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ABSTRACT
Software testing through fuzzing has gained widespread adoption
for discovering security vulnerabilities, yet questions remain about
its effectiveness in detecting subtle behavioral faults. This paper
presents an empirical evaluation investigating the intersection of
fuzzing and mutation testing, specifically examining how well fuzz
targets perform when evaluated through mutation analysis. We
conducted a systematic study using Bitcoin Core as our subject
system, analyzing 10 different fuzz targets across various modules
and evaluating their ability to detect 726 generated mutants. Our
methodology involved executing fuzz targets with existing seed
corpora and measuring mutation scores both with and without
assertion statements to understand the role of explicit oracles in
fault detection.

Our findings reveal that contrary to previous studies suggest-
ing fuzzing’s limited effectiveness in mutation testing, several fuzz
targets achieved high mutation scores, with two targets reaching
100% mutant detection rates. We identified three key design pat-
terns that significantly enhance mutant detection capabilities: (1)
round-trip testing approaches that verify data integrity through
serialization-deserialization cycles, (2) mathematical oracles that
implement exact behavioral verification through redundant calcu-
lations, and (3) metamorphic relations that validate expected rela-
tionships between inputs and outputs. Our analysis demonstrates a
positive correlation between assertion density in fuzz targets and
mutation scores, with assertion removal causing substantial drops
in detection rates across all targets.

The study contributes empirical evidence that well-designed
fuzz targets can effectively detect subtle behavioral faults beyond
traditional crash-based vulnerabilities. Our results suggest that
incorporating explicit oracles, metamorphic properties, and round-
trip verification mechanisms into fuzz target design significantly
improves their mutation testing performance. These findings have
practical implications for improving fuzzing methodologies and
developing more comprehensive automated testing strategies for
safety-critical software systems.
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1 Introduction
Software testing remains a critical challenge in ensuring the relia-
bility and security of modern software systems. Among the vari-
ous testing methodologies, fuzzing has emerged as a particularly
effective technique for discovering bugs, especially security vulner-
abilities, while mutation testing has established itself as a powerful
approach for evaluating test suite quality. This paper presents an

empirical evaluation examining the intersection of these two tech-
niques, specifically investigating how well fuzz targets perform
when evaluated through the lens of mutation testing.

Mutation testing is a fault-based testing technique that evaluates
the quality of test suites by introducing small syntactic changes,
called mutants, into the program source code. Each mutant rep-
resents a potential fault that mimics common programming er-
rors, such as replacing arithmetic operators, modifying conditional
boundaries, or changing variable references [1]. The fundamental
principle underlying mutation testing is the ”competent program-
mer hypothesis”, which assumes that programmers typically make
small mistakes rather than fundamental logical errors. A test suite’s
effectiveness is measured by its mutation score—the percentage
of mutants it successfully detects (kills). A mutant is considered
”killed” when at least one test case produces different output be-
tween the original program and the mutated version. It has been
used in a wide range of different type of systems to improve their
testing efforts [7] [11] [6].

Fuzzing, or fuzz testing, is an automated software testing tech-
nique that discovers bugs by providing invalid, unexpected, or ran-
dom data as inputs to a program [12]. Modern fuzzing approaches,
particularly coverage-guided greybox fuzzing, have revolutionized
vulnerability discovery in complex software systems [2]. Fuzzing
operates through several key components: fuzz targets, which are
specially crafted entry points that accept fuzzer-generated inputs
and exercise specific parts of the codebase; seed corpus, a collec-
tion of initial inputs that provides the fuzzer with examples of
valid program inputs to mutate and evolve; and coverage feedback
mechanisms that guide the fuzzer toward unexplored code paths.

A fuzz target typically consists of a harness function that accepts
a byte array from the fuzzer, transforms it into appropriate data
structures, and invokes the code under test. The seed corpus serves
as the starting point for the fuzzing campaign, containing represen-
tative inputs that exercise different program behaviors. The fuzzer
then mutates these seeds using various strategies—bit flips, arith-
metic operations, dictionary-based substitutions—to generate new
test cases that explore previously uncovered code paths. Despite
fuzzing’s remarkable success in finding bugs, there exists a funda-
mental mismatch between fuzzing objectives and mutation testing
requirements. Fuzzing primarily optimizes for code coverage and
crash detection, seeking inputs that exercise new code paths or
trigger detectable failures such as memory violations, assertions,
or crashes. In contrast, mutation testing requires detecting subtle
semantic differences in program behavior that may not manifest as
crashes or coverage changes. Many mutants produce changes that
are observable only through careful examination of program out-
put values, state changes, or return codes—differences that typical
fuzzing campaigns might overlook.
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Furthermore, fuzzing’s nature and focus on input generation
rather than output verification brings challenges for mutation detec-
tion [5]. While a fuzzer might generate inputs that execute mutated
code, it may not verify whether the program’s behavior has actually
changed. This is particularly problematic for mutants that modify
internal logic without affecting control flow or causing crashes. For
instance, a mutant that changes a comparison operator in a sorting
algorithm might not crash the program or significantly alter code
coverage, yet it fundamentally changes the program’s correctness.

