20
i0 ‖νE(xj) . . . 〈xr−1

i xj,φ20
i0 〉ν

...
...

. . .
...

0 0 . . . ‖φ̂(r−1)0
i0 ‖νE(xj)

 ∈ Rr×(r2)

Uj
ij =


E(xi)‖φ̂10

j0 ‖ν 〈xi x2j ,φ10
j0 〉ν E

(
x2i
)
‖φ̂10

j0 ‖ν . . . E
(
xr−1
i

)
‖φ̂10

j0 ‖ν
0 ‖φ̂10

i0 ‖νE
(
x2j
)

0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 ∈ Rr×(r2).

Linear equation (41) is valid for every point x ∈MN. Hence, evaluating along the trajectory
{x(t)}nt=0 we obtain:

Φ(X) = Φν (X)Rν . (43)

Consider an s-sparse representation in L, then there is an s-sparse vector c ∈ Rm such that

x̄=Φ(X)c,

where we dropped the dependence on the node i ∈ [N] for a moment. Note that Lν is also a
set of basis functions, so there exists a cν such that

Φ(X)c=Φν (X)cν .
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(43) implies that cν = Rνc. Since cν is the linear combination of s columns ofRν , the sparsity
level of cν is given by the number of nonzero entries of Rν multiplied by the sparsity level s
of c.

The sparsity of Rν columns can be upper bounded by counting the nonzero entries of
columns in the block matrices involving the pairwise interaction. It is enough to calculate
the maximum number of elements in the multiplication xpi x

q
j using (40) for all combinations

of p,q ∈ [r− 1] with p+ q⩽ r. More precisely, for a p in (40) there is a linear combination of
p+ 1 elements of Lν . Then, in the multiplication xpi x

q
j there are at maximum

ωr = max
p,q∈[r−1],p+q⩽r

(p+ 1)(q+ 1) ,

which has the following expression

ωr = b r
2
c
(
r−b r

2
c
)
+ r+ 1.

So, cν is an ωr(s)-sparse vector with ωr(s) =
(
b r2c
(
r−b r2c

)
+ r+ 1

)
s.

We repeat the same argument for each i ∈ [N] separately, concluding the proof of
theorem 5.

6.3. Bounds for orthonormal polynomials

In the next section, we will need bounds of orthonormal polynomials with respect to the
product measure ν. We focus on the one variable case because, as we have seen in the previous
section, it suffices to analyze this case.

First, note that: consider a system of orthonormal polynomials {ψp(z)}p⩾0 with weight
(density) function λ(z) defined on the interval [a2,b2]⊂ R. The linear transformation T(x) =
αx+β with α 6= 0 maps an interval [a1,b1]⊂ R onto the interval [a2,b2], and λ ◦T(x) into λ,
then the polynomials{

sgn(α)p |α| 12ψp ◦T(x)
}
p⩾0

are orthonormal on [a1,b1] with the weight function λ ◦T(x).
Consider the set of Legendre polynomials {Lp(z)}p⩾0 which is defined on [−1,1] with

λ(z) = 1. From the above remark, any Legendre polynomial {L̂p(x)}p⩾0 defined in an arbitrary
interval [a,b] is given by{

L̂p (x) := sgn

(
2

b− a

)p ∣∣∣∣ 2
b− a

∣∣∣∣ 12 Lp( 2
b− a

(x− b)+ 1

)}
p⩾0

(44)

with weight λ
(

2
b−a (x− b)+ 1

)
= 1. Note that ‖Lp‖∞ ⩽ 1 [Sze39], consequently,

‖L̂p‖∞ ⩽
(

2
b− a

) 1
2

‖Lp‖∞ ⩽
(

2
b− a

) 1
2

.

We apply the above observation to our case, using the Korous inequality for orthonormal poly-
nomials theorem 4. See the following:
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Proposition 6 (Supremum norm of orthonormal polynomials in one variable). For a given
i ∈ [N] let Mi = [a,b]⊂ R with b> a. Consider the one variable orthonormal polynomials
{φp0i0 (xi)}p∈[r] with respect to ν i, which is the one-dimensional marginal of the product measure
ν. Suppose that ν i is absolutely continuous with respect to Lebesgue and its density ρi is at least
Lipschitz with constant Lip(ρi). Moreover, ρi(xi)> 0 for any xi ∈Mi. The following holds:

‖φp0i0 ‖∞ ⩽
(

1
ρ0

+ 2
a1Lip(ρ)

ρ
3/2
0

)(
2

b− a

) 1
2

, p ∈ [r] ,

where ρ0 =mini∈[N]{minx∈[a,b] ρi(x)}, a1 =max{|a|, |b|} and Lip(ρ) =maxi∈[N]Lip(ρi).
Moreover,

‖Dφp0i0 ‖∞ ⩽
(

1
ρ0

+ 2
a1Lip(ρ)

ρ
3/2
0

)(
2

b− a

)
r2.

Proof. Consider the system {L̂p(x)}p∈[r] of Legendre polynomials as in (44) defined on Mi.

