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1. Introduction

Let ĝ be an untwisted affine Lie algebra with Cartan subalgebra ĥ and generalized 
Cartan matrix A = (aij)0≤i,j≤N . Let g be the associated finite dimensional simple Lie 
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algebra with Cartan matrix (aij)1≤i,j≤N and Cartan subalgebra h. Let {α0, α1, . . . , αN}
be the set of simple roots, δ be the null root and Δ be the set of roots for ĝ with respect 
to ĥ. A partition Δ = S ∪ −S is a closed partition if α, β ∈ S and α + β ∈ Δ implies 
α + β ∈ S. The classification of closed partitions of the affine root system was obtained 
by Jakobsen and Kac [16], and independently by Futorny [11,12]. The usual partition 
of the set of roots Δ = Δ+ ∪ Δ− to the set of positive and negative roots is called the 
standard partition. Corresponding to this partition we have a standard Borel subalgebra 
of ĝ from which we induce the standard Verma modules. Consider the nonstandard closed 
partition Δ = S ∪ −S, where S = {α + nδ|α ∈ Δ0,+, n ∈ Z} ∪ {kδ|k > 0}, Δ0,+ being 
the positive roots for g. Corresponding to this partition we obtain an inequivalent Borel 
subalgebra of ĝ which induce nonstandard Verma modules M(λ) called imaginary Verma 
modules. Unlike the standard Verma modules, the imaginary Verma modules contain 
both finite and infinite dimensional weight spaces. As shown in [4,13] these imaginary 
Verma modules can be q-deformed to quantum imaginary Verma modules Mq(λ) for 
the quantum affine algebras Uq(ĝ) preserving both finite and infinite dimensional weight 
spaces for generic q.

The theory of crystal bases for integrable representations of Uq(ĝ) was developed 
independently by Kashiwara [17,18] and Lusztig [20]. Two of the authors (KCM and 
VF) jointly with Ben Cox initiated the investigation of the existence of crystal-like bases 
for quantum imaginary Verma modules Mq(λ) for the quantum affine algebras Uq(ĝ)
in 2008 at a conference in Banff. Following the framework in [18] they constructed an 
analog of Kashiwara algebra Kq for Mq(λ) in the case ĝ = ŝl(2) by introducing certain 
Kashiwara type operators in [5] and proved that certain quotient N−

q of Uq(ĝ) is a 
simple Kq-module. This result was extended to all quantum affine algebras Uq(ĝ) of 
ADE types in [6]. In [7] a category Oq

red,im of Uq(ŝl(2))-modules were introduced and 
it was shown that any module in this category is a simple reduced quantum imaginary 
Verma module M̃q(λ), certain quotient of Mq(λ) or direct sum of these modules. The 
existence of imaginary crystal base for any module in the category Oq

red,im was shown 
in [7,8].

In this paper, by appropriate modifications we first extend the results in [6] to all un-
twisted quantum affine algebras Uq(ĝ). Using the results in [1], we construct the category 
Oq

red,im of Uq(ĝ)-modules and show that any module in this category is a simple reduced 
quantum imaginary Verma module M̃q(λ) or direct sum of these modules. Moreover, we 
show that any module in the category Oq

red,im admits an imaginary crystal basis.
From now on imaginary Verma modules will mean the quantum imaginary Verma 

modules Mq(λ) unless there is any confusion.
This paper is organized as follows. In Sections 2 and 3, we define and set the notations 

for affine and quantum affine algebras. In Section 4, we recall the definitions of imaginary 
Verma modules Mq(λ) and reduced imaginary Verma modules M̃q(λ) for any weight 
λ ∈ P and state some of the necessary and sufficient conditions for their irreducibility. 
In Section 5, we recall the definitions of Ω-operators and the Kashiwara algebra Kq

from [6] for any untwisted quantum affine algebra Uq(ĝ). We show that the unique non-
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degenerate symmetric form on the quotient N−
q of Uq(ĝ) defined in [6] holds for any 

untwisted affine algebra ĝ. In Section 6, we introduce a product between monomials in 
N−