This paper investigates these challenges through an empirical
study of fuzz targets from a real-world project. We evaluate how
effectively fuzzing campaigns can detect various classes of mu-
tants, analyze the characteristics of survived mutants, and identify
patterns that explain why certain mutations evade detection. Our
findings provide insights into the limitations of current fuzzing
approaches when viewed through the mutation testing lens and
suggest potential improvements for making fuzz testing more effec-
tive at catching subtle behavioral changes in software systems. This
study is organized as: Section 2 presents the related work; Section
3 presents all the motivations for this work and the research ques-
tions; Section 4 defines the methodology that conducts the study;
Section 5 presents the setup to run used to conduct the experiments;
Section 6 presents the results; Both 7 and 8 answer the research
questions by bringing an analysis and discussion of the results;
Section 9 brings some threats to validity; Section 10 concludes the
work and, finally, Section ⁇ brings the link to the artifacts that
enable the reproduction of this study.

2 Related work
One of the main references for this work is a paper that investigates
how the difference between coverage and mutation score can guide
testing efforts [9]. The authors investigate how should a QA engi-
neer spend their time since code coverage might not be a gap on
large systems especially because fuzzing can reach high coverage
easily. The authors initiate the study with the following question:
”Which cryptocurrency project has better testing practices, Bitcoin
Core or Algorand?”. Then they explore this question by checking
test coverage in both projects as well as applying mutation testing.

They point out that Bitcoin Core has a complex, well-designed,
set of fuzzing tests that are run on OSS-Fuzz which covers as much
code as the project’s functional tests. However, they noticed that
fuzzingwas able to catch just under 12% of all the generatedmutants
and advocate that the best way to improve this rate is to focus
on enhancing the test oracle. Similarly, Groce et al. evaluated the
Bitcoin Core’s fuzz testing efforts. By applying mutation testing
they got the same results as described by Jain et al.. Moreover, fuzz
testing eliminating a small number of mutants is not a bad result
since it is not practical to write oracles that can deal with a large
number of possible inputs [5].

One of the ways of using fuzzing to detect a large number of
mutants would be through differential fuzzing [3]. Since writing
oracles that can deal with a large number of possible test cases is
not practical, it is possible to kill a mutant by comparing the output
of the original code and its mutants. Garcia et al. suggest that this
approach can be useful to identify equivalent mutants. In same
direction, Lee et al. point out that a safety-critical cyber-physical

system (CPS) is usually writen in C. However, most tools for testing
applications written in C in this context rely on symbolic execution.
The authors propose a tool called MOTIF that combines fuzzing
with mutation testing. The idea is similar to the proposed by Garcia
et al. and their experiments show that it can detect more faults than
symbolic execution [10].

Vikram et al. develop and evaluate a Java-based framework for
incorporating mutation analysis in the greybox fuzzing loop. The
idea is to produce a corpus with a high mutation score. Their imple-
mentation relies on a differential oracle where they can kill mutants
comparing their outputs with the outputs provided by the original
code. From their experiments, their tool was able to produce a better
corpus compared to the state-of-the-art java fuzzer Zest [13].

3 Motivation and Research Questions
The effectiveness of fuzzing as a software testing technique has been
studied, yet concerns remain about its ability to detect faults that
may be present in software systems. Recent studies have highlighted
significant limitations in fuzzing’s fault detection capabilities, par-
ticularly when evaluated using mutation testing as a benchmark
[5] [4].

As mentioned in Section 2, fuzzing campaigns often struggle to
achieve high mutation scores, failing to kill a substantial propor-
tion of injected mutants. This limitation suggests that while fuzzing
excels at discovering crashes and security vulnerabilities through
random input generation, it may be less effective at detecting sub-
tle logical errors or boundary condition violations that mutation
testing is designed to reveal. The observed gap between fuzzing’s
practical success in finding real-world bugs and its performance
on mutation testing benchmarks raises important questions about
the comprehensiveness of fuzz testing and whether current fuzzing
approaches are optimally designed for broad fault detection.

Furthermore, the design and implementation of fuzz targets—the
entry points and test harnesses that interface between the fuzzer
and the system under test—may significantly influence the effec-
tiveness of mutation detection. However, the relationship between
fuzz target design choices and mutation killing capability remains
underexplored in the literature. Understanding this relationship is
crucial for improving fuzzing methodologies and developing more
effective testing strategies.

Given these observations, this study seeks to provide a com-
prehensive empirical evaluation of fuzzing’s mutation detection
capabilities and investigate how fuzz target design impacts test-
ing effectiveness. Specifically, we address the following research
questions:

• RQ1 - To what extent can fuzz testing campaigns detect
mutants?

