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algebra with Cartan matrix (a;j)1<i,j<n and Cartan subalgebra b. Let {ag,a1,...,an}
be the set of simple roots, d be the null root and A be the set of roots for § with respect
to 6 A partition A = SU —S is a closed partition if o, 8 € S and a + f € A implies
a+ f € S. The classification of closed partitions of the affine root system was obtained
by Jakobsen and Kac [16], and independently by Futorny [11,12]. The usual partition
of the set of roots A = AL UA_ to the set of positive and negative roots is called the
standard partition. Corresponding to this partition we have a standard Borel subalgebra
of g from which we induce the standard Verma modules. Consider the nonstandard closed
partition A = SU —S, where S = {a + ndla € Ag +,n € Z} U {kd|k > 0}, Ag 4+ being
the positive roots for g. Corresponding to this partition we obtain an inequivalent Borel
subalgebra of § which induce nonstandard Verma modules M ()) called imaginary Verma
modules. Unlike the standard Verma modules, the imaginary Verma modules contain
both finite and infinite dimensional weight spaces. As shown in [4,13] these imaginary
Verma modules can be g-deformed to quantum imaginary Verma modules My (\) for
the quantum affine algebras U,(§) preserving both finite and infinite dimensional weight
spaces for generic q.

The theory of crystal bases for integrable representations of U,(§) was developed
independently by Kashiwara [17,18] and Lusztig [20]. Two of the authors (KCM and
VF) jointly with Ben Cox initiated the investigation of the existence of crystal-like bases
for quantum imaginary Verma modules M,()) for the quantum affine algebras Uy,(§)
in 2008 at a conference in Banff. Following the framework in [18] they constructed an
analog of Kashiwara algebra K, for M,()) in the case § = sl(2) by introducing certain
Kashiwara type operators in [5] and proved that certain quotient N~ of U,(g) is a
simple K,-module. This result was extended to all quantum affine algebras U,(g§) of
ADE types in [6]. In [7] a category O, . of U,(sl(2))-modules were introduced and
it was shown that any module in this catégory is a simple reduced quantum imaginary

Verma module M,()\), certain quotient of M,()\) or direct sum of these modules. The

q

red,im Was shown

existence of imaginary crystal base for any module in the category O
in [7,8].

In this paper, by appropriate modifications we first extend the results in [6] to all un-
twisted quantum affine algebras U,(g). Using the results in [1], we construct the category

q
OT'ed,im -
quantum imaginary Verma module M, (\) or direct sum of these modules. Moreover, we

q
red,im

From now on imaginary Verma modules will mean the quantum imaginary Verma

of Uy(g)-modules and show that any module in this category is a simple reduced

show that any module in the category O admits an imaginary crystal basis.
modules M, () unless there is any confusion.

This paper is organized as follows. In Sections 2 and 3, we define and set the notations
for affine and quantum affine algebras. In Section 4, we recall the definitions of imaginary
Verma modules M,()\) and reduced imaginary Verma modules M,()\) for any weight
A € P and state some of the necessary and sufficient conditions for their irreducibility.

r

In Section 5, we recall the definitions of 2-operators and the Kashiwara algebra IC,
from [6] for any untwisted quantum affine algebra U,(g). We show that the unique non-
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degenerate symmetric form on the quotient N, of U,(g) defined in [6] holds for any
untwisted affine algebra §. In Section 6, we introduce a product between monomials in
Nq’ which we call “twisted concatenation product”, define Kashiwara type operators on
M, ()) and prove some of their relations. In Section 7 we introduce a bilinear form among
ordered monomials of N~ and prove that it satisfies certain orthonormality condition
modulo ¢*Z[g] which plays an important role in the construction of the imaginary crystal
basis. In Section 8 we prove the existence of imaginary crystal basis for a simple reduced
imaginary Verma module Mq()\). Finally, in the last section we define the category
Oedim
Verma module or a direct sum of these modules. We prove that any module in O

and show that any module in this category is either a simple reduced imaginary

q
red,im

has an imaginary crystal basis.

We dedicate this paper to Georgia Benkart and Ben Cox whom we miss dearly. As
mentioned above Ben has been an integral part for the success of this project in the
earlier stages. He has been a friend and collaborator of KCM and VF for many years.
Georgia Benkart was a research mentor and collaborator of KCM. Both KCM and VF
are indebted for her support and encouragements over the years.

2. Affine algebras

Let I = {0,1,...,N} and A = (ai;)o<ij<n be a generalized affine Cartan matrix
for an untwisted affine Kac-Moody Lie algebra §. Let D = diag(dp,ds,...,dn) be a
diagonal matrix with relatively prime integer entries such that DA is symmetric. The
numbers dy, . .., dy are given as follows: Types ADE: d; = 1 for all i € I, type B: d; = 2
for i € I\ {N} and dy = 1, type C: dy = dy = 2 and d; = 1 for ¢ # 0, N, Type F:
dy=di=dy=2,d3=ds =1 and type G: dgy =d; =3 and dy = 1.

The Chevalley-Serre presentation of g is given by generators e;, fi, h; for 0 < i < N
and d subject to the defining relations:

[hishjl =0 [d,hi] =0 [hi,e;] = azje;  [hi, ;] = —aij f;
les, fi] = 0ijhi [d,e;] = d0.e; [d, fi] = —b0.ifi
(ade;) =% (e;) =0 (adf;)' =% (f;) = 0.

Then the abelian subalgebra 6 = span{hq, ..., hy,d} is the Cartan subalgebra of §.
Let A be the root system of § with simple roots II = {ag, a1,...,an} and let 6 = ap+6
be the null root where 6 is the longest root of the underlying simple Lie algebra g. Recall
that A = A™ U A" where A" and A" denotes the real and imaginary sets of roots.
Let Q, P, Q and P denote the root lattice, the weight lattice, the coroot lattice and the
coweight lattice respectively. The standard non-degenerate symmetric bilinear form (.|.)
on b* satisfies (ailo;) = diaqj, (8ei) = (5]8) = 0 for all 4,5 € I.

Let Ip = {1,2,...,N} and let g be the simple finite dimensional Lie algebra with
Cartan matrix (a;;)1<i,j<n- Let Ag be the root system of g and Iy = {a1,...,a,} be
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the set of simple roots. As a matter of notation, any subscript 0 will refers to the same
sets for the simple Lie algebra g.

The loop space realization of § is given by § = g® C[t,t71] ® Cc @ Cd, where c is a
central element, d is a degree derivation such that [d,z ® t"] = nax ® " for any z € g
and n € Z, and

[ @t", y @t = [z,y] @ " + 85 _mnr(z]y)c,

for all z,y € g, n,m € Z. Here k(—|—) is a symmetric invariant bilinear form on .

Recall that a subset S of A is said to be closed if whenever «, 3 € S and a+ 5 € A
then a 4+ f € S. We also say that S is a closed partition if S is closed, A = SU =S
and SN —S = (). We are going to consider the closed partition, inequivalent to the
standard partition into positive and negative roots, given by S = {a+nd|la € Ag 4,n €
Z} U {kélk > 0}.