q which we call “twisted concatenation product”, define Kashiwara type operators on 
M̃q(λ) and prove some of their relations. In Section 7 we introduce a bilinear form among 
ordered monomials of N−

q and prove that it satisfies certain orthonormality condition 
modulo q2Z[q] which plays an important role in the construction of the imaginary crystal 
basis. In Section 8 we prove the existence of imaginary crystal basis for a simple reduced 
imaginary Verma module M̃q(λ). Finally, in the last section we define the category 
Oq

red,im and show that any module in this category is either a simple reduced imaginary 
Verma module or a direct sum of these modules. We prove that any module in Oq

red,im

has an imaginary crystal basis.
We dedicate this paper to Georgia Benkart and Ben Cox whom we miss dearly. As 

mentioned above Ben has been an integral part for the success of this project in the 
earlier stages. He has been a friend and collaborator of KCM and VF for many years. 
Georgia Benkart was a research mentor and collaborator of KCM. Both KCM and VF 
are indebted for her support and encouragements over the years.

2. Affine algebras

Let I = {0, 1, . . . , N} and A = (aij)0≤i,j≤N be a generalized affine Cartan matrix 
for an untwisted affine Kac-Moody Lie algebra ĝ. Let D = diag(d0, d1, . . . , dN ) be a 
diagonal matrix with relatively prime integer entries such that DA is symmetric. The 
numbers d0, . . . , dN are given as follows: Types ADE: di = 1 for all i ∈ I, type B: di = 2
for i ∈ I \ {N} and dN = 1, type C: d0 = dN = 2 and di = 1 for i �= 0, N , Type F: 
d0 = d1 = d2 = 2, d3 = d4 = 1 and type G: d0 = d1 = 3 and d2 = 1.

The Chevalley-Serre presentation of ĝ is given by generators ei, fi, hi for 0 ≤ i ≤ N

and d subject to the defining relations:

[hi, hj ] = 0 [d, hi] = 0 [hi, ej ] = aijej [hi, fj ] = −aijfj

[ei, fj ] = δi,jhi [d, ei] = δ0,iei [d, fi] = −δ0,ifi

(adei)1−aij (ej) = 0 (adfi)1−aij (fj) = 0.

Then the abelian subalgebra ĥ = span{h0, . . . , hN , d} is the Cartan subalgebra of ĝ. 
Let Δ be the root system of ĝ with simple roots Π = {α0, α1, . . . , αN} and let δ = α0 +θ

be the null root where θ is the longest root of the underlying simple Lie algebra g. Recall 
that Δ = Δre ∪ Δim, where Δre and Δim denotes the real and imaginary sets of roots. 
Let Q, P , Q̌ and P̌ denote the root lattice, the weight lattice, the coroot lattice and the 
coweight lattice respectively. The standard non-degenerate symmetric bilinear form (.|.)
on ĥ∗ satisfies (αi|αj) = diaij , (δ|αi) = (δ|δ) = 0 for all i, j ∈ I.

Let I0 = {1, 2, . . . , N} and let g be the simple finite dimensional Lie algebra with 
Cartan matrix (aij)1≤i,j≤N . Let Δ0 be the root system of g and Π0 = {α1, . . . , αn} be 
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the set of simple roots. As a matter of notation, any subscript 0 will refers to the same 
sets for the simple Lie algebra g.

The loop space realization of ĝ is given by ĝ = g ⊗ C[t, t−1] ⊕ Cc ⊕ Cd, where c is a 
central element, d is a degree derivation such that [d, x ⊗ tn] = nx ⊗ tn for any x ∈ g

and n ∈ Z, and

[x⊗ tn, y ⊗ tm] = [x, y] ⊗ tn+m + δn,−mnκ(x|y)c,

for all x, y ∈ g, n, m ∈ Z. Here κ(−|−) is a symmetric invariant bilinear form on ĝ.
Recall that a subset S of Δ is said to be closed if whenever α, β ∈ S and α + β ∈ Δ

then α + β ∈ S. We also say that S is a closed partition if S is closed, Δ = S ∪ −S

and S ∩ −S = ∅. We are going to consider the closed partition, inequivalent to the 
standard partition into positive and negative roots, given by S = {α+ nδ|α ∈ Δ0,+, n ∈
Z} ∪ {kδ|k > 0}.