Also, consider the orthonormal polynomials {φp0i0 (xi)}p∈[r] with respect to ν i, which is given by
dνi(x) = ρi(xi)dLeb(xi) = ρi(xi)λ

(
2

b−a (xi − b)+ 1
)
dxi . Then, we apply Korous inequality for

orthonormal polynomials theorem 4. Additionally, using Markov’s inequality for polynomials

‖Dφp0i0 ‖∞ ⩽
(

2
b− a

)
r2‖φp0i0 ‖∞,

and the result holds.

Corollary 1 (Supremum norm of orthonormal polynomials in two variables). Let r⩾ 2,
i, j ∈ [N] with i 6= j and (p,q) ∈ Vr. Then

‖φpqij ‖∞ ⩽
(

1
ρ0

+ 2
a1Lip(ρ)

ρ
3/2
0

)2(
2

b− a

)
and

‖Dφpqij ‖∞ ⩽ 2

(
1
ρ0

+ 2
a1Lip(ρ)

ρ
3/2
0

)2(
2

b− a

) 3
2

r2.

Proof.

‖φpqij ‖∞ = sup
xi,xj∈(a,b)

|φpqij (xi,xj) |⩽ ‖φp0i0 ‖∞‖φq0j0 ‖∞,

and for the derivative, we calculate

‖Dφpqij ‖∞ = sup
xi,xj∈(a,b)

|Dφpqij (xi,xj) |⩽ ‖Dφp0i0 ‖∞‖φq0j0 ‖∞ + ‖φp0i0 ‖∞‖Dφq0j0 ‖∞.

The result holds applying proposition 6.

From here on, for short notation, we denote

K= K(Lip(ρ) ,ρ0)≡

(
1
ρ0

+ 2
a1Lip(ρ)

ρ
3/2
0

)2(
2

b− a

)
. (45)

26



Nonlinearity 38 (2025) 055031 T Pereira et al

7. EBP has a unique solution

In this section, we present the main result of the paper. We use the exponential mixing condi-
tions of the network dynamics to estimate the minimum length of time series such that the EBP
has a unique solution. Here we avoid the multi-index notation inL andLν used in the previous
section and instead employ the notation that makes explicit the ordering index as ϕl :MN → R
with l ∈ [m]. More precisely, in an explicit form, we say that each ϕl corresponds to a function
of the form ϕpqij ◦πJ for a particular J ⊂ [N] with i, j ∈ J . Also, we use the distance between
probability measures introduced in section 5.4.

Theorem 6. Let (Fα,µα) be an exponential mixing network dynamical system on MN with
decay exponent γ > 0 uniform on N. Let ν =

∏
i∈[N] νi ∈M(MN) be a product probability

measure and absolutely continuous w.r.t. Lebesgue. Let Lν be the orthonormal network lib-
rary with respect to ν and cardinality m=

(N
2

)(r
2

)
+Nr+ 1. Let K = (Lν · Lν) and ωr(s)

satisfies (36). Suppose that given α> 0 there is ζ ∈ (0,
√
2−1

4(2ωr(s)−1) ) such that dK(ν,µα)<
ζ and each one-dimensional marginal ν i has Lipschitz density ρi with constant Lip(ρ) =
maxi∈[N]Lip(ρi) and ρ0 =mini∈[N]{minx∈Mi ρi(x)}> 0. Then:

(i) [Φν(X) satisfies RIP] Given λ ∈ (0,1) there exists a set of initial conditions G ⊂MN with
probability µα(G)⩾ 1−λ such that if the length of time series n satisfies

n⩾ K1
(2ωr (s)− 1)2(√

2− 1− 4ζ (2ωr (s)− 1)
)2 ln(4m(m− 1)

λ

)
, (46)

for some positive constant K1 = K1(Lip(ρ),ρ0), thenΦν(X) satisfies the RIP with constant
δ2ωr(s) ⩽

√
2− 1.

(ii) [EBP has unique solution] Consider that the length of time series n satisfies (46). Let
x̄=Φν(X)cν where cν ∈ Rm is an ωr(s)-sparse vector and consider the set Fx̄ = {w ∈
Rm : Φν(X)w= x̄}. Then cν is the unique minimiser of the Ergodic Basis Pursuit:

(EBP) min
u∈Fx̄

‖u‖1. (47)

The above theorem has an asymptotic expression for sufficient large networks and small ζ
to a simpler condition on the length of time series:

Corollary 2. For sufficiently large N> 0, if the length of time series n satisfies

n⩾ n0 =
20K1ω

2
r (s)(√

2− 1
)2 ln(Nr)+O (ζ)+O

(
1
Nr

)
. (48)

then with probability at least 1− 4
Nr the restricted isometry constant δ2ωr(s) ⩽

√
2− 1.

Proof. Assume that (46) holds. Recall that m=
(N
2

)(r
2

)
+Nr+ 1, then m< (Nr+ 1)2. Given

λ ∈ (0,1) there exists N0 > 0 such that for any N⩾ N0: 4
Nr ⩽ λ. Then, the following holds
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ln

(
4m(m− 1)

λ

)
< ln

(
4(Nr+ 1)2

λ

)

= ln

(
4(Nr)4

(
1+ 1

Nr

)4
λ

)

⩽ ln(Nr)5
(
1+

1
Nr

)4

= ln(Nr)5 +O
(

1
Nr

)
.