3. Quantum affine algebras

Let U,(g) be the quantum affine algebra (see [3], [19]), i.e., the associative and uni-
tal C(q'/?)-algebra with generators Ej, Fy, Ko,7TY/2, D*! for 0 < i < N, a € Q and
defining relations:

DD '=D'D=K,K o =K oK,=n~Y2y"12=~71/241/2 1
VY2, U,(8)] = [D, Kol = [Ka, K5 =0
<7i1/2>2 _ K:I:E
K, —K!
KoEK_o=q®E, K,FK_,=q @*)F,
DE; D' = ¢*°E;, DF,D~' = ¢ %F,

E;F; — F,E; = 6,

1-ai; 1—a,;
S ) ETTIREY = Y (-1 F T TIREY =0, 4]
s=0 s=0

where ¢; = q%, [n]; = L% [n];! = [n)s[n — ;- [2i[1]s, Ki = Ka,, B = E3/[s];!

ai—q; i
and F\*) = F/[s];!.
There is also another realization due to Drinfeld in the spirit of the loop space real-
ization as follows (see [9], [2]). U,(8) is the associative unital C(g'/?)-algebra generated
by 2, his, KX, /2 D for i € Iy, 7,5 € Z and s # 0 subject to the relations:

)

DilD:Fl _ K;I:lel _ ,yjzl/Q,Y:Fl/2 -1
V=2 U,(8)] = [D, K = [Ki, K] = [Ki, hjs] = 0
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DhyyD™' =q"hyr,  DaiD™''=qaj;
KixﬁKjl — qi(ailaj)xﬁ

1 k _ ~—k
[Pk, hji] = O —lk[kaij]i%
45 — 4;
+ k i
[hik, 2] = [ka Jiy TR 20t
+ +(ovilaj) .+ gt +
T k415 — 4 (o ‘aj)le‘ri,k 1= (xiles) x] 141~ 1%k
_ 1 _ _
[ 2] = 5ijm(7(l€ D24 et =925 40)
i~ 4
where
Zz/}mz =K; exp( a —q; thlz)
k=0 1>0
oo
Zéf)z’,—kz*k =K, exp ( —(@—g¢") Z hi,—lzil>
k=0 1>0
and for 7 # j,
1—a;; 1
— Qi+ + 4+ + +
Symklv--wkl—aij Z (1)T|: r :| ‘xikl T ngzzk,+1 e xikl,a” = 0.
r=0 A

If we consider the following generating functions

u) = dpu P, i)=Y Ppu P, af(w) = ziur

pEZL pEZ pEZ

the defining relations become:

[0i(w), ¢5(v)] = [¢hi(u), ¥;(v)] = 0
()t (V)i (w) "M (0) T = gij(uv ™'y /gij (uv™ly)
$i(u)zy (v)gi(u) ™t = gij(wo™ 'y T2 Ha (v)
Yi(w)a (0)i(u) ™t = gji(ou™ T2 Ta (v)

(= =120 () (0) = (g1 ) () )

?

[ (u), 25 (0)] = 835 (gi — a; ) (E(w/v7)i(vy"?) = 8(uy/v)di(ur''?))

where g;;(t) = gij.4(t) is the Taylor expansion at ¢ = 0 of the function (¢(®il*)t —1)/(t —
¢y and §(z) = >kez 2
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4. Imaginary Verma modules

For the closed partition A = SU—S where S = {a+nd|la € Ag +,n € Z}U{kd|k > 0},
we define the following subalgebras of Uy, (g).

. U;‘(S) generated by ac;gwhil forie Iy, k€ Z and 1> 0.
o U7 (S) generated by x;,, h; —; for i € Iy, k € Z and [ > 0.
+ UQ(S) generated by K 4F1/2 DE for i € I,

For A € P, a wight module V' of U,(g) is called an S-weight module with highest
weight X if there is a non zero vector v € V of weight A such that utv = 0 for all
ut € UF(S)\ C(¢"?) and V = Uy(g)v.

Let us consider the Borel subalgebra By of U,(§), which is generated by U, (S)UU? (55).
Consider now the one dimensional module C(g'/?)s, in which the Bg-module U (S)
acts trivially and if 1 is the generator of the module then KF'1 = ¢= ML g ¢ [y,
AEL/2] = gENO/21 and DE1 = ¢F D1,

We define the imaginary Verma module My(\) of weight A € P as

M,y () := Uy(8) ©p, C(q"/?)x.
We have the following theorem (see [10]).

Theorem 4.1. M, () is drreducible if and only if A(c) # 0.

Let us suppose that M,()\) is reducible, that means A(c) = 0 and so y*1/2 acts by 1.

Denote by J?(A) the left ideal of U,(§) generated by xjk,hil for i € Iy, k,l € Z,1 #0
and Kiil — gFAha) Wﬂ/z —1 and D*!' — ¢¥Md) | Set

My(A) = Uq(§)/J7(N).

It is a quotient of M,(\) and we call it reduced imaginary Verma module. We have
the following theorem (see proposition 7.1 in [14]).

Theorem 4.2. Let A\ € P such that A(c) = 0. Then M,()\) is irreducible if and only if
A(h;) #£ 0 for alli € Io.

Notice also that

> 1/2y,.— -
M,(\) = @ C(q / )milkl T g, U
B] yeenslp
k1, kr
where vy stands for the generator 1. The order in the defining monomial for the reduced
imaginary Verma module is going to be important for us. We will say that a monomial
T, S ordered if and only if 47 + k1 > o+ ko > -+ >4 + k.

Tirky
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5. Q-operators and the Kashiwara algebra

The Kashiwara algebra and the Q-operators were defined in [6] for types ADE, but a
close look at the proof of the results presented in [6] shows that everything there is true
for any quantum affine algebra associated with an untwisted affine Lie algebra of any
type. In this section we recall the main constructions presented in [6].

Consider the subalgebra qu of Uy (§) generated by *F1/2 and xz; forl € Z,i € Iy and
the relations between them. The elements of N~ are sums of the elements of the form
P ’f;;% =2z g for m;,l € Z, k > 0and 1 < j; < N. Such an element

my,. ]1m1 Jemg?
is a summand of

PItsndk — PItseJk (v1,... 7'Uk) = ’yl/Q‘rj_l (Ul) e w]_k ('Uk)~
— 1] _ _ BHI1s--5d — — —
We set P = a5 (0n) -, (o) and P77 = a5 (on) - ()5, (040)

z;, (Vi)

We denote

_ /e _ ~1/a
Gu=Gy" =G/ (vj1,...,vj,0) = 0, ng,Jm,q (), /01)

-1

a _ 4, _
Gl = Gh(vjr,. .. vj, ) = 0, H Girjma(Vi/),,)

where Gy1 = d; j,. We define operators Qy, (k),Qg, (k) : N7 — N for k € Z in terms
of the generating functions

Qu,(u) =D Qu,(Du™!, Qg () = Q1

leZ leZ
by
Qy, (u) (P ZGzle 6 (ufury)
Qp, () (P = N GEPI S (uy /).
=1

We have that Qy, (u)(1) = Qg, (u)(1) = 0.

Recall that z; (v) = ), x,,v""™. So we can consider left multiplication operators
Ty - ./\/,; — N,; . There are several identities between the Q-operators and the x~-
operators, we just list a few:
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(q(ailaj)'y = 1)0ij0m,—n—1+ VT; ppy1 Oy, (M) — q(al‘aj)fi:lﬂdij (m+1).
q(ai|aJ)Q¢j (m)xZnJrl — ny¢]_ (m + 1)@‘1_“ =
(g(@iles) — Y)0ijOm,—n—1 + T; py 1o, (M) — q(al‘aj)vx;nQ@ (m +1).