3. Quantum affine algebras

Let Uq(ĝ) be the quantum affine algebra (see [3], [19]), i.e., the associative and uni-
tal C(q1/2)-algebra with generators Ei, Fi, Kα, γ±1/2, D±1 for 0 ≤ i ≤ N , α ∈ Q and 
defining relations:

DD−1 = D−1D = KαK−α = K−αKα = γ1/2γ−1/2 = γ−1/2γ1/2 = 1

[γ±1/2, Uq(ĝ)] = [D,K±α] = [Kα,Kβ ] = 0

(γ±1/2)2 = K±δ

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

KαEiK−α = q(α|αi)Ei, KαFiK−α = q−(α|αi)Fi

DEiD
−1 = qδi,0Ei, DFiD

−1 = q−δi,0Fi

1−aij∑
s=0

(−1)sE(1−aij−s)
i EjE

(s)
i =

1−aij∑
s=0

(−1)sF (1−aij−s)
i FjF

(s)
i = 0, i �= j

where qi = qdi , [n]i = qni −q−n
i

qi−q−1
i

, [n]i! = [n]i[n − 1]i · · · [2]i[1]i, Ki = Kαi
, E(s)

i = Es
i /[s]i!

and F (s)
i = F s

i /[s]i!.
There is also another realization due to Drinfeld in the spirit of the loop space real-

ization as follows (see [9], [2]). Uq(ĝ) is the associative unital C(q1/2)-algebra generated 
by x±

ir, his, K
±1
i , γ±1/2, D±1 for i ∈ I0, r, s ∈ Z and s �= 0 subject to the relations:

D±1D∓1 = K±1
i K∓1

i = γ±1/2γ∓1/2 = 1

[γ±1/2, Uq(ĝ)] = [D,K±1
i ] = [Ki,Kj ] = [Ki, hjs] = 0
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DhirD
−1 = qrhir, Dx±

irD
−1 = qrx±

ir

Kix
±
jrK

−1
i = q±(αi|αj)x±

jr

[hik, hjl] = δk,−l
1
k

[kaij ]i
γk − γ−k

qj − q−1
j

[hik, x
±
jl] = ±1

k
[kaij ]iγ∓|k|/2x±

j,k+l

x±
i,k+1x

±
jl − q±(αi|αj)x±

jlx
±
i,k+1 = q±(αi|αj)x±

ikx
±
j,l+1 − x±

j,l+1x
±
ik

[x+
ik, x

−
jl] = δij

1
qi − q−1

i

(γ(k−l)/2ψi,k+l − γ(l−k)/2φi,k+l)

where

∞∑
k=0

ψikz
k = Ki exp

(
(qi − q−1

i )
∑
l>0

hilz
l
)

∞∑
k=0

φi,−kz
−k = K−1

i exp
(
− (qi − q−1

i )
∑
l>0

hi,−lz
−l
)

and for i �= j,

Symk1,...,k1−aij

1−aij∑
r=0

(−1)r
[
1 − aij

r

]
i

x±
ik1

· · ·x±
ikr

x±
ijx

±
ikr+1

· · ·x±
ik1−aij

= 0.

If we consider the following generating functions

φi(u) =
∑
p∈Z

φipu
−p, ψi(u) =

∑
p∈Z

ψipu
−p, x±

i (u) =
∑
p∈Z

x±
ipu

−p

the defining relations become:

[φi(u), φj(v)] = [ψi(u), ψj(v)] = 0

φi(u)ψj(v)φi(u)−1ψj(v)−1 = gij(uv−1γ1)/gij(uv−1γ)

φi(u)x±
j (v)φi(u)−1 = gij(uv−1γ∓1/2)±1x±

j (v)

ψi(u)x±
j (v)ψi(u)−1 = gji(vu−1γ∓1/2)∓1x±

j (v)