Also, for ζ ∈ (0,
√
2−1

4(2ωr(s)−1) ), we can expand in geometric series:

1(√
2− 1− 4ζ (2ωr (s)− 1)

)2 =
1(√

2− 1
)2(

1− 4ζ(2ωr(s)−1)√
2−1

)2
=

1(√
2− 1

)2 (1+O (ζ)) .

So, we obtain the claim.

We split proof of theorem 6 in steps detailed in the sections below. First, we show that the
Bernstein-like inequality applied to (Fα,µα) implies that there exists n0 such that the library
matrix Φν(X) associated to ν has the desired restricted isometry constant. Then, we apply
theorem 1 to demonstrate that the EBP in (47) has a unique solution.

7.1. Network library matrix satisfies RIP

We begin this section by proving an auxiliary lemma that will be used later.

Lemma 2. Let ν =
∏

i∈[N] νi ∈M(MN) be a product probability measure. Suppose that
each one-dimensional marginal ν i is absolutely continuous w.r.t. Lebesgue and its density is
Lipschitz with constant Lip(ρ) and ρ0 =mini∈[N]{minx∈Mi ρi(x)}> 0. LetLν be the orthonor-
mal network library andK = (Lν · Lν). Given α> 0 and ζ > 0 sufficiently small, suppose that
dK(ν,µα)< ζ. Denote (ψi ·ψj) = (φi ·φj)−

´
MN(φi ·φj)dµα. Then, the following holds:

(i) maxi,j ‖(ψi ·ψj)‖∞ ⩽ 2max{1,K2}.
(ii) maxi,j ‖(ψi ·ψj)‖2µα

⩽max{1,K4}+(1+ ζ)2,

where K> 0 is the positive constant in (45).

Proof. To prove item 1, note that:

‖(ψi ·ψj)‖∞ ⩽ ‖(φi ·φj)‖∞ +

ˆ
|(φi ·φj) |dµα

⩽ 2‖(φi ·φj)‖∞.
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To calculate the sup norm of the product of two orthonormal polynomials in Lν , we consider
the notation of the previous section in the following cases:

(φi ·φj) =



(1 · 1) ,(
1 ·φp0i0

)
,(

1 ·φpqij
)
,(

φp0i0 ·φqljk
)
,(

φpqij ·φlnkm
)
.

By proposition 6 and corollary 1,

‖(φi ·φj)‖∞ =

{
max

{
K

1
2 ,K,K

3
2 ,K2

}
, i 6= j

max
{
1,K,K2

}
, i = j.

A priori, the constant K is a given positive number, so it is enough to consider ‖(ψi ·ψj)‖∞ ⩽
max{1,K2}, proving item 1.

To prove item 2, note that given∣∣∣∣ˆ
MN

(φi ·φj)dµα−
ˆ
MN

(φi ·φj)dν
∣∣∣∣⩽ dK (ν,µα)⩽ ζ.

Consequently, by the triangular inequality∣∣∣∣ˆ
MN

(φi ·φj)dµα
∣∣∣∣⩽
{
1+ ζ, i = j

ζ, otherwise.

Then to prove the statement suffices to use item 1 above:

‖(φi ·φj)‖2µα
=

∣∣∣∣∣
ˆ

(φi ·φj)2 dµα−
(ˆ

φ2
i dµα

)2
∣∣∣∣∣

⩽ ‖(φi ·φj)‖2∞ +(1+ ζ)
2

⩽max
{
1,K4

}
+(1+ ζ)

2
.

7.1.1. Proof of theorem 6.i. The following proposition proves that the matrix Φν(X) attains
the desired RIP constant once the length of time series is given by (49).

Proposition 7. Consider the setting of theorem 6. Given δ ∈ (0, 12 ) and α> 0, suppose that
there is ζ ∈ (0, δ

4(ωr(s)−1) ) such that dK(ν,µα)< ζ. Then, given λ ∈ (0,1) there exists a set of

initial conditions G ⊂MN with probability µα(G)⩾ 1−λ such that

n⩾ K1
(ωr (s)− 1)2

(δ− 4ζ (ωr (s)− 1))2
ln

(
4m(m− 1)

λ

)
(49)

for a positive constant K1, then the restricted isometry constant δωr(s) of Φν(X) satisfies
δωr(s) ⩽ δ.
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Proof. We develop the argument for a coordinate of Fα. Let

ui :=
1√
n

 φi (x0)
...

φi
(
Fn−1
α (x0)

)
 uj :=

1√
n

 φj (x0)
...

φj
(
Fn−1
α (x0)

)


be the ith and jth columns of the matrix Φν(X) ∈ Rn×m for an arbitrary initial condition x0 ∈
MN, and their inner product

〈ui,uj〉=
1
n

n−1∑
k=0

φi
(
Fkα (x0)

)
φj
(
Fkα (x0)

)
=

1
n

n−1∑
k=0

(φi ·φj) ◦
(
Fkα (x0)

)
=:

1
n
Sn (φi ·φj)(x0) .