Qw;( ) _62]6k —m7Y +Zgz,],q ) zm+rQ¢J( )77 (51)
r>0
Qs (k)2 (m) = Y _ 935 ()7 L, (1) 2y, (k= 7). (5:2)
r>0

We define the Kashiwara algebra K, as the C (¢*/?)-algebra with generators
Qy, (m), z; (n),y*/2 for m,n € Z, 1 < i,j < N where v*/2 are central and the
defining relations are:

¢y, (M), g = Qo (m+ D)y, =
(g1 1)y = 1)8ii0m, —n 1 + 12141 Qs (M) = @127 0 (m 4 1)
g 1% Qy, (k+1)Qy, (1) = Dy, (D, (k+1) = Qu, (k) 2y, (1+1) — ¢ ¥ 0y, (14+1)Qy, (k)

—(ailey) —(ailey)

Tik+1T5 — 4 LiZigpr1 — 4 LigTjie1 — Lj1+1Tk (5.3)

and

711/2711/2 -1

Some of the properties of the Kashiwara algebra /C, proved in [6] that holds for any
quantum untwisted affine algebras are summarized in the following proposition.

Proposition 5.1. For a quantum affine algebra associated to any untwisted affine Lie
algebra, there exists a unique non-degenerate symmetric form (—,—) defined on Nq_
satisfying (z;;a,0) = (a,Qy,(—5)b) and (1,1) = 1. Moreover, N is a left Kq-module

such that Ny = ICq/(Zivzl Y okez quQw(k)). Furthermore, N~ is simple as left K4-

module.

Proof. The first statement follows from Proposition 6.0.6 and Corollary 7.0.9 in [6]. The
second and third statements follow from Lemma 6.0.5, Theorem 7.0.8 in [6]. O

6. The operators Q and &
Recall that the function g;; ,-1(r) for 4,j € Iy is the Taylor expansion at ¢ = 0 of the

function (¢(*il®)t —1)/(t — ¢(*:1%)) and that (a;|a;) = d;a;;. Below we list the explicit
form of g;; ,~1(r) when r = 0 and r > 0 for all possible values of (a;|a;).
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r=20 r>0

q° (¢ = 1)g5 =D = g5t —¢712)  (qi|ay) =6

q* (= Dg*= D =gt (1 —¢78)  (qi|oy) =4
G (1) = 7 (¢* = DP D =@ —g™) (ufey) =2
. )1 0 (ailaj) =0

gt (¢~ *Dq“‘”—q(””ﬂ*q) (ailoy) = —1

q? (= 1)g 2D = 201 — ¢h)  (ayloy) = -2

g3 (g% —1)g 30~ 1)::q*3“*1W1‘*q6) (ailoy) = =3

On the algebra N ~ let us define the following “twisted concatenation product”: For

elements x5, € N we define
TimTin ifi+m>j+n
ori+m<j+n
and (a;la;) >0
q_("""“f)xi_mmj_n ifj=i+landn=m+1
ori=j+2andn=m+4
q*(o‘”ai)(x%x;n — T 1T ma1) ifi=j+l,m+l<n,j+n-—1
<it+m+1
_ _ ori=j+2andn>m+4
Lig * Ly, =

g~ (ilod) (g @ T, — qlilea) g ma1Ti 1) i i=j+1,m+1 <n,itm+1
<j+n-1
ori=j+2
andm+2<n<m+4
orj=t+2and m<n
q*(o‘”ai)(x;nx;n — T mr1Tin—1) ifj=i+landm+1<n
orj=t+2andn=m+1

T Tin = Ti 1% jnt1 ifj=i+2andm=n+1

and we define the operator Z,, over a x-monomials (z, * (---* (¥; p  *@; ) "))
as x-left multiplication, that is

j;m(mi:kl * (% (x;,lkl,l *$;kl) )
=T, * (a:l_lk1 * (- (xz‘_z_lkz_l *mi_zk:l) )

= (2 %), ) % (g, % (oo (2 g * ) o).

From the definition of the x-product, we have that it coincides with the usual product
on ordered monomials, that is, Ty T, = T xR when i1+k1 > --- > i +k;.
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Moreover, the x-product is associative over ordered monomial. In particular, for any T,
and ordered monomial z; , x,; , x,, . we have the following associativity-like property:

T (T ey Ty Tighy) = Lo (T 1y (T, Tiy))
Jm ivky ¥ (mi;kg *xi_gkg))
i_lkl) * (xl_zkz * xl_aks.))

(
;k1) *:E;zkz) *x;?,k?,)

(

x *(x

(
(

Sk
T T
Ty * T
and also

I.Jm(ﬁ;klxi;kzxi;kg) = j;rL((x;klxi;kz)x;,kS))
=@ % (g 0, * Tippy) * Tir,))

((xj_m * (xi_lkl *xi;kz)) *‘ri_gkg)

So, we will say that the x-product is associative up to order monomials.
We also define the operator {2y, (m) by induction on x-monomials (z; . * (---
(Tiy_sky_y *Ty,) ) as follows:

Qg (m)(2,) 2= 056 —m k-

And for a general x-monomial (2; , *(---*(z; .  *;; )-)) we define

Qup, (m) (@7, % (- oxa g% i,) ) = Gy Oy (2, ooxlg, g ki) )

mky _ ~ _ _
+ Z ¢’ Gijiv,q—1 (T)(mil,ml-&-r * Qy, (m — T)(xizkz x (% (xil—lkl—l * xilkl)))

r>0
mk1 P kz,...,k[ .
where p;5" i=p; > is defined as
0 if (Oéz'|()éj) >0
ke ) (el ming€ |y, (m — 1
(@i % Coor @5y * i) = 0 1 if (i) <0
2 if (Oéi|04j) =0.

Note that p;'ffl exists since the x-monomial (z; ; *(---*x(z; ,  *x;, ))isa product
of usual monomials and the formula (5.5) in [6] holds.
Recall that ordered monomials are the defining elements on M, (A), so we define the

operators ¥, and Qy, (m) on M,()\) as follows: For an ordered monomial Ty gyt T U

we have:

Jsjm(xi_lkl . -x;krvx) = i‘j_m(a:i_lkl oo *x;krv,\) = (.Z‘J_m *mi_lkl) Xk Ty V)
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Qwi (m)(ac;l,Cl . -x;klv)\)
= Qy, (M) (2, g, %% Ty, 00)

= 52'1'1 6—m,k1$izk2 KoK DTy, UN

mky ~ — —_
+ Z q"in Giyir,q—1 (T>mi1;m1+r * €y, (m - ’I“) (xi2k2 Kok ‘rilk,,)v)\
r>0

= 51'1'1 5—m,k1xi2k2 Tk, VX

mks ~ - -
+ Z @71 i iy g1 (T) Ty oy Qg (M — 7")(91%2,€2 .. 'xz‘,k,)w\
r>0

Remark 6.1. Here we do not emphasize on the parenthesis because x-monomials coincides
with usual monomials and the associativity holds for x-products up to the order.

Proposition 6.2. jj_m(x;k) could be written as a linear combination of ordered monomials
of length 2 with coefficients in Z]q].