(u− q±(αi|αj)v)x±
i (u)x±

j (v) = (q±(αi|αj)u−v)x±
j (v)x±

i (u)

[x+
i (u), x−

j (v)] = δij(qi − q−1
i )(δ(u/vγ)ψi(vγ1/2) − δ(uγ/v)φi(uγ1/2))

where gij(t) = gij,q(t) is the Taylor expansion at t = 0 of the function (q(αi|αj)t −1)/(t −
q(αi|αj)) and δ(z) =

∑
k∈Z zk.
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4. Imaginary Verma modules

For the closed partition Δ = S∪−S where S = {α+nδ|α ∈ Δ0,+, n ∈ Z} ∪{kδ|k > 0}, 
we define the following subalgebras of Uq(ĝ).

• U+
q (S) generated by x+

ik, hil for i ∈ I0, k ∈ Z and l > 0.
• U−

q (S) generated by x−
ik, hi,−l for i ∈ I0, k ∈ Z and l > 0.

• U0
q (S) generated by K±1

i , γ±1/2, D±1 for i ∈ I0.

For λ ∈ P , a wight module V of Uq(ĝ) is called an S-weight module with highest 
weight λ if there is a non zero vector v ∈ V of weight λ such that u+v = 0 for all 
u+ ∈ U+

q (S) \C(q1/2) and V = Uq(ĝ)v.
Let us consider the Borel subalgebra Bq of Uq(ĝ), which is generated by U+

q (S) ∪U0
q (S). 

Consider now the one dimensional module C(q1/2)λ, in which the Bq-module U+
q (S)

acts trivially and if 1 is the generator of the module then K±1
i 1 = q±λ(hi)1, i ∈ I0, 

γ±1/21 = q±λ(c)/21 and D±11 = q±λ(d)1.
We define the imaginary Verma module Mq(λ) of weight λ ∈ P as

Mq(λ) := Uq(ĝ) ⊗Bq
C(q1/2)λ.

We have the following theorem (see [10]).

Theorem 4.1. Mq(λ) is irreducible if and only if λ(c) �= 0.

Let us suppose that Mq(λ) is reducible, that means λ(c) = 0 and so γ±1/2 acts by 1. 
Denote by Jq(λ) the left ideal of Uq(ĝ) generated by x+

ik, hil for i ∈ I0, k, l ∈ Z, l �= 0
and K±1

i − q±λ(hi), γ±1/2 − 1 and D±1 − q±λ(d). Set

M̃q(λ) = Uq(ĝ)/Jq(λ).

It is a quotient of Mq(λ) and we call it reduced imaginary Verma module. We have 
the following theorem (see proposition 7.1 in [14]).

Theorem 4.2. Let λ ∈ P such that λ(c) = 0. Then M̃q(λ) is irreducible if and only if 
λ(hi) �= 0 for all i ∈ I0.

Notice also that

M̃q(λ) =
⊕

i1,...,ir
k1,...,kr

C(q1/2)x−
i1k1

· · ·x−
irkr

vλ

where vλ stands for the generator 1. The order in the defining monomial for the reduced 
imaginary Verma module is going to be important for us. We will say that a monomial 
x−
i k · · ·x−

i k is ordered if and only if i1 + k1 ≥ i2 + k2 ≥ · · · ≥ ir + kr.
1 1 r r
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5. Ω-operators and the Kashiwara algebra

The Kashiwara algebra and the Ω-operators were defined in [6] for types ADE, but a 
close look at the proof of the results presented in [6] shows that everything there is true 
for any quantum affine algebra associated with an untwisted affine Lie algebra of any 
type. In this section we recall the main constructions presented in [6].

Consider the subalgebra N−
q of Uq(ĝ) generated by γ±1/2 and x−

il for l ∈ Z, i ∈ I0 and 
the relations between them. The elements of N−

q are sums of the elements of the form 
P j1,...,jk
m1,...,mk

= γl/2x−
j1m1

· · ·x−
jkmk

, for mi, l ∈ Z, k ≥ 0 and 1 ≤ ji ≤ N . Such an element 
is a summand of

P j1,...,jk = P j1,...,jk(v1, . . . , vk) := γl/2x−
j1

(v1) · · ·x−
jk

(vk).