• RQ2 - How does the design of fuzz targets impact their
ability to kill mutants?

4 Methodology
Our methodology conducts a systematic evaluation of the effec-
tiveness of fuzz targets in detecting mutants, using a controlled
and reproducible experimental setup. The process begins with the
generation of mutants applied to specific target functions within
the codebase. Each mutant introduces a small syntactic change
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intended to simulate a potential defect. Following this, we execute
the associated fuzz targets —those designed to exercise the mutated
functions — using only the existing seed corpus provided by the
projects as input. This initial step allows us to compute a baseline
mutation score, reflecting the ability of the curated corpus to trig-
ger observable behavioral deviations. These seed corpora, often
refined over years of fuzzing efforts, are expected to represent a
high-quality set of inputs.

In the second phase of the experiment, wemodify the fuzz targets
by removing all assertion statements, which are commonly used as
lightweight oracles to signal incorrect program behavior. We then
re-execute the same fuzz targets with the unchanged corpus and
compute a new mutation score. This alteration is critical because
assertions typically detect and halt execution upon encountering
invalid states, such as out-of-bound accesses or invariant violations.
By eliminating them, we can isolate the extent to which mutation
detection relies on such explicit checks.

Comparing the mutation scores from both phases enables us to
quantify the contribution of assertions to mutant detection. A signif-
icant drop in detection rate after removing assertions would suggest
that fuzz targets primarily depend on crash-based or assertion-
triggered failures rather than capturing more subtle semantic de-
viations. This comparison sheds light on an important limitation
of current fuzzing practices: their tendency to emphasize crash
detection over comprehensive behavioral validation. The complete
workflow of our methodology is illustrated in Figure 2.

5 Setup
For our empirical evaluation, we selected Bitcoin Core as our pri-
mary subject system due to its combination of real-world signifi-
cance and strong fuzzing adoption. As one of the most critical cryp-
tocurrency implementations, Bitcoin Core represents a compelling
real-world system where software reliability is really important.
The project has extensively adopted fuzz testing, integrating it as a
fundamental component of its quality assurance pipeline. Notably,
Bitcoin Core maintains a seed corpus that has been continuously im-
proved over several years, with inputs carefully curated to achieve
high coverage across the tested functions. This well-maintained cor-
pus, combined with the project’s diverse set of fuzz targets covering
critical components like transaction validation, script interpreta-
tion, and network protocol handling, provides an ideal foundation
for evaluating how effectively fuzzing campaigns can detect mu-
tations in the source code. Furthermore, the project’s open-source
nature and detailed documentation of its fuzzing infrastructure
enable reproducible experiments while ensuring our findings have
practical relevance for a widely-deployed, security-critical system.

Given our focus on Bitcoin Core as the subject system for this
empirical evaluation, we selected mutation-core 1 as our mutation
testing for this experiment, since it is a tool designed specifically
for Bitcoin Core. This tool has been actively adopted by Bitcoin
Core contributors as part of their development workflow, avoids
creating unuseful mutants according to the nuances of the project
and address most mutation operators that other mutation testing
tools for C++ also do.The corecheck project 2 uses mutation-core to

1https://github.com/brunoerg/mutation-core
2https://corecheck.dev

generate mutation testing report for Bitcoin Core which is updated
every week.

We chose 10 different fuzz targets from different modules, that is,
targets that address functions from different areas of the codebase,
and we generated the mutants according to the functions addressed
by them. Note that some targets might fuzz more than one function.
In some cases, we mutated just one function per target and other
cases we mutated every function addressed by the target.

Figure 1 shows one of the fuzz targets we chose for this experi-
ment, the Bitcoin Core’s script_descriptor_cache. As can be seen,
this target addresses more than a single function, contains some
assertions as well as ignores the return from some functions - which
is common in fuzzing.

1 FUZZ_TARGET(script_descriptor_cache)
2 {
3 FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.

↪ size());
4 DescriptorCache descriptor_cache;
5 LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) {
6 const std::vector<uint8_t> code = fuzzed_data_provider.

↪ ConsumeBytes<uint8_t>(BIP32_EXTKEY_SIZE);
7 if (code.size() == BIP32_EXTKEY_SIZE) {
8 CExtPubKey xpub;
9 xpub.Decode(code.data());

10 const uint32_t key_exp_pos = fuzzed_data_provider.
↪ ConsumeIntegral<uint32_t>();

11 CExtPubKey xpub_fetched;
12 if (fuzzed_data_provider.ConsumeBool()) {
13 (void)descriptor_cache.GetCachedParentExtPubKey(

↪ key_exp_pos, xpub_fetched);
14 descriptor_cache.CacheParentExtPubKey(key_exp_pos,

↪ xpub);
15 assert(descriptor_cache.GetCachedParentExtPubKey(

↪ key_exp_pos, xpub_fetched));
16 } else {
17 const uint32_t der_index = fuzzed_data_provider.