Proof. It follows directly from the definition of the x-product and formula (5.3). O

Proposition 6.3. If z; , ---x;, is an ordered monomial then Qy, (m) (i, Tip,) 18
a linear combination of ordered monomials of length I-1 with coefficients in Z]q].

Proof. We prove by induction on [. If I = 1 or I = 2 then the statement is clear from the
definition. Let us prove for clarity when [ = 3. In this case we have

Qy, (m) (x;kl Tk, x;k3)

mhky

— 5. - - Pii .. - 0 — - -
= 511157m,k11'2‘2k2x1‘3k3 + E q gul,q—l(r)mihkl_t,_r *sz‘ (m T)(xiQkQ‘riaka)
r>0
- T § ' piit - _
- 6ii15—mvk1xi2k2xi3k3 + " Giiy g1 (r)xi1,k1+r * 5ii25_m+rvk2xi3k3
r>0

m—r,ko _ ~ _
+ Z 0" iy g1 ()5 gy e ¥ Qpy (M — 1 — r’)a:i?’,%)

mkq
— 4. - - Pii . .. - -
= Jzzld—m,klxizhxﬁk?’ + E gt gul,q*1(T)(;zm(s—m-‘rﬁkzxil,kl—&-r *xi3k3
r>0

p'nzlcl p‘nl—r,kg pm—r—r’,kg_ N _
+ 5 § 5ii35m—r—7"/,k3q 1ogrt q s giilyqfl(r)giimq*l(r )xil,k1+r *xiz,k2+’f‘/
r>07r'>0

which by Proposition 6.2 is a linear combination of ordered monomials of length 2 with
coefficients in Z[g]. Assume now that €2, (m) acting on any monomial of length [ — 1 is
a linear combination of ordered monomials of length ! — 2 with coefficients in Z[g]. Then
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Qwi (m)(w;kl T ‘r;kl) = 5ii157m,k1x;2k2 . -x;k’l

mkq ~
E Pii - - — T oo
+ " Giiy g1 (T)‘rihkl-{-r * Q"Z’z (m T)xizkz xizkl
r>0

The expression in the first line is clearly ordered of length I — 1. The expression
Ty pr ¥ Q¢i (m =1z “Z; p, in the second line is a linear combination of ordered
monomials of length [ —1 with coefficients in Z[g] by induction and Proposition 6.2 which
completes the proof. O

7. The bilinear form

We are going to define a new bilinear form on ordered monomials of NV. For its defini-
tion we consider the unique non-degenerate bilinear form (—, —) given in Proposition 5.1.

Let @; 0 Ty s Tiiny Ty, De two ordered monomials of N,. We define by

induction the following bilinear form:

(@i 070) = (L, (=) (27,,))

<xi1m1 U Themy Tjing T le,nl> :

= <xi2m2 o kak’szl ( )(‘r]_lnl e xg_lnl»

For i = (iy,...,i),m = (mq,...,mg) € Z* the monomial Tiimy  Tipm, 15 denoted

T
Lemma 7.1. Let i = (iy,...,i;) € I}, m = (my,...,my) € ZF, j = (j1,...,51) € I} and
n=(ny,...,n) € Z" such that iy +my > - > ix +myp, j1 +n1 > -+ > ji +ny and
k> 1, then (z;,,;,) = 0.

Proof. The proof is by induction on [. First of all, we have for [ =1,

<xim7 j1n1> <x11m1 22m2 e xi;mk7xj1’ﬂ1> = <$i2m2 o xzkmk7Q’¢1l( m1)$j1n1>

<$z2m2 ’ xikmk75i1j16m1n1> = 5i1j1 57”1”1 <xi2m2 T my 1>
511]167711?11 <:Ei;m3 T Q"p?g ( )1>
0

Assume the result is true for ordered monomials of length [—1. Then for the monomial

T, Thn, W have

i2Mo o ’Lkmk7Qw11(

<1"im7 xjn>:<xi1m1 e xikmk’lenl T lenl> = <$ )'Z‘j_lnl T ‘Tj1774>

:5i1j1 5m1n1 <xz’2m2 T my Lions T lenl>
3 pomLm _ _ ~ _ _

+ q Givjy,q~ 1 (7‘)<"L‘i2m2 T xikmkvxj17n1+7"*91/)i1(_m1_r)szng T lem>
r>0
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By induction, the term in the second line is zero. For the third line we have that

Ty natr X Q¢i1( my —r)x, .-z is a linear combination of ordered monomial of

Janz nny

length [ — 1 by Proposition 6.3. So by induction

<xi2mg C Lgmy o Lirma+r * Qwil (_ml - T)$j2n2 T lenl> =0

and we are done. 0O

. . . . . . k:
Lemma 7.2. Let i = (i1,...,%),j = (J1,.--,Jk) € I§ and m = (mq,...,mg),n
(n1,..., nk) € Z*, and consider ordered monomials xy, = xy . -z, and T,
Ljina = Fjpny Then

(T Tj) € Z[q]
Proof. The proof goes by induction on k. First consider the case kK = 1. Then
<x;m17xj_1n1> = (1’ Qwil (7m1)x3_1n1) = 511j1§m1n1 € Z[q]

We will show what happens in the case k = 2.

<$i_1m1zi_2m2’x;1n1zj_2n2> = <xi_2m2’ Qwh( ’rnl)lenlxj_ﬂlz>

= 5ilj1 67"1"1 <xi2m2’ xj2n2>

TNl _ _ ~ _
+ Z qp”]l Girji,q71 (’I“) <xi2m2’ mjlﬂh-’-’r * Qwil (_ml B T)xj2n2>

r>0

= 6i1j1 57711711 6i2j2 57712”2

—mi,n]
E Pi . - -
+ q giljl,q’l(T)511]25m1+7"7n2 <xi2m2’xj1,n1+r>
r>0

= 5i1j1 67”1"1 5izj25m2n2

—mq,ny
P . .
+ E :q REE giljl,q’l(T)511J26m1+ﬁn2512315m27n1+7"
r>0

= 5ij6mn

—m1,n
§ P; . .

+ q it giljl,q—l(T)511]25m1+r,n2522]15m2,n1+r~
r>0

—m1,n1

Since ¢"13r g, 4-1(r) € Zlq], it follows that (z; . x;

Tiimi Tigma> T,

) € Zlg).
Jini J27l2
Assume by induction that the result is true for monomials of length £ — 1. Then

= <xi1m1 U Tiem Tjing T xjknk>

ioma zkmk7Q¢L1( )J;]—lnl xl;,nk>
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= 5i1j16m1n1 <xi2m2 T mg Ligng T le"l>

pomm B _ B
+§ q vt GG, (T) <xi2m2 e xikmk’le7n1+T*Q¢i1(_m1_T)xj2n2' : 'xjknk>
r>0

Jama ;cnk
combination of ordered monomials of length k& — 1 with coefficients in Z[q]. Hence,
iams " Tiemp Lians and (x;?mz ST s Ty g e x (—mq —
)00, Geni) are in Z[g]. Since the coefficients in each expression are also in Z[q],
the result follows. O

by Proposition 6.3 we have that xj, n,4r x Qy, (=m1 — 1)z Sz is a linear

by induction (z ST

R

Proposition 7.3. Let i = (i1,...,i;) € I¥, m = (my,...,my) € Z*, j = (j1,...,51) € I}

andn = (nq,...,n;) € Z!, and consider ordered monomials Tims Tin such that Zle(ir—i—
1 .