We set P j1,...,jk = x−
j1

(v1) · · ·x−
jk

(vk) and P
j1,...,jk
l = x−

j1
(v1) · · ·x−

jl−1
(vjl−1)x−

jl+1
(vjl+1)

· · ·x−
jk

(vk).
We denote

Gil = G
1/q
il = G

1/q
il (vj1, . . . , vjl , vl) := δi,jl

l−1∏
m=1

gi,jm,q−1(vjm/vl)

Gq
il = Gq

il(vj1, . . . , vjl , vl) := δi,jl

l−1∏
m=1

gi,jm,q(vl/vjm)

where Gi1 = δi,j1 . We define operators Ωψi
(k), Ωφi

(k) : N−
q → N−

q for k ∈ Z in terms 
of the generating functions

Ωψi
(u) =

∑
l∈Z

Ωψi
(l)u−l, Ωφi

(u) =
∑
l∈Z

Ωφi
(l)u−l

by

Ωψi
(u)(P j1,...,jk) =

k∑
l=1

GilP
j1,...,jk
l δ(u/vlγ)

Ωφi
(u)(P j1,...,jk) =

k∑
l=1

Gq
ilP

j1,...,jk
l δ(uγ/vl).

We have that Ωψi
(u)(1) = Ωφi

(u)(1) = 0.
Recall that x−

i (v) =
∑

m x−
imv−m. So we can consider left multiplication operators 

x−
im : N−

q → N−
q . There are several identities between the Ω-operators and the x−-

operators, we just list a few:
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q(αi|αj)γΩψj
(m)x−

i,n+1 − Ωψj
(m + 1)x−

in =

(q(αi|αj)γ − 1)δijδm,−n−1 + γx−
i,n+1Ωψj

(m) − q(α1|αj)x−
inΩψj

(m + 1).

q(αi|αj)Ωφj
(m)x−

i,n+1 − γΩφj
(m + 1)x−

in =

(q(αi|αj) − γ)δijδm,−n−1 + x−
i,n+1Ωφj

(m) − q(α1|αj)γx−
inΩφj

(m + 1).

Ωψj
(k)x−

im = δijδk,−mγk +
∑
r≥0

gi,j,q−1(r)x−
i,m+rΩψj

(k − r)γr. (5.1)

Ωψi
(k)Ωφj

(m) =
∑
r≥0

gi,j(r)γ2rΩφj
(r + m)Ωψi

(k − r). (5.2)

We define the Kashiwara algebra Kq as the C(q1/2)-algebra with generators 
Ωψj

(m), x−
i (n), γ±1/2 for m, n ∈ Z, 1 ≤ i, j ≤ N where γ±1/2 are central and the 

defining relations are:

q(αi|αj)γΩψj
(m)x−

i,n+1 − Ωψj
(m + 1)x−

in =

(q(αi|αj)γ − 1)δijδm,−n−1 + γx−
i,n+1Ωψj

(m) − q(α1|αj)x−
inΩψj

(m + 1)

q(αi|αj)Ωψi
(k+1)Ωψj

(l)−Ωψj
(l)Ωψi

(k+1) = Ωψi
(k)Ωψj

(l+1)−q(αi|αj)Ωψj
(l+1)Ωψi

(k)

x−
i,k+1x

−
jl − q−(αi|αj)x−

jlx
−
i,k+1 = q−(αi|αj)x−

ikx
−
j,l+1 − x−

j,l+1x
−
ik (5.3)

and

γ±1/2γ∓1/2 = 1.

Some of the properties of the Kashiwara algebra Kq proved in [6] that holds for any 
quantum untwisted affine algebras are summarized in the following proposition.

Proposition 5.1. For a quantum affine algebra associated to any untwisted affine Lie 
algebra, there exists a unique non-degenerate symmetric form (−, −) defined on N−

q

satisfying (x−
ija, b) = (a, Ωψi

(−j)b) and (1, 1) = 1. Moreover, N−
q is a left Kq-module 

such that Nq
∼= Kq/

(∑N
i=1

∑
k∈ZKqΩψi

(k)
)
. Furthermore, N−

q is simple as left Kq-
module.