We aim to estimate this inner product using the inner product in L2(ν). By triangular inequality,
we know that:∣∣∣∣1nSn (φi ·φj)(x0)−

ˆ
MN

(φi ·φj)dν
∣∣∣∣⩽ ∣∣∣∣1nSn (φi ·φj)(x0)−

ˆ
MN

(φi ·φj)dµα
∣∣∣∣

+

∣∣∣∣ˆ
MN

(φi ·φj)dµα−
ˆ
MN

(φi ·φj)dν
∣∣∣∣︸ ︷︷ ︸

|hij|

.
(50)

We introduce a variant of (φi ·φj) to have zero mean with respect to µα, i.e. let us denote
(ψi ·ψj) = (φi ·φj)−

´
MN(φi ·φj)dµα and by hypothesis,

|hij|=
∣∣∣∣ˆ

MN

(φi ·φj)dµα−
ˆ
MN

(φi ·φj)dν
∣∣∣∣

⩽ dK (ν,µα)

⩽ ζ.

(51)

Then, we split into two distinct cases that run in parallel:

(i) i 6= j:
´
MN(φi ·φj)dν = 0, consequently, using (51) we conclude that follows∣∣∣∣1nSn (φi ·φj)(x0)

∣∣∣∣⩽ ∣∣∣∣1nSn (ψi ·ψj)(x0)
∣∣∣∣+ |hij|⩽

∣∣∣∣1nSn (ψi ·ψj)(x0)
∣∣∣∣+ ζ. (52)

(ii) i= j: we have
´
MN φ

2
i dν = 1, and consequently, in (50), we obtain∣∣∣∣1nSn (φ2

i

)
(x0)− 1

∣∣∣∣⩽ ∣∣∣∣1nSn (ψ2
i

)
(x0)

∣∣∣∣+ ζ. (53)

By the triangular inequality, we conclude that∣∣∣∣1nSn (φ2
i

)
(x0)

∣∣∣∣⩾ 1−
∣∣∣∣1nSn (ψ2

i

)
(x0)

∣∣∣∣− ζ. (54)
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Note that (ψi ·ψj) and ψ2
i are given by a finite linear combination of elements in L, and

consequently, the subsets with cardinality
(m
2

)
and m, respectively, satisfy

K1 = {(ψi ·ψj) : i, j = 1, . . . ,m, i 6= j} ⊂ C1
(
MN;R

)
(55)

and

K2 =
{
ψ2
i : i = 1, . . . ,m

}
⊂ C1

(
MN;R

)
. (56)

Choose κ > 0, ς > 0 and σ> 0 such that

κ :=max

{
max
i ̸=j

‖(ψi ·ψj)‖∞,max
i∈[m]

‖ψ2
i ‖∞

}
,

ς :=max

{
max
i ̸=j

‖D(ψi ·ψj)‖∞,max
i∈[m]

‖Dψ2
i ‖∞

}
,

σ2 :=max

{
max
i ̸=j

‖(ψi ·ψj)‖2µα
,max
i∈[m]

‖ψ2
i ‖2µα

}
.

(57)

By the Bernstein inequality in theorem 3, for η > 0 and n⩾ n0(κ, ς,σ,γ), which is defined
in (28), if we define

O1 =
⋃
i ̸=j

{
x0 ∈MN :

∣∣∣∣1nSn (ψi ·ψj)(x0)
∣∣∣∣⩾ η

}

O2 =
⋃
i∈[m]

{
x0 ∈MN :

∣∣∣∣1nSn (ψ2
i

)
(x0)

∣∣∣∣⩾ η

}
,

then

µα (O1)⩽ 4

(
m
2

)
e−θ(η,n,σ,κ) and µα (O2)⩽ 4me−θ(η,n,σ,κ).

We are interested in the case µα(O) = µα(O1 ∪O2)

µα (O)⩽ 4

(
m
2

)
e−θ(η,n,σ,κ) + 4me−θ(η,n,σ,κ)

⩽ 8

(
m
2

)
e−θ(η,n,σ,κ).

For the given λ ∈ (0,1) the set Oc ⊂MN of initial conditions, whose Birkhoff sum satisfies
the desired precision η, has measure µα(Oc)⩾ 1−λ whenever

n

(lnn)2
⩾ 8
η2

(
σ2 +κ

η

3

)
ln

(
8
λ

(
m
2

))
. (58)

Instead of (58), one usually prefers a condition that features only n on the left-hand side.
First, note that whenever n⩾ n0 implies that n ∈N in (28), and consequently, the function
t 7→ t/(ln t)2 is monotonic for values in N . So, the condition in (58) is in fact implied by

n⩾ 8
η2

(
σ2 +κ

η

3

)
ln

(
4m(m− 1)

λ

)
. (59)
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For any n satisfying the bound in (59), columns vectors ui of Φν(X) can be normalised,

vi =
ui

∥ui∥2
. This introduces a normalised Φ̂ν(X) =

(
v1,v2, . . . ,vm

)
. So, we can estimate the

coherence of the matrix Φν(X) for any x0 ∈ Oc using (52) and (54)

η
(
Φ̂ν

)
:=max

i ̸=j
|〈vi,vj〉|=max

i ̸=j

|〈ui,uj〉|
‖ui‖2‖uj‖2

=max
i ̸=j

∣∣∣ 1nSn (φi ·φj)(x0)∣∣∣∣∣∣ 1nSn (φ2
i

)
(x0)

∣∣∣ 12 ∣∣∣ 1nSn(φ2
j

)
(x0)