mr) = Zr:1(.7r + nr); then

(i Tin) = (6k16ij0mn + ¢Z) mod ¢*Z[q]

im’ < jn

Proof. The proof is by induction on the length of the monomials. First we show that if
k # 1 then (x;,,x;,) = 0. When k > [ it follows from Lemma 7.1. Now assume k < [.
Then

(x

ivmy " Tigmy s Tjing T sznz> igmg " xikmk’ﬂ’/’h (7m1)xj1n1 e lecnk>

7Q'¢'z‘k (=mu) - Qy,, (_ml)x;ﬂh . 'xjmz>

7Qwik <_mk> e Qd)il <_m1)x;1n1 T w;lnl)

Qy, (=) - Qy, (=ma)ay, - xj,,1)

The second and third equalities follow from definition. The last equality follows by
the symmetry of the inner product (—, —) given in Proposition 5.1. By Proposition 6.3,

.-z is a linear combination of ordered

jlnl jLTLz
monomial of length [ — & > 1. So, by [6] Proposition 6.0.6 and the fact that Q operators
j_lnl '”xj_znl’l) =0.

So, we can now assume that k = [. First, we will show the cases of monomials of

we know that Qwik (—myg) - le (—mq)z
kill the element 1, we get (Qwik (—myg) - Qwil (=mq)x

length 1 and 2 to show the idea of the proof and then we will go for the general case.
For k =1 we have:

<x;m1 ’ x]_1n1> = (1’ Qwil (_ml)xg_lnl)
—miny _
= 6i1]1 57”1711 (1’ 1)+ Z gV irjr,q=1 (T)(L L) mytr * Qwil (_ml - ’/‘) . 1)
r>0

= 5i1j1 5m1n1 )

since Qy, (—m1 —7)-1=0. Assume now k = 2.
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ilmlxiQWLQ7 x£n1x£n2> = <xi2’an ’ lel (_ml)l.;lnl $j2n2>

(x

= 6i1j1 67”1711 <xi2m2 ) xj2n2>

—my,ny _ _ ~
+ Z unJl Givj1,q—1 (T><xi2m2 y L1 g+ * Ql/lil ( my — T)I]2n2>
r>0

— 5. m1n1 — . _ _ L. — 2
= 5136“’“ + ”UCLZZ 171 <xl2m2’xj17n1+811j1 *Qll( mi 611]1)Zj2n2> mOdq Z[Q]

= s mini s, T o 2
= 03§0mn +0al} 1" 0y 5 0my tes 5, mo (T mys T miten ) mod ¢“Z|[q]
—mi,ny —m2,

n2
Pi Pi . miny . o 2
=q¢Pan gz §ii0mn + Ualzljl 511J25m1+8¢1j17n2512,J15m27”1+5i1j1 mod g~Z([g]

where
1 (ail |aj1) >0
€irjn = p“;VI17TL1 -2 (ai1 |aj1) <0
0 (ail |aj1) =0
and vali"}" = qplilrinllynlgiljl)q—l(siljl) mod ¢*Z]q], that is

1 (a’il |aj1) >0
lZlel"l =\¢ (ail |aj1) <0
0 (ail |aj1) =0

The second term is clearly zero if («, |a;, ) = 0 (this part becomes zero when we mod
out by ¢?). Let us assume that (v, |aj,) # 0 holds. In this case, the second term is
different from zero only when: 7; = jo, m1 +¢;,5, = n2, 42 = j1 and mg = ny +¢;,;, then

11+ my =2 +mo = j1+n1+ &5 > J1+n1 > 2+ n2 =01 +m1+ &5,

which is not possible. Then we have

(m;mlx;mQ,lemxj2n2> = 0j0mn mod qQZ[q]

Let us now consider the general case.

<xi1m1 e xikmk’lenl e xj;cnk> = <xi2m2 o 1kmk’qu ( )‘lenl U mjknk>
= 5ilj15m1n1 <xi2m2 T my s Tigng T Ijknk>
p._n,ll"nl — — — ~ —
+ E q gi1j11q71 (T)<xi2m2 e zikmk)ajjl,n1+r * qu ( my — T)$J2n2 e :Ejk’rlk>
r>0
= 5ij6mn + (]Z
mini - - 2 L. — - - 2
+ Ualzljl <x12m2 T x’ikmk7xj1,nl+€i1jl * Qd’il (_ml - Ezljl)mjgng €y > mOdq Z[q]

JkNE
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ming — e — ) _ P —

Let us analyze the term val; '/ (T3, m, T Ty mytei s, *Qy, (—ma €i151) % jyny
_ N s . miny e :

@) I (g, e, ) = 0t is zero since vall} " = 0. If (ay, oy, ) < 0, this term reduces

to ¢Z mod ¢*Z[q] by Lemma 7.2. Now assume (a;, |aj,) > 0. If i1 = j; we will get that

MINL (= T - 0 _ e VT e
Ualiljl <xi2m2 xzkmk7x317n1+gilj1 *Qwil ( my 811]1):17]2712 I]L’Jknk>
= <Ii2m2 U Temy Ty na 41 * Qwh (_ml o 1)xj2n2 T xjknk>
= 5i1j25m1+11”2 <mi2m2 e xik’mk’leﬂn-‘rl *xj3n3 T xjknk:>

mit+lng, — - — — _ _ —
112 < i2Mo xikmk"rjl,n1+1 *xjg,n2+€i1j2 * Qwil ( my l)xjgng xjknk>

x mod ¢*Z[q].

+ val

Since j; +n1 + 1 > j3 + n3 we have by induction that

jknk>

6i1j2 6m1+177l2 <zi2m2 T my L+l * Liong " T

iemy Ly +1Tj3n;

:<$i;m2...x x‘;cnk>

= 5i1j2 5m1+17n25i2j1 5m2,n1+15isj35m3n3 T 5ikjk 5mk"k + gZ mod QQZ[(]]

and the first term is different from zero only if i1 = ja, io = j1, m1+1=no, mo =n;+1
and i; = j;, my = n; for 3 <1 < k. But in this case

4+mp >iet+me=a+m+1>514+n >j+ne=41+m +1

which is impossible. So, when i1 = j; we get

ming

valnjl <$12m2 U Tmyo Tgynates g, K Qwil (=my — 51’1]’1)%2@ i 'xjknk>
— mi+1lng/ — - — - 0 _ — T
7,Ual7;1j2 <xi2m2 xikmk7xj1,n1+1 *xj27n2+5i1j2 *lel ( my ]‘)xjgng x]k’nk>
2
+ qZ mod ¢°Z[q]
Now applying the same argument as above for i; and jo we get
val™Thne (g ox T * T *Q (=my =D, oorxs )
1172 i2ma igmy? " j1,m1+1 J2,n2+E€iy jo iy Jans JkMk
= m1+2,n3 - ey - - - 0 — — - e
- Ualﬁjs <$i2m2 xikmk’leun1+1*xj27n2+1*xj3»n3+5i1j3 *Qwh ( m 1)mj3n3 xjknk>
2
+ qZ mod ¢°Z[q]
Continuing this way, we see that the case to be analyzed is when i; = j; = -+ = ji.

However, this case reduces to the same proof as for sly given in [7].