↪ ConsumeIntegral<uint32_t>();
18 (void)descriptor_cache.GetCachedDerivedExtPubKey(

↪ key_exp_pos, der_index, xpub_fetched);
19 descriptor_cache.CacheDerivedExtPubKey(key_exp_pos,

↪ der_index, xpub);
20 assert(descriptor_cache.GetCachedDerivedExtPubKey(

↪ key_exp_pos, der_index, xpub_fetched));
21 }
22 assert(xpub == xpub_fetched);
23 }
24 (void)descriptor_cache.GetCachedParentExtPubKeys();
25 (void)descriptor_cache.GetCachedDerivedExtPubKeys();
26 }
27 }

Figure 1: Bitcoin Core’s script_descriptor_cache fuzz target

6 Results
Table 1 presents the number of generated mutants for each fuzzed
function according to their respective fuzz targets, the assertion
density per line of code, and the mutation scores both with and
without assertions. Despite prior studies suggesting that fuzzing is
ineffective at killing mutants, our results demonstrate that several
targets achieved high mutation scores. Furthermore, we observe
a positive correlation between the number of assertions in fuzz
targets and their corresponding mutation scores, as illustrated in
Figure 5.

https://github.com/brunoerg/mutation-core
https://corecheck.dev
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Figure 2: Methodology

Figure 3 compares the mutation scores for each target with and
without assertions. Consistent with our hypothesis, removing as-
sertions resulted in a significant decrease in mutation scores across
targets. Most notably, the feefrac_div_fallback target experienced a
complete drop from 100% to 0% mutation score when all assertions
were removed.

Our analysis reveals several key findings:

• Weak positive correlation: There’s a slight tendency for
higher assertion density to correlate with better mutation
scores.

• Notable outliers: Some targets like feefrac_div_fallback
and addrman_serdeser achieve 100% mutation score with
different assertion densities.

• Zero assertions: Targets with no assertions (net_permis-
sions, parse_numbers) tend to have lower mutation scores.

• High performers: bech32_roundtrip has the highest asser-
tion density (0.21) and achieves 82.35% mutation score.

7 RQ1 - To what extent can fuzz testing
campaigns detect mutants?

Our experimental results revealed two scenarios where fuzz test-
ing achieved 100% mutant detection rates. Additionally, several
cases maintained mutation scores above 80%. Notably, one target
that achieved complete mutant detection (100% mutation score)
contained approximately 200 mutants — the largest set in our test
suite. We can expect fuzzing not to kill a great number of mutants,
we show that it is possible to have fuzz targets reaching a high
mutation score.

7.1 Round-trip functions
Round-trip functions are a fundamental concept in software testing
that involve paired operations where one function performs a trans-
formation on data and its counterpart reverses that transformation,
ideally restoring the original input. Common examples include se-
rialization and deserialization pairs (such as JSON.stringify() and
JSON.parse()), encoding and decoding operations (like Base64 en-
coding/decoding or URL encoding/decoding), compression and de-
compression algorithms (ZIP/unzip), and cryptographic operations
with their corresponding decryption functions. The symmetry of

round-trip functions makes them excellent candidates for property-
based testing and fuzzing, as any deviation from the expected round-
trip property immediately indicates a bug in either the forward or
reverse transformation, providing a robust oracle for automated
testing frameworks.

That said, one fuzz target that achieved a 100% mutation score
focused on serialization and deserialization processes, as shown in
Figure 4. Any mutation in the serialization or deserialization logic
would cause the assertion to fail. This target specifically verifies
that data remains unchanged after a complete serialize-deserialize
cycle. However, it is important to highlight that, in this case, the se-
rialization and deserialization functions have internal verifications
to check if the produced result is correct, it explains why the target
reached 100% of mutation score without the assertions in the fuzz
target.

Another round-trip case is the bech32_roundtrip fuzz target. It
reached a high mutation score of 82.35%, however, removing the
assertions and futhermore removing the round-trip verifications,
made the mutation score to drop to 44.12%. Bech32 is a Bitcoin ad-
dress format introduced in BIP 173 (Bitcoin Improvement Proposal
173) that provides a more efficient and user-friendly way to encode
native SegWit addresses. Unlike legacy Bitcoin addresses that use
Base58 encoding, Bech32 uses a custom base-32 encoding scheme
that includes only lowercase letters and numbers, making addresses
easier to read, type, and less prone to errors through its built-in
checksum mechanism. Bech32 addresses are identifiable by their
”bc1” prefix for mainnet transactions and offer several advantages
including better error detection capabilities, case-insensitive encod-
ing that reduces transcription errors, and more efficient QR code
generation due to the character set optimization [14].
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Figure 3: Mutation score with and without any assertion in the fuzz target

Fuzz Target Mutated Functions # Mutants Assertions per fuzz
target’s LOC

Mutation Score
(with assertions)