∣∣∣ 12
⩽ η+ ζ

1− (η+ ζ)
,

which is valid such that η+ ζ < 1.
By proposition 2 (relating coherence with RIP constant): δ̂ωr(s)(Φ̂ν)⩽ η+ζ

1−(η+ζ) (ωr(s)−
1). Moreover, note that Φν(X) and Φ̂ν(X) are related by Φν(X) = Φ̂ν(X)Λ, where Λ =
diag(‖u1‖2,‖u2‖2, . . . ,‖um‖2), and they satisfy ΦS = Φ̂SΛS . From equations (52) and (53),
the following holds

Λ = 1m+D, D= diag(ε1,ε2, . . . ,εm) , (60)

where |εi|⩽ η+ ζ for all i ∈ [m]. Also, E=Φν(X)− Φ̂ν(X). Then, by equation (60)

‖ES‖2 ⩽ (η+ ζ)‖Φ̂S‖2.

Using proposition 1

δωr(s) ⩽
(
1+

η+ ζ

1− (η+ ζ)
(ωr (s)− 1)

)
(1+(η+ ζ))

2 − 1. (61)

For the given δ ∈ (0,1/2), we can choose any

η < η0 (δ) =
δ

4(ωr (s)− 1)
− ζ (62)

as long as ζ ∈ (0, δ
4(ωr(s)−1) ). Inequality (62) ensures that the right-hand side of the inequal-

ity (61) is upper bounded by δ:

2(η+ ζ)+
η+ ζ

1− (η+ ζ)
(ωr (s)− 1)+ (η+ ζ)

2
+ 2

(η+ ζ)
2

1− (η+ ζ)
(ωr (s)− 1)

+
(η+ ζ)

3

1− (η+ ζ)
(ωr (s)− 1)⩽ δ.

We use lemma 2 in order to bound σ2 and κ in (57). Consequently, if

n⩾ 8
η2

(
max

{
1,K4

}
+(1+ ζ)

2
+

2
3
max

{
1,K2

})
ln

(
4m(m− 1)

λ

)
, (63)

Φν(X) satisfies the RIP with constant δωr(s) ⩽ δ. Replacing η0(δ) of equation (62) in (63) and
defining K1 := 128(max{1,K4}+ 4+ 2

3 max{1,K2}), we obtain the result.
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Lemma 3. Let cν ∈ Rm be a ωr(s)−sparse vector. If the length of time series n satisfies (46),
then EBP in (47) has cν as its unique solution.

Proof. Combining proposition 7 with theorem 1 suffices.

7.2. EBP has a sufficient infeasibility condition

Since theorem 6 ensures that EBP has a unique solution, we can also prove an additional result.

Proposition 8 (Sufficient infeasibility condition). Consider that the length of time series
n satisfies (46). Let x̄=Φν(X)cν where cν ∈ Rm is an ωr(s)-sparse vector and consider the
set Fx̄ = {w ∈ Rm : Φν(X)w= x̄}. Given a set U ⊆ [m] where U ∩ supp(cν) 6= ∅. Then U ⫋
supp(cν) if and only if

Fx̄

⋂
{w ∈ Rm : supp(w) = U}= ∅. (64)

Proof. Let us assume that Fx̄ ⫋ supp(cν). We will prove this by contradiction. Suppose there
is a vector w 6= 0 in the intersection (64) and is given by

w=
(
w1, . . . ,wωr(s)−1,0, . . . ,0

)
as opposed to the ωr(s)-sparse vector c,

cν =
(
c1, . . . ,cωr(s),0, . . . ,0

)
,

so, the vector w has ωr(s)− 1 nonzero entries. Since w ∈ Fx̄, we have

Φν (X)w=Φν (X)cν .

Consequently,

Φν (X)(w− cν) = 0.

But the Φν(X) satisfies RIP with constant δ2ωr(s) <
√
2− 1. Since w− cν is an ωr(s)-sparse

vector, we calculate

‖Φν (X)(w− cν)‖22 ⩾
(
1− δ2ωr(s)

)
‖w− cν‖22 > 0.

So, we conclude that this is only possible when w= c, which is a contradiction since c is not
in the intersection, and the claim follows.

The other direction we prove by contrapositive. We contradict Fx̄ ⫋ supp(cν). Since Fx̄

must have an intersection with supp(cν), then suppose that supp(cν)⊆Fx̄. The intersec-
tion (64) is non-empty because the sparse vector cν is an element of the set. This proves the
claim, and the statement follows.
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8. Noise measurement case

Here, we extend the EBP to reconstruct the network from corrupted measurements

y(t) = x(t)+ z(t) , (65)

such that (zn)n⩾0 corresponds to independent and identically distributed [−ξ,ξ]N-valued noise
process for ξ ∈ (0,1) with probability measure ϱξ. Let the convolution µα,ξ = µα ∗ ϱξ be the
probability measure of the process (yn)n⩾0 [Fol13] and the matrix Ȳ be the noisy data

Ȳ=

 y1 (1) · · · yN (1)
...