Hence, we see that

(x T T xj_k'nk> = (04j0mn + ¢Z) mod *Z[q) O

iimy
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8. Crystal lattices

Recall that Ay = C[q1/2](q) the ring of rational functions in ¢'/? regular at 0. Let
m={—a+ndla€ Ag4,ne€Z}U{0}.

Definition 8.1. Let M be a Uy(g)-module. We call a free Ag-submodule £ of M an
imaginary crystal lattice of M if the following holds:

(1) C(¢"?) @a, L= M.
(2) L= Prer Ly and Ly = LN M,,.
(3) Qu,(m)L C £ and &;, L C L, for i € Iy and m € Z.

We will show now that imaginary crystal lattices exist. Let A € P such that A(¢) =0
and A(h;) # 0, i € Iy, then M,()) is a simple reduced imaginary Verma module.
Consider the following Ag-module:

L(A) = @ ATy T, U
k>0
t1+my > >ig+my
i, EZL

Properties (1) and (2) clearly hold. To show that the property (3) in Definition 8.1

holds, consider the element z; . T Tmy,

of the monomial we will show that €, (m)ac;1 s

vy in £(A). Using induction on the length &
vy € L(N). It holds for k =1

.. mikmk

since

Qwi (m)x VN = 6ii157m,m1 S E()\) (81)

i71m1
Assume that the result is true for monomials of length £ — 1. Then by definition we
have

Qwi (m)(x_ RN

7;17711 ' ikmkUA)
_ _ i ~ _ _
= 0ty Oy Ty Ty OAE D 0P Gy =1 ()i, s ox Qs (M) (5 + T3 )0
r>0

and qpx:nlgili’qA(r) € Ag for 0 < r < ¢4,. By Proposition 6.3, i m,4r *
Qy, (m)(x vy is a linear combination of ordered monomials of length k — 1
with coefficients in Z[g]. So by induction we have that (., (M)Z7 oy Ty, VA € L(A).
@y . Ua) € L(A). This proves that £(A) is

izmz T xikmk)

Proposition 6.2 implies that #;, (=

1My

an imaginary crystal lattice of M.
Proposition 8.2.

L) = {u € My(N)[{u, L(V) € Ao}
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Proof. Let L1 = {u € M,(\)|(u,L(\)) C Ag}. From Proposition 7.3 it follows that
L(A) C Ly, because the monomials in consideration are ordered. Let see the converse.
Suppose u € Ly, then u € Mq(/\) and (u,v) € Ay, for any v € L()\).

Letu=>3" aim(ql/Q)a:;mw\ and take the biggest & > 0 such that there exists j,n € Z!,
for some [, with the property that ajn(q1/2) = q’k/2bjn(q1/2), ie., ajm(ql/Q) has a pole
of order k. The remaining aim(g'/?) has poles of order at most k, i.e., ajm(q'/?) =
q_l‘m/Qbim(ql/Q) where lim < k and bim(ql/Q) € (C[ql/z]. Then by Proposition 7.3 we
have

(w,2500) = ¢ *2hin (¢ (1 + ga+ Psin(@) + Y ¢ *bim(d"?)(ac + ¢*sim(q))
i#j,m#n

where sjn(q), sim(¢) € Z[q], a,c € Z. By hypothesis (u, 5, mUx) € Ag, which is possible
when k = 0, so [; = 0 and bimq?si(q) € C[g 1/2]. Hence, we get ajm € Ag and u € L(\)
as desired.

Definition 8.3. An imaginary crystal basis of a reduced imaginary Verma module Mq(/\)

is a pair (£, B) satisfying:

(1) L is an imaginary crystal lattice of M()).

(2) Bisa C-basis of L/gL = C @4, L.

(3) B =UpuexB, where B, =BN(L,/qL,).

(4) z,,,Bc+BU{0} andel( m)B C £BU {0}, for i € Iy and m € Z.

(5) FormEZandz€Iolwi( m)b # 0and ;, b# 0 for b € B, then Z;, Q,,(—m)b =
Ql/)i ( )xzmb

For A € h* define
_ _ t+my > >0+ my,
B(\) = : . L AN /qL(A .
( ) {xuml zkmk'U)\"'q ( ) ( )/q ( ) mi,...,mp € Z,Z'h...,ik GI()}

Remark 8.4. Note that in the above definition we are taking the quotient of £ by ¢£ and
not by ¢*/2L. This is because by Proposition 7.3 ordered monomials of the form z;, are
orthogonal up to a scalar multiple of q.

Theorem 8.5. If A € h* such that A(c) = 0 and A(h;) # 0 for alli € Iy, then (L(N), B(N))
is an imaginary crystal bases for My(\).

Proof. Properties (1), (2) and (3) clearly hold. To see property (4) holds, assume that
b=, Ty, Ux T qL(A) € B(\), and consider &;,.b. If it is already ordered, we

are done. In other cases, by the definition of the x-product Z;,,b + ¢£(A) = 0 in the
second, third and fifth case. For the fourth and sixth cases, we can order the expression
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by induction thanks to the x-associativity over ordered monomials and Equation (5.3).
Hence, z;,,b+ qL(\) € B(X) U{0}.

Note that Z;,,b = 0 in B(X) for example when there exists j > 1 such that i =
i1 = --- =14; and m; = m + j. Other possibility is when there exists j > 1, such that
i=i=--=1,my>m+l for1<l<j—1and mj =m+j.

Next we will see that Qg (m)b + ¢L(\) € B(\) U {0} by induction on the length of
the monomial b. Using Equation (8.1) we see that Qy, (m)z;. aom, T aL(N) € B(A) U {0}.
Consider now

sz (m)xilml T xikmk 6”15*"774 ml domo xikmkv)‘

p””"l ~
§ 1 . - _ - e
+ q 't Giiqt (T)xil,ml—&-r * sz‘ (m T)xlém?, Lipmy UA

- P - mml
- 5“15771 —m L 12Mo xikmkv)\ + wa‘lul le ym1+E€iig

* Qwi (M = €4, )T; T4y, V2 mOd gL(A)

where €;;, is defined as in Proposition 7.3 and

wal;nlzllnl _ -1 (ai1|aj1) >0
0 (aﬁ |aj1) <0
Then, if (a4, |a;,) < 0 we get Qwi(m)x;ml o Zy m Ua = 0 € B(A) U{0}. In other
case,
Q'LZM (m)xz:nzl T I'Zk,mk’l))\
= Om—ma Tigmy iy VA — Ty 1 * Sy, (M — Dz oay 0 vy mod gL(A).
By induction Qy, (m — 1)z, Ty Tipm, VA MOd gL(A) # 0 only if i = iy = - -+ = i), and
in this situation we get
QU% (m)xi_lml e mi_kmkv)\
= Ommma Tigmy i VA T g, 1 * Qg (m— Dz wxp vy mod gL(A)
k+1

— _1)i—1 . - - -
= E (=1 Om—j+1,—m; iy 1 * Loy g1 * *Li ) my 41
xookwy 0 mod qL(N),

where zg,mo41 = 1. Note that w; . o qx@ oq % xay ot *oekxy g is al-

ready order because z; ,, ---x; . is ordered. So, Qy, (m)z; Ty T, VA MOd gL(A) €
B(\) U {0}.
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For (5) consider b = x; ,,, ---x; . vx + ¢L(A) € B(\) assume that Qy, (—m)b # 0
and Z;,b # 0. As we saw, this is just possible if i = i3 = .-+ = 4} and there does not
exist j such that m; = m + j. In such a case it reduces the proof to the sl situation

which is already proved in [7]. Hence we are done. O

9. The category O ; ;.
Let Gy be the quantized Heisenberg subalgebra generated by h;, and v, for i € Iy,
n € Z \ {0}.
We will say that a Uy (g)-module V is Gg-compatible if:

(i) V has a decomposition V = T(V) @ TF (V) where T(V) and TF (V') are non-zero
G 4-modules, called, respectively, torsion and torsion free module associated to V.
(i) him for ¢ € Iy, m € Z \ {0} acts bijectively on TF(V), i.e., they are bijections on
TF(V).
(iif) TF (V) has no non-zero Uy(§)-submodules.
(iv) G¢-T(V)=0.