Mutation Score (no
assertions)

coinselection_bnb SelectCoinsBnB 97 0.093 49.98% 44.33%

net_permissions TryParsePermissionFlags 78 0 25.64% N/A

script_descriptor_cache GetCachedParentExtPubKey;
CacheDerivedExtPubKey

34 0.125 47.06% 44.12%

bip324_cipher_roundtrip Decrypt; Initialize 19 0.11 73.68% 52.63%

feefrac_div_fallback DivFallback 24 0.159 100% 0%

parse_iso8601 FormatISO8601DateTime 11 0.09 81.82% 63.64%

addrman_serdeser Serialize; Unserialize 207 0.07 100% 100%

bech32_roundtrip Encode; Decode 68 0.21 82.35% 44.12%

bloom_filter insert; contains 146 0.05 26.03% 21.92%

parse_numbers ParseMoney 42 0 19.05% N/A

Table 1: Results of evaluating mutation testing with fuzz targets

1 // Check that serialize followed by unserialize produces the same
↪ addrman.

2 FUZZ_TARGET(addrman_serdeser, .init = initialize_addrman)
3 {
4 SeedRandomStateForTest(SeedRand::ZEROS);
5 FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.

↪ size());
6 SetMockTime(ConsumeTime(fuzzed_data_provider));
7
8 NetGroupManager netgroupman{ConsumeNetGroupManager(

↪ fuzzed_data_provider)};
9 AddrManDeterministic addr_man1{netgroupman, fuzzed_data_provider,

↪ GetCheckRatio()};
10 AddrManDeterministic addr_man2{netgroupman, fuzzed_data_provider,

↪ GetCheckRatio()};
11
12 DataStream data_stream{};
13
14 FillAddrman(addr_man1, fuzzed_data_provider);
15 data_stream << addr_man1;
16 data_stream >> addr_man2;
17 assert(addr_man1 == addr_man2);
18 }

Figure 4: Bitcoin Core’s addrman_serdeser fuzz target

7.2 Testing the exact behavior
The other fuzz target that killed 100% of the mutants was the
feefrac_div_fallback and can be seen in Figure 6. Its performance
stems from its implementation of a mathematical oracle with exact
expected behavior, which fundamentally differs from typical fuzzing
scenarios where determining correct output for arbitrary inputs
remains challenging. Rather than relying on external specifications
or subjective correctness criteria, this target implements a redun-
dant reference calculation using alternative arithmetic libraries
(arith_uint256) that independently computes the mathematically
precise expected result for any given input combination of numera-
tor, denominator, and rounding mode. This approach creates what
mutation testing researchers term a ”strong oracle” [8] — a verifi-
cation mechanism that can definitively determine correctness for
the entire input domain through dual verification methods: exact
integer arithmetic for precise calculation and floating-point approx-
imation for cross-validation within tolerance bounds. The oracle’s
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Figure 5: Correlation betweenmutation score and the number
of assertions in the fuzz target

effectiveness derives from the mathematical certainty inherent in
division operations, where each input tuple has exactly one objec-
tively correct result, unlike typical software components such as
file parsers, network protocols, or user interfaces where correct
behavior may be context-dependent or subjective. When mutations
change the target function’s logic (for example, changing ceiling
division to floor division), the discrepancy between the mutated
function’s output and the independently computed expected result
triggers assertion failures, creating a detection mechanism that
approaches the theoretical ideal of differential fuzzing applied to
mutation testing. This mathematical determinism, combined with
comprehensive input space coverage and multiple independent ver-
ification layers, explains why this target achieves 100% mutation
score despite fuzzing’s traditional limitations in generating effective
test oracles for arbitrary software systems.

7.3 Metamorphic Relations
Metamorphic testing is a software testing technique that addresses
the test oracle problem—situations where it is difficult or impossible
to determine the correctness of individual outputs—by identifying
metamorphic relations (MRs), which are expected relationships
between multiple inputs and their corresponding outputs. Instead
of verifying the correctness of a single output, metamorphic testing
validates whether the outputs of related inputs follow a known and
predictable pattern.

When integrated into fuzz targets for mutation testing, we no-
ticed that metamorphic relations significantly enhance mutant de-
tection capabilities by providing multiple independent verification
mechanisms that can identify faults often missed by conventional
test oracles. By incorporating metamorphic relations into fuzz tar-
gets, it gains the ability to automatically generate diverse test in-
puts while simultaneously applying multiple correctness criteria,
thereby increasing the likelihood of exposing mutant behaviors
that violate essential program properties. This approach is particu-
larly effective because fuzzing naturally produces edge cases and
boundary conditions that stress-test the metamorphic relations,
while the relations themselves provide robust oracles that can de-
tect violations regardless of the specific input values generated.