. . .
...

y1 (n) · · · yN (n)

 . (66)

The next theorem assumes that there exists a product measure νξ sufficiently close to the
measure µα,ξ. Thus, the s-sparse vector c ∈ Rm corresponding to the representation in L is
mapped to cνξ which represents the network dynamics in Lνξ , i.e. it satisfies x̄=Φνξ(X)cνξ .
Here, we also introduce another convex minimisation problem in terms of Φνξ(Y) evaluated
along the process (yn)n⩾0. We show that the family of solutions of this minimisation problem
is parametrised by the noise level in such way that approximates the sparse vector cνξ .

Here, we rewrite the interval bounds: for a given i ∈ [N] let Mi,ξ = [a− ξ,b+ ξ]⊂ R with
b> a and ξ ∈ (0,1). Then, consider the following:

Hypothesis 1. Let νξ =
∏

i∈[N] νi,ξ ∈M(MN+ [−ξ,ξ]N) be a product probability measure
and absolutely continuous w.r.t. Lebesgue. Suppose that given a sufficiently small ξ > 0,
each one-dimensional marginal νi,ξ has Lipschitz density ρi,ξ with constant Lip(ρξ) =
maxi∈[N]Lip(ρi,ξ) and ρ0,ξ =mini∈[N]{minx∈Mi,ξ ρi,ξ(x)}> 0.

Theorem 7 (Noise reconstruction case). Consider the setting of theorem 6 and hypo-
thesis 1. Let Lνξ = {φl}ml=1 be the orthonormal ordered network library with respect to νξ
and K = (Lνξ · Lνξ). Suppose that given α> 0 there is ζ ∈ (0,

√
2−1

4(2ωr(s)−1) −K1r2ξ) such that
dK(νξ,µα,ξ)< ζ for a positive constant K1 = K1(Lip(ρξ),ρ0,ξ, ξ). Then

(i) [Φν(Y) satisfies RIP] Given λ ∈ (0,1) there exists a set of initial conditions G ⊂MN with
probability µα(G)⩾ 1−λ such that if the length of time series n satisfies

n⩾ K2
(2ωr (s)− 1)2(√

2− 1− 4(ζ +K1r2ξ)(2ωr (s)− 1)
)2 ln(4m(m− 1)

λ

)
, (67)

for a positive constant K2 = K2(Lip(ρξ),ρ0,ξ, ξ), then the restricted isometry constant
δ2ωr(s) of Φνξ(X) satisfies δ2ωr(s) ⩽

√
2− 1.

(ii) [EBP is robust] Let ȳ ∈Mn+ [−ξ,ξ]n be a column of Ȳ, cνξ ∈ Rm be an ωr(s)-sparse vec-
tor with ‖cνξ‖∞ <∞ such that x̄=Φνξ(X)cνξ . Consider that the length of time series n
satisfies (67). Then the family of solutions {c⋆(ϵ)}ϵ>0 to the convex problem

min
ũ∈Rm

‖ũ‖1 subject to ‖Φνξ (Y) ũ− ȳ‖2 ⩽ ϵ (68)

satisfies

‖c⋆ (ϵ)− cνξ‖2 ⩽ K3ϵ (69)
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as long as

ϵ⩾
√
nξ
(
1+mNr2K4‖cνξ‖∞

)
, (70)

for positive constants K3 = K3(δ2ωs(r)) and K4 = K4(Lip(ρξ),ρ0,ξ).

We prove the above theorem in steps detailed in the sections below. First, we adapt the
estimate of the minimum length of time series such that the library matrix has the desired
restricted isometry constant. Subsequently, we show that the unique solution of the EBP in (47)
is approximated in ℓ2 by a family of solutions {c⋆(ϵ)}ϵ⩾0.

8.1. Perturbed network library matrix satisfies RIP

We begin estimating the distance between the product measure νξ and the physical measure
µα of the deterministic network dynamics. To this end, we use the auxiliary lemmas below.
First, we show that

Lemma 4. µα,ξ → µα converges weakly as ξ→ 0.

Proof. Fix a continuous function φ :MN → R and ξ > 0. Using the definition
´
φdµα,ξ =´

φdµα ∗ ϱξ =
´ ´

φ(x+ z)dµα(x)dϱξ(z) and
´
φdµα =

´ ´
φ(x)dµα(x)dϱξ(z), we obtain∣∣∣ˆ φdµα,ξ −

ˆ
φdµα

∣∣∣= ∣∣∣ˆ ˆ φ(x+ z)dµα (x)dϱξ (z)−
ˆ ˆ

φ(x)dµα (x)dρξ (z)
∣∣∣

⩽
ˆ (ˆ

|φ(x+ z)−φ(x) |dϱξ (z)
)
dµα (x)

⩽
ˆ

sup
|z|⩽ξ

|φ(x+ z)−φ(x) |dµα (x) .

SinceMN is a compact set,φ is uniformly continuous. Then, letting ξ→ 0 implies that the right-
hand side converges to zero, and consequently, the integrals in the left-hand side converge. This
is valid for any continuous function φ, concluding the statement.