Consider the set

bgrea ={A € P A(c) = 0,A(hi) # 0,4 € Io}

q
red,im

The category O
such that

is defined as the category whose objects are U, (g)-modules M

A~

(1) M is by rea-diagonalizable, that means,

M = EB M, where M, = {m € M|K;m = APm, Dm = M Dmie Iy}

f*
Vehq,red

(2) For any i € Iy and any n € Z, x}, acts locally nilpotently.
(3) M is G4-compatible.
(4) the morphisms in OF

ved,im aré Uq(g)-homomorphisms.

Reduced imaginary Verma modules belong to Oged,im' Indeed, for Mq()\) consider

T(Mq()‘)) = (C(ql/2)1))\ and TF(V) = @kez,nl,_“,m\,ezzo My(N)rtk6—nia1—...—nxan>
and at least one n; # 0. Moreover, direct sums of reduced imaginary Verma modules
belong to OF ;.-

Due to [13], we can deform U(g)-imaginary Verma modules preserving weight space
decompositions and weight multiplicities. So the proof of the following theorem is com-
pletely analogues to the one presented in Theorem 5.1, Theorem 5.3 and Proposition 5.4

in [1] which we sketch here.



J.C. Arias et al. / Journal of Algebra 655 (2024) 3—28 23

Theorem 9.1.

(1) If A p €07 g then Extpa  (My(N), My(p)) = 0.
(2) IfM is an frreducible module in the category OF

~

red,im’ then M = Mq(/\) f07” some \ €
s red- Moreover, if N is an arbitrary object of O}, ;. then N = @Aieﬁz,red M(N),

for some A.s.

Proof. Suppose there exists an extension M that fits in the following short exact se-
quence:

0 > My(N) ~= M —"= My(4) —0 .

If A and p just differ by a multiple of the null root, we will get two vectors in M,
which are annihilated by z; for i € Iy and n € Z and, by the G,-compatibility, they
are isolated. Hence, they are highest weight vectors, which generates two irreducible
submodules isomorphic to My(\) and M, () and then the extension splits.

Assume now g = A+ ké — Zf\il s;oy, for s; € Z, k € Z and with not all s; equal to
zero. First of all, let s; € Z>( and let T, be a preimage under 7 of a highest weight vector
vy, of Mq( ) of highest weight ¢*. Because x:;vu = Gqv, =0, for any i € Ip and n € Z,
it is possible to show that T(M) = C(q¢'/?)v,. Moreover, for i € Iy and s € Z \ {0}
we have that 7(h;sv,) = hisv, = 0, then h;v, € Mq(/\), but it is just possible that
hist, = 0 and so G4v, = 0.

Since the operators a:j' are locally nilpotent, we can see that :c "0, =0 for all i € I
and n € Z. Indeed, if this is not the case, there exists j € Iy and m € Z such that
0 # 2 5, € My(\). If we fixed j we have a U, (sl)-subalgebra U, (j) such that the U, (j)-

submodule of M generated by T, say M,(j), it is an extension of reduced imaginary
U,(j)-Verma modules, one of them of weight ¢/. So, because M € O we have that

M,(j) € 04

red,im

red,im

(U4(4)), but this is a semisimple category by [7], hence 33:;

v, = 0 for all
i and n. Therefore, T,, generates a U, (g)-submodule of M isomorphic to M,(u) and the
short exact sequence splits.

In case s; € Z< for all i and at least one different from 0, because M, (1) is irreducible
and M (A) is a Uy(g)-submodule of M, the short exact sequence splits completing the
proof of statement (1).

Assume now that M € Of
weight A € by, 4. For each i € Iy let p; € Z>0 be the minimum possible integer such
that (z;)Piv = 0. If all p; = 1 we see that 2, v =0 for all i € I and n € Z \ {0}. Hence,
we have an epimorphism M, (\) — M, so M =~ M(N).

On the other hand, assume there exists at least one p; such that p; > 1. Then, there

red.im 18 irreducible. Let v € T(M) be a nonzero element of

exists £ € Z~o and a nonzero element wj, for i = (i1,...,i7) € Ié such that xjnwi =0,
for any j € Iy and n € Z. Consider the G4-submodule W; = U(G Jw; of M and the
induced module I(W;) = Indgz(g) Wi, where B, is generated by z; , K, D! hy,
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and v for i € Iy, m,n € Z, m # 0. Since M is irreducible, it is a quotient of I(W;). If
w; € T(M), we have W; = C(¢*/?)ws, and so M is a quotient of I(W;) = M,(\) and we
are done. In case w; ¢ T(M), we get a contradiction. We conclude that M =2 M, (\) for
some A € fA);Ted.

Let N be an arbitrary module in (’)ﬁed’im and v € T(N) is nonzero. Let w; and Wj
as above. Then we have two possibilities: either w; ¢ T(IN) or w; € T(NV). In the first
case, we get a proper G -submodule of TF(NN) which is not possible. In the second case,
Wi = C(¢"/?)w; € T(N) and for some \;, [(W;) = M,();) is a Uy(§)-submodule of N.
Then, any non-zero element of T'(IV) generates an irreducible reduced imaginary Verma
module which is a Uy(§)-submodule of N and because there are no extensions between

them, they are direct summands of N. O

For i € Iy and n,m € Z we have defined operators #;, and , (m) on irreducible
reduced imaginary Verma modules. So, due to the above theorem we have the following:

Theorem 9.2. The operators &;, and Q,/M (m) are well defined on objects in the category
0! ]

red,im "

For an object M € O, dim» We can define imaginary crystal lattices and bases anal-
ogous to the Definitions 8.1 and 8.3. In what follows we will prove that crystal basis of
irreducible reduced imaginary Verma modules extend to direct sums of these modules.
We also prove a partial converse of this statement. The proofs are analogues to the proofs
in the sly-case given in [8].

Now suppose M € O] ; ;,,, then there exists A\ € Gz,red for k € J (J an index set)
such that M = @, ., My(M\x). For k € J, let (L(Ax), B(Ax)) be the imaginary crystal
basis of M, (\y) given in Theorem 8.5. Set £ = @, ; L(\r) and B = [ J,c; B(\x).
Theorem 9.3. Let M € O}, ., such that M = @, ; My(\) as above. Then the pair

(L, B) is an imaginary crystal basis for M.