1 FUZZ_TARGET(feefrac_div_fallback)
2 {
3 FuzzedDataProvider provider(buffer.data(), buffer.size());
4 auto num_high = provider.ConsumeIntegral<int64_t>();
5 auto num_low = provider.ConsumeIntegral<uint32_t>();
6 std::pair<int64_t, uint32_t> num{num_high, num_low};
7 auto den = provider.ConsumeIntegralInRange<int32_t>(1, std::

↪ numeric_limits<int32_t>::max());
8 auto round_down = provider.ConsumeBool();
9

10 bool is_negative = num_high < 0;
11 auto num_abs = Abs256(num);
12 auto den_abs = Abs256(den);
13 auto quot_abs = (is_negative == round_down) ?
14 (num_abs + den_abs - 1) / den_abs :
15 num_abs / den_abs;
16
17 if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative &&

↪ quot_abs >= MAX_ABS_INT64)) {
18 return;
19 }
20
21 auto res = FeeFrac::DivFallback(num, den, round_down);
22 assert(res == 0 || (res < 0) == is_negative);
23 assert(Abs256(res) == quot_abs);
24
25 long double expect = round_down ? std::floor(num_high *

↪ 4294967296.0L + num_low) / den
26 : std::ceil(num_high * 4294967296.0L

↪ + num_low) / den;
27 if (expect == 0.0L) {
28 assert(res >= -1 && res <= 1);
29 } else if (expect > 0.0L) {
30 assert(res >= expect * 0.999999999999999L - 1.0L);
31 assert(res <= expect * 1.000000000000001L + 1.0L);
32 } else {
33 assert(res >= expect * 1.000000000000001L - 1.0L);
34 assert(res <= expect * 0.999999999999999L + 1.0L);
35 }
36 }

Figure 6: Bitcoin Core’s feefrac_div_fallback fuzz target

The synergy between fuzzing and metamorphic testing creates a
powerful mutation testing environment where the random input
generation of fuzzing complements the systematic property verifi-
cation of metamorphic relations, resulting in substantially higher
mutation scores and more comprehensive fault detection than ei-
ther technique would achieve independently. Furthermore, this
integration addresses the oracle problem in software testing by
transforming the challenge from determining correct outputs to
verifying mathematical relationships, making it feasible to apply
rigorous testing to programs where traditional oracle specification
would be impractical or impossible.

8 RQ2 - How does the design of fuzz targets
impact their ability to kill mutants?

As mentioned before, removing assertions in the fuzz target re-
sulted in a decrease in mutation scores across targets. One of the
fuzz targets dropped from 100% to 0% when removing the asser-
tions. The design of fuzz targets significantly affects their ability to
kill mutants, particularly through their influence on input cover-
age, semantic validation, and the presence of runtime assertions.
A fuzz target that merely parses inputs or exercises a limited set
of functions may achieve high code coverage without effectively
distinguishing between correct and mutated behavior. To increase
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mutant detection, the fuzz target must not only trigger the mutated
code but also include assertions that act as test oracles, checking that
program state and outputs conform to expected semantic properties.
These assertions can be derived from pre- and post-conditions, in-
variants, or domain-specific knowledge about the correct behavior
of the program under test. For example, in a cryptographic library,
a fuzz target should not only check that decoding succeeds but
also assert that encoding followed by decoding returns the original
input, or that invalid inputs fail gracefully.

One powerful way to enhance fuzz targets is through the incor-
poration of metamorphic relations—properties that relate multiple
inputs and outputs in a way that remains valid under correct pro-
gram behavior. These relations allow the fuzz target to detect subtle
behavioral changes without requiring an explicit ground truth for
every input. For instance, if a sorting algorithm is tested, permuting
the input should not affect the final sorted result; if this property
fails under mutation, the mutant can be killed. Similarly, in numer-
ical software, scaling input values or changing units might pro-
duce predictable transformations in outputs, which can be checked
through metamorphic assertions. By embedding such properties di-
rectly into the fuzz target, testers can transform implicit correctness
expectations into explicit checks that increase the discriminative
power of the target. Thus, the inclusion of metamorphic relations,
alongside traditional assertions and domain-specific invariants,
makes fuzz targets more sensitive to behavioral deviations, sub-
stantially improving their ability to detect and kill non-equivalent
mutants.

8.1 Longitudinal Studies
Finally, conducting longitudinal studies that track the evolution
of fuzz targets and their mutation detection capabilities over time
would provide insights into how testing effectiveness changes as
software systems evolve. This includes understanding how code
changes affect the validity of existing oracles, investigating strate-
gies for maintaining oracle effectiveness as system complexity in-
creases, and developing metrics for monitoring the degradation
of fuzz target effectiveness over time. Such studies would inform
best practices for maintaining high-quality fuzzing infrastructure
throughout the software development lifecycle.

9 Threats to validity
This section discusses the potential threats to the validity of our
empirical study and the steps taken to mitigate them. We organize
these threats according to the standard classification of internal,
external, construct, and conclusion validity.

9.1 Internal Validity
Internal validity concerns the extent to which our experimental
design allows us to draw causal conclusions about the relationship
between fuzz target design and mutation detection effectiveness.