We address to estimate the distance dK(ν,µα). Since the product measure νξ is defined on
(MN+ [−ξ,ξ]N). Also, we define a variant of the constant (45) given by

Kξ = K(Lip(ρξ) ,ρ0,ξ, ξ)≡

(
1
ρ0,ξ

+ 2
a1Lip(ρ)

ρ
3/2
0,ξ

)2(
2

b− a+ 2ξ

)
(71)

that satisfies Kξ → K when ξ→ 0. Then, the following holds

Lemma 5. Let r⩾ 2. Givenα,ζ,ξ ∈ (0,1) suppose that dK(ν,µα,ξ)< ζ for the product meas-
ure νξ ∈M(MN+ [−ξ,ξ]N) . Then, there exists K1 = K1(Lip(ρξ),ρ0,ξ, ξ) such that

dK (ν,µα)⩽ ζ +K1r
2ξ.

Proof. First we calculate dK(µα,ξ,µα). Fix J ⊂ [N] and ψ ∈ K. Since the projection πJ :
MN →

∏
i∈J Mi is Lipschitz with constant 1 and K is a set of product of polynomials, the
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composition ψ ◦πJ is also Lipschitz with constant Lip(ψ ◦πJ ) = ‖Dψ‖∞. Then, we obtain

∣∣∣∣ˆ
MN

ψ ◦πJ dµα,ξ −
ˆ
MN

ψ ◦πJ dµα

∣∣∣∣⩽ ˆ sup
|z|⩽ξ

|ψ ◦πJ (x+ z)−ψ ◦πJ (x)|dµα (x)

⩽ Lip(ψ ◦πJ )ξ.

For each ψ ∈ K it corresponds to a pair (φi ·φj), so we use proposition 6 and corollary 1 to
calculate

max
J⊂[N]

1⩽|J |⩽4

max
(φi ·φj)∈K

Lip((φi ·φj) ◦πJ )⩽ max
J⊂[N]

1⩽|J |⩽4

max
(φi ·φj)∈K

‖Dφi‖∞‖φj‖∞ + ‖φi‖∞‖Dφj‖∞

that is upper bounded by

Kξmax

{
4

b− a+ 2ξ
,4Kξ

(
2

b− a+ 2ξ

) 1
2

,2K
1
2
ξ

(
2

b− a+ 2ξ

) 1
2

+

(
2

b− a+ 2ξ

)
K

1
2
ξ

}
︸ ︷︷ ︸

K1(Lip(ρ),ρ0,ξ,ξ)

r2.

This yields dK(µα,ξ,µα)⩽ K1r2ξ. Using the triangular inequality

dK (ν,µα)⩽ dK (ν,µα,ξ)+ dK (µα,ξ,µα) ,

we conclude the lemma.

Before we proceed, we extend µα ∈M(MN) to M(MN+ [−ξ,ξ]N), defining the measure
of a set E⊆MN+ [−ξ,ξ]N as µα(E∩MN). We abuse notation and denote the measure as µα.

We can state a similar version of proposition 7, making the appropriate changes. See below:

Proposition 9. Consider the setting of theorem 7. Given δ ∈ (0, 12 ) and λ ∈ (0,1) there exists
a set of initial conditions G ⊂MN with probability µα(G)⩾ 1−λ such that

n⩾ K2
(ωr (s)− 1)2

(δ− 4(ζ +K1r2ξ)(ωr (s)− 1))2
ln

(
4m(m− 1)

λ

)
(72)

for positive constants K1 and K2, then the restricted isometry constant δωr(s) ofΦν(X) satisfies
δωr(s) ⩽ δ.

Proof. The proof is similar to the proof of proposition 7. Using lemma 5 for the measures νξ
and µα, there is a constantK1(Lip(ρξ),ρ0,ξ, ξ) such that dK(νξ,µα)⩽ ζ +K1r2ξ =: ζ ′, which
we define so we can repeat the proof of proposition 7 replacing ζ by ζ ′. The new bounds of
n0 can be deduced as follows: we estimate a new condition that is implied by

n⩾ 8
η2

(
max

{
1,K4

ξ

}
+
(
1+ ζ +K1r

2ξ
)2

+
2
3
max

{
1,K2

ξ

})
ln

(
4m(m− 1)

λ

)
.

This expression can also be implied by

n⩾ K2

η2
ln

(
4m(m− 1)

λ

)
, (73)

with K2 := 128(max{1,K4
ξ}+(2+K1r2)+ 2

3 max{1,K2
ξ}). Using (62) replacing ζ by ζ +

K1r2ξ in the above expression, we obtain the result.
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Proof of theorem 7.i. It suffices to use proposition 7 for δ =
√
2− 1 and sparsity level 2ωr(s)

in the expression of the length of time series in (67).

8.2. EBP is robust against noise

We can write that X̄=Φνξ(X)Cνξ , where Cνξ ∈ Rm×N is the coefficient matrix associated to
the network library Lνξ . We deduce that the noisy data in (66) satisfies

Ȳ=Φνξ (X)Cνξ + Z̄, (74)

where

Z̄=

 z1 (1) · · · zN (1)
...

. . .
...

z1 (n) · · · zN (n)

 ∈ [−ξ,ξ]n×N
, (75)

such that each column z̄ of Z̄ is bounded as ‖z̄‖2 ⩽
√
nξ. The following lemma states that the

library matrix can be evaluated at the noisy data:

Lemma 6.

Φνξ (Y) = Φνξ (X)+Λ(X, Z̄) , (76)

where ‖Λ(X, Z̄)‖∞ ⩽ mNr2K4ξ with K4 :=max{K
1
2
ξ ,2Kξ

(
2

b−a+2ξ

)
}.