Proof. We need to check that the five conditions in Definition 8.3 hold. For the first
one we need to see that £ is an imaginary crystal lattice. Clearly, C(¢'/?) ®a, L =
Drcs C(q'?) ®@a, L(\k) = Drcy M,(\x) = M. The third property follows directly be-
catse Qs (m)(£) = R () (Brey LOW) = Bpes Lo (ML) € Brey LOW) =
L and similarly we have that #;,,(£) = %;,(@,c; L) = (BresTinl(M)) €
Prcs L) = L, for any i € Iy and m € Z. So let us see the second property in
Definition 8.1. For this we first show that £, = (D;c; L(\k))y = Dpey L(Ak)y, where
L) = L) 1 M,

In fact, assume u € (Pc; L(Ar))u, then u =37, _;up where up € L(Ax) and Kyu =
q"")y for any i € Iy. Since L(\g) = D, cn LK)y, We can write ug = 30 Uk,
where uy ,, € L(Ag)p, and Kiug ,, = q“k(hi)um% for any i € Iy. Hence, we have the
following



J.C. Arias et al. / Journal of Algebra 655 (2024) 3—28 25

KZ"U, = ZKzuk = Z Z Kiuk’uk = Z Z quk(hi)uk,uk

keJ keJ pre™ keJ prem

|
qlt(hi)'u, = Z gy, = Z Z q“(hi)ukwk'

keJ keJ prem

Hence Zkej(zukeﬂ(q“(hi) — gy, ) = 0. Since the sum @), ; L(Ax) is direct
we get p(h;) = pr(hi) for any i € Iy and k € J. Then ug p,, € L(Ax) N M, = L(Ag) .
Finally note that £ = @ye; LOAk) = Pres Bper LR = Bper Gres L) =
®u6w Ly, where £, = LN M,. So L is an imaginary crystal lattice of M.

Let us now look at the second property in Definition 8.3. We know that B(\) is a
C-basis of L(Ag)/qL(Ag) = C ®@p, L(Ag) for all k € J. Now,

L/qL =P L) /P L) = @D(LA)/aL())

kedJ keJ kedJ
*@ (C ®A, £ = C ®a, L.
keJ

Hence, £/qL has the C-basis |_|,c; B(Ax) = B. For the third property we have

B=|_ B0 =] ]BOw.=]L1BOw),.=]]B.

keJ keJ pem peT keJ peT

where B, = |_lzes B(Ax), and so

B =_|(B) N (LK) /2L (Ak)w))

keJ

=(LJBO)) N (D LOw)u/aLO)u)

keJ ke

=B (P LOW)u/aLOw)))

k'eJ

=BNL,/qL,

The fourth property holds since Qu, (m)(B) = Qu, (m)(Lres BOK) =
(Ukes Q. (m)BAL)) € Lpes £B(A:)U{0} = £BU{0} and similarly &, (B) € +BU{0},
for any i € Iy and m € Z.

Finally, for the fifth property suppose b € B such that Qwi(—m)b #0and 2;,.b#0
for m € Z and i € Iy. Since by definition B = | |,c; B(A) is a disjoint union there is
unique index k' € J such that b € B(Ay). Since (L(Ag/), B(Ar)) is an imaginary crystal
basis we have that #;, Q. (=m)b = Q,(-m)Z; b as desired. O

To prove a partial converse of the Theorem 9.3 below, we need the following lemma.
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Lemma 9.4. For any i € Iy and m € Z the operators Qwi (m) and Z,,, commutes with
any Uqy(§)-homomorphism in the category OF

red,im"*

Proof. Let M € Of It is enough to prove the statement for an U, (g)-homomorphism
red,im"* q

@ : My(\) — M for some \ € fA)vad Let @; ,, -+~ 2; , v be an ordered monomial basis
element of M,()), then

P(Tim (T35, Ty X)) =O(( i * 27 ) - % TG V)
=((Tim * x“m) Coex x;knk)cp(v)\)
=Tim (Ti " Ty, P(0N))
=Tim (P(Ti 0, Tipn, UA))-
P(Qy, (m) (7, - -x;knkvA)>

= p(8iiy, 0—mn, T iong 'xiknkvh)

4 Z ql)ii1 Giiy,q—1 (T)Qo(mi_l,nlJrr * lel (m - ’I") ('rl_z’nz o J"z_;‘nkvk))
r>0

= 6“16*771 n1¥iyn, " 'xiknk(p(’l))\)

pmm _ - B _
+ Z q " Giiy g1 T)xil,nl-&-r * le (m - r)(xignz U xiknk SO(U)\))

= % (M) (27, Ty T P(VA))

= Qu, (M) (AT, Tigmy " Tiin UA))s
which proves the statement. O

Theorem 9.5. Let M = M & My where My and My are modules in the category Of
and suppose (L, B) is an imaginary crystal basis for M. Furthermore, suppose that there
exists Ag-submodules L; C M;, and subsets B; C L;/qL;, for j = 1,2 such that L =
L1& Ly and B = Bi1UBy. Then (L;, B;) is an imaginary crystal basis of M;, for j =1, 2.

red,im

Proof. It is straightforward to see that C(q'/?) ®a, (£;)u = (M;),, p € 7, L; = LN M;
and B; = BN (L;/qL;) (see Theorem 4.2.10 (2) from [15]).

Let see that £, = (£1), @ (L2)y, for g € m. The “2” part is obvious. For the other
inclusion assume u € £,,, then v = u; + us where u; € £1 and up € L. Let ¢ € Iy then
Kiu = Kjuy + Kjug = ¢*M)uy + ¢y and so K;ug — g*Miduy = —Kiug + ¢y, €
L1 N Ly ={0}. Hence, u; € (£1), and up € (L2), and we are done.

Foru e £; C L = @uen£ we have u = 37 . u, where u, € L,. We have
decomposition u, = (u1), + (u2), with (u;), € (£;)u, 5 = 1,2. Consequently v —

>open(Wi)p = 2 eq(un)y for j # k, which implies that u—3" . (u;), € £;N Ly = {0}

k)
So we have u € P L)

HEW(
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Let prj : M — M; be the canonical projection into the j-component. Let u; € £; and
recall that for any i € Iy and m € Z, Qy,(m)L C £ and &, L C L. Then Q, (m)u; =
U1 + U and Z;, u; = U1 + Uo, where u;,4; € £;. By Lemma 9.4 we have Qd,i (m)(uq) =
Qy (m)(p1(w1)) = p1(Qy, (M) (w1)) = W and Ty, (u1) =, (01.(w1)) = p1(F;,, (w1)) =
@1. Hence Qy, (m)(u1), %, (u1) € L. Similarly, Qy, (m)(u2), &;,(u2) € L. This shows
that £; is a crystal lattice for j = 1, 2.

Notice that

L/qL=C @p, L2 (Ca, L£1) ® (C ®a, L2) 2 (L1/qL1) ® (L2/qL2).

Using this isomorphism we have that B; = BN (£;/qL;) is a C-basis of L;/qL;
C ®a, Lj. We also have that B = By U By and thus B; = | |,c.(B;), where (B;),
BN ((L5)u/a(Ls)n)-

The operators €y, (m) and &;,,, for i € Iy, m € Z leaves stable the bases B; because
of Lemma 9.4, i.e., Qy,(m)B; C B; U{0} and %;, B; C B; U{0}, for j = 1,2. Finally, if
b € B; is such that Qy,(—m)b # 0 and Z;, b # 0, then Z;, Q. (—m)b = Qy. (—m)i;, b
since b € B.

This completes the proof that (L£;,B;) is an imaginary crystal basis for M;, j =
1,2. O
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