• Seed CorpusQuality: Our experiments relied on existing seed
corpora that have been developed and refined over several
years by the Bitcoin Core development team. While these
corpora represent high-quality inputs that achieve substan-
tial code coverage, they may not be representative of what
a typical fuzzing campaign would generate automatically.

This could lead to overestimating the mutation detection
capabilities of fuzz targets, as the curated inputs might be
particularly effective at triggering specific program behav-
iors. To partially address this concern, we selected targets
with varying corpus sizes and characteristics, though a more
comprehensive evaluation would involve generating fresh
corpora through automated fuzzing campaigns.

• Mutation Tool Bias: Our choice of mutation-core as the mu-
tation testing tool, while well-suited for Bitcoin Core, intro-
duces potential bias in the types and locations of generated
mutants. The tool’s design specifically avoids generating
”useless” mutants according to Bitcoin Core’s nuances, which
may result in a mutation set that is either easier or harder to
detect than what other mutation testing tools would produce.
This could affect the generalizability of our mutation score
measurements and the relative performance comparisons
between different fuzz targets.

• Target Selection Bias: The selection of 10 fuzz targets from
Bitcoin Core was based on our goal of covering diverse func-
tional areas, but this selection process was not entirely sys-
tematic. We may have inadvertently chosen targets that are
more amenable to mutation detection due to their specific
characteristics or implementation patterns. A more rigorous
selection process based on random sampling or explicit cri-
teria would strengthen the internal validity of our findings.

9.2 External Validity
External validity addresses the generalizability of our findings to
other software systems, domains, and fuzzing approaches.

• Single System Limitation: Our evaluation focused exclu-
sively on Bitcoin Core, a cryptocurrency implementation
with specific characteristics that may not be representative
of other software domains. Bitcoin Core’s emphasis on cor-
rectness, extensive use of cryptographic operations, and well-
established fuzzing infrastructure may make it more suitable
for mutation detection than typical software systems. The
applicability of our identified design patterns (round-trip
testing, mathematical oracles, metamorphic relations) to do-
mains such as web applications, embedded systems, or user
interface software remains uncertain.

• Domain-Specific Findings: The effectiveness of the design
patterns we identified may be particularly pronounced in
cryptocurrency software due to the prevalence of serializa-
tion operations, cryptographic functions, and mathemati-
cal computations. These characteristics naturally lend them-
selves to the oracle types we found most effective. Software
in other domains may require different approaches to achiev-
ing high mutation scores, limiting the direct transferability
of our specific recommendations.

• Programming Language and Ecosystem: Our study was con-
ducted entirely within the C++ ecosystem using Bitcoin
Core’s specific build system and testing infrastructure. The
findings may not apply to other programming languages
with different memory management models, type systems,
or testing frameworks. Languages with stronger type sys-
tems or built-in assertionmechanismsmight exhibit different
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patterns in the relationship between fuzz target design and
mutation detection.

9.3 Construct Validity
Construct validity concerns whether our measurements and exper-
imental setup accurately capture the theoretical concepts we aim
to study.

• Mutation Score as Effectiveness Measure: We used muta-
tion score as the primary metric for evaluating fuzz target
effectiveness. While mutation score is a well-established
measure in software testing research, it may not fully cap-
ture all aspects of testing effectiveness. Some mutants might
represent unrealistic faults that would never occur in prac-
tice, while others might model critical errors that deserve
greater weight in evaluation. Additionally, equivalent mu-
tants—those that do not change program behavior—can arti-
ficially deflate mutation scores, though mutation-core aims
to minimize such cases.

• Assertion Removal Methodology: Our approach of removing
all assertions to understand their contribution to mutation
detection provides valuable insights but represents a some-
what artificial scenario. In practice, developers would likely
replace explicit assertions with alternative verification mech-
anisms rather than eliminating all forms of behavioral check-
ing. This methodological choice, while useful for isolating
the effect of assertions, may not reflect realistic develop-
ment practices and could overestimate the importance of
assertion-based oracles.

• Limited Mutation Operators: Although mutation-core imple-
ments multiple mutation operators designed specifically for
Bitcoin Core, the set of operators may not comprehensively
cover all possible fault types that could occur in real software.
The effectiveness of our fuzz targets might vary significantly
when evaluated against different mutation operators or fault
models, potentially affecting the validity of our conclusions
about fuzz target design effectiveness.

9.4 Conclusion Validity
Conclusion validity addresses the statistical and logical soundness
of our inferences from the experimental data.

• Limited Statistical Power: With only 10 fuzz targets in our
study, our ability to detect statistically significant relation-
ships and draw robust statistical conclusions is limited. The
positive correlation we observed between assertion density
and mutation score, while suggestive, is based on a relatively
small sample size that may not provide sufficient statistical
power for definitive conclusions. Larger-scale studies with
more targets would be needed to confirm these relationships
with greater confidence.