Proof. For l ∈ [m] let φl ∈ Lνξ . The mean value theorem states that for each t= 0, . . . ,n− 1:

φl (x(t)+ z(t)) = φl (x(t))+

(ˆ 1

0
Dφl (x(t)+ sz(t))ds

)
· z(t) ,

where the integral is understood component-wise. Repeating the calculation for each entry of
Φνξ(Y), by linearity we obtain Φνξ(Y) = Φνξ(X)+Λ(X, Z̄), where Λ(X, Z̄) is the matrix with
entries

Λj,k (X,Z) =

(ˆ 1

0
Dφk (x( j)+ sz( j))ds

)
· z( j) .

We use proposition 6 and corollary 1 for MN+ [−ξ,ξ]N. Let us denote

max
l∈[m]

‖Dφl‖∞ ⩽ r2max

{
K

1
2
ξ ,2Kξ

(
2

b− a+ 2ξ

)}
≡ r2K4.

Using Cauchy–Schwarz inequality, note that each entry Λj,k satisfies

|Λj,k|= |

(ˆ 1

0
Dφk (x( j)+ sz( j))ds

)
· z( j) |

⩽ ‖
ˆ 1

0
Dφk (x( j)+ sz( j))ds‖2‖z( j)‖2

⩽ Nr2K4ξ.

So, this implies that ‖Λ(X, Z̄)‖∞ ⩽ mNr2K4ξ and proves the lemma.
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Proof of theorem 7.2. Using (74) and (76) we have

Ȳ=
(
Φνξ (Y)−Λ(X, Z̄)

)
Cνξ + Z̄

=Φνξ (Y)Cνξ + Z̄−Λ(X, Z̄)Cνξ .

The above equation for each column i ∈ [N] is given by an equation of the form ȳ=
Φνξ(Y)cνξ + ūi, where the perturbation is

ū= z̄−Λ(X, Z̄)cνξ .

Using lemma 6 the perturbation vector ū is bounded as

‖ū‖2 ⩽
√
nξ +

√
nmNr2K4ξ ‖cνξ‖∞

=
√
nξ
(
1+mNr2K4‖cνξ‖∞

)
.

We apply theorem 2, and this concludes the proof.

9. Conclusions

In summary, we proposed a method to reconstruct sparse networks from noisy and limited
data. Our approach blends the ergodic theory of dynamical systems and compressive sensing
to demonstrate that once a minimum length of time series is achieved, the EBP, particularly
its extension QEBP, is a robust method to identify network structures from noisy data. The
main advantage of this method is that it enables to use of a smaller amount of time series
(quadratically in the degree and log of the system size) as opposed to a linear dependence on
the system size of the classical BP method.

We introduced the relaxing path algorithm that reconstructs the network as a weighted graph
parametrised by the bound of the noise. Without prior knowledge of the statistical properties
of the noise corrupting the data, this algorithm can reveal the network structure in an optimal
interval of the tuned parameter. Because a noisy and limited amount of length of time series
arises typically in experimental settings, our findings apply to a wide range of chaotic systems.
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Appendix

A.1. Relaxing path algorithm for noisy data

Equation (19) quantifies the approximation accuracy w.r.t. to the sparse vector cν . We can
use it to estimate the entries’ magnitude lying outside the support set of this sparse vector,
S = supp(cν). Let us denote uS as the vector equal to u on the index set S and zero on its
complement Sc. We can decompose c⋆ν(ϵ) into the sum of c⋆ν,S(ϵ) and c⋆ν,Sc(ϵ). Note that
‖c⋆ν,S(ϵ)− cν‖22 + ‖c⋆ν,Sc(ϵ)‖22 = ‖c⋆ν(ϵ)− cν‖22 since S and Sc are disjoint, and it implies that
‖c⋆ν,Sc(ϵ)‖2 ⩽ K4ϵ. Hence, assuming the wrong entries are assigned at random, we consider
that any entry of c⋆ν(ϵ) with a magnitude less than O(ϵ/

√
m) is zero.

Since the entries’ magnitude supported in Sc are bounded by K2ϵ, we discard the irrelevant
connections (to represent the node dynamics) encoded in c⋆ν(ϵ) as we tune ϵ. The idea is to
tune ϵ and find the connections that are robust over different parameter values, the relevant
connections. The challenge is that ξ is unknown, as well as the other quantities that bound the
error in (17). We look at this problem as a one-parameter family, searching the support set that
persists over different ϵ and reconstructing the sparse network. We propose the relaxing path
algorithm:

(i) Select a set of equally spaced values ϵk within the interval E = [εmin,εmax]. A pre-
processing analysis can estimate the interval bounds [CCMT90].

(ii) For each ϵk ∈ E find the optimal solution to the (18), the support Sk = supp(c⋆ν(ϵk)) and
Tk = Sk∆Sk−1, where ∆ corresponds to the symmetric difference of the two sets and
checks the change in their cardinality [FNW07].

(iii) If |Tk|= 0, the support has not changed, then stop, and the corresponding solution c⋆ν(ϵk)
is returned. Otherwise, iterate k 7→ k+ 1 and repeat Step 2.
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