• Confounding Variables: Several variables could potentially
confound our results, including the complexity of the func-
tions being tested, the quality of the existing test corpus,
and the specific implementation characteristics of each fuzz
target. We did not systematically control for these factors,
which could influence both mutation scores and the appar-
ent effectiveness of different design patterns. Future studies

should consider incorporating these variables into the exper-
imental design or statistical analysis.

• Generalization from Extreme Cases: Some of our strongest
conclusions are based on extreme cases, such as the fuzz
targets that achieved 100% mutation scores. While these
cases provide valuable insights into effective design patterns,
they may represent outliers that do not reflect typical perfor-
mance. The generalization of design principles derived from
these exceptional cases to more typical fuzzing scenarios
requires additional validation.

Despite these threats to validity, we believe our study provides
valuable insights into the relationship between fuzz target design
and mutation detection effectiveness. Future research should ad-
dress these limitations through larger-scale studies, multiple subject
systems, and more comprehensive experimental designs to further
validate and extend our findings.

10 Conclusion
This paper has presented a comprehensive empirical evaluation of
the effectiveness of fuzz testing in detecting mutants, challenging
the prevailing assumption that fuzzing performs poorly in mutation
testing scenarios.Through our systematic analysis of 10 fuzz targets
from Bitcoin Core, encompassing 726 mutants across diverse func-
tional areas, we have demonstrated that well-designed fuzz targets
can achieve remarkably high mutation scores, including two cases
of 100% mutant detection. Our investigation has revealed three
critical design patterns that significantly enhance the mutation de-
tection capabilities of fuzz targets. Round-trip testing approaches,
exemplified by serialization-deserialization cycles, provide robust
oracles by exploiting the symmetry of paired operations. Mathemat-
ical oracles that implement exact behavioral verification through
redundant calculations offer deterministic correctness validation
for computational functions. Metamorphic relations enable the
verification of expected relationships between inputs and outputs,
addressing the test oracle problem in domains where explicit cor-
rectness criteria are difficult to establish.

The strong positive correlation we observed between assertion
density and mutation scores underscores the fundamental impor-
tance of explicit oracles in fuzz target design. Our experiments
demonstrated that removing assertions led to substantial drops in
mutation detection rates, with one target experiencing a complete
fall from 100% to 0% effectiveness. This finding emphasizes that
effective mutation detection requires not only achieving high code
coverage but also incorporating mechanisms that can distinguish
between correct and incorrect program behavior.

These results have significant implications for the broader soft-
ware testing community. First, they suggest that the perceived
limitations of fuzzing in detecting subtle behavioral faults may
be largely attributed to inadequate test oracle design rather than
fundamental shortcomings of the fuzzing approach itself. Second,
our findings provide concrete guidance for practitioners seeking to
improve their fuzzing campaigns by incorporating domain-specific
assertions, metamorphic properties, and round-trip verification
mechanisms.
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Our work contributes to bridging the gap between fuzzing and
mutation testing communities, demonstrating that these comple-
mentary approaches can be synergistically combined to achieve
more comprehensive fault detection. By revealing the potential of
well-designed fuzz targets to detect subtle behavioral deviations,
this study opens new avenues for developing more effective auto-
mated testing methodologies for safety-critical software systems.
The evidence presented here suggests that with thoughtful design
and implementation, fuzzing can transcend its traditional role as a
crash-finding technique to become a powerful tool for comprehen-
sive behavioral validation in software development practices.

10.1 Future work
Our empirical evaluation of fuzz targets’ mutation detection capa-
bilities has revealed promising directions for enhancing the inter-
section of fuzzing and mutation testing. Several avenues for future
research emerge from our findings and the limitations identified in
our study.

10.1.1 Automated Oracle Generation. Building on our observation
that assertion density strongly correlates with mutation detection
effectiveness, future work should investigate automated techniques
for generating effective oracles in fuzz targets. This could include
developing static analysis tools that identify potential metamorphic
relations from program structure, automatically inferring round-
trip properties fromAPI usage patterns, or generating mathematical
oracles for computational functions. Machine learning approaches
could be trained on successful fuzz targets to predict what types of
assertions would be most effective for a given function or module.
The goal would be to reduce the manual effort required to design
effective fuzz targets whilemaintaining or improving their mutation
detection capabilities.

10.1.2 Corpus Evolution. Our study relied on existing, manually
curated seed corpora, whichmay not reflect the typical performance
of automated fuzzing campaigns. Future research should investi-
gate how corpus quality and evolution strategies affect mutation
detection over time.This includes developing fuzzing strategies that
prioritize inputs likely to expose semantic differences rather than
just achieving code coverage. Additionally, investigating adaptive
corpus curation techniques that retain inputs based on their ability
to kill mutants could lead to more effective fuzzing campaigns for
comprehensive behavioral validation.

ARTIFACT AVAILABILITY
Artifact is available at https://github.com/brunoerg/bitcoin/tree/
SAST.
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