Proof. The first statement follows from Proposition 6.0.6 and Corollary 7.0.9 in [6]. The 
second and third statements follow from Lemma 6.0.5, Theorem 7.0.8 in [6]. �
6. The operators Ω̃ and x̃

Recall that the function gij,q−1(r) for i, j ∈ I0 is the Taylor expansion at t = 0 of the 
function (q(αi|αj)t − 1)/(t − q(αi|αj)) and that (αi|αj) = diaij . Below we list the explicit 
form of gij,q−1(r) when r = 0 and r > 0 for all possible values of (αi|αj).



J.C. Arias et al. / Journal of Algebra 655 (2024) 3–28 11
gij,q−1(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r = 0 r > 0
q6 (q12 − 1)q6(r−1) = q6(r+1)(1 − q−12) (αi|αj) = 6
q4 (q8 − 1)q4(r−1) = q4(r+1)(1 − q−8) (αi|αj) = 4
q2 (q4 − 1)q2(r−1) = q2(r+1)(1 − q−4) (αi|αj) = 2
1 0 (αi|αj) = 0
q−1 (q−2 − 1)q−(r−1) = q−(r+1)(1 − q2) (αi|αj) = −1
q−2 (q−4 − 1)q−2(r−1) = q−2(r+1)(1 − q4) (αi|αj) = −2
q−3 (q−6 − 1)q−3(r−1) = q−3(r+1)(1 − q6) (αi|αj) = −3

On the algebra N−
q let us define the following “twisted concatenation product” : For 

elements x−
im, x−

jn ∈ N−
q , we define

x−
im � x−

jn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−
imx−

jn if i + m ≥ j + n

or i + m < j + n

and (αi|αj) > 0
q−(αi|αj)x−

imx−
jn if j = i + 1 and n = m + 1

or i = j + 2 and n = m + 4
q−(αi|αj)(x−

imx−
jn − x−

j,n−1x
−
i,m+1) if i = j+1,m+1 < n, j + n− 1

< i + m + 1
or i = j + 2 and n > m + 4

q−(αi|αj)(x−
imx−

jn − q(αi|αj)x−
i,m+1x

−
j,n−1) if i = j+1,m+1 < n, i+m+1

< j + n− 1
or i = j + 2
and m + 2 < n < m + 4
or j = i + 2 and m < n

q−(αi|αj)(x−
imx−

jn − x−
i,m+1xj,n−1) if j = i + 1 and m + 1 < n

or j = i + 2 and n = m + 1
x−
imx−

jn − x−
i,m−1xj,n+1 if j = i + 2 and m = n + 1

and we define the operator x̃−
jm over a �-monomials (x−

i1k1
� (· · · � (x−

il−1kl−1
� x−

ilkl
) · · · ))

as �-left multiplication, that is

x̃−
jm(x−

i1k1
� (· · · � (x−

il−1kl−1
� x−

ilkl
) · · · ))

:= x−
jm � (x−

i1k1
� (· · · � (x−

il−1kl−1
� x−

ilkl
) · · · ))

= ((x−
jm � x−

i1k1
) � (x−

i2k2
� (· · · � (x−

il−1kl−1
� x−

ilkl
) · · · )).

From the definition of the �-product, we have that it coincides with the usual product 
on ordered monomials, that is, x−

i k · · ·x−
i k = x−

i k �· · ·�x−
i k when i1+k1 ≥ · · · ≥ il+kl. 
1 1 l l 1 1 l l
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Moreover, the �-product is associative over ordered monomial. In particular, for any x−
jm

and ordered monomial x−
i1k1

x−
i2k2

x−
i3k3

, we have the following associativity-like property:

x̃−
jm(x−

i1k1
x−
i2k2

x−
i3k3

) = x̃−
jm(x−

i1k1
(x−

i2k2
x−
i3k3

))

= x−
jm � (x−

i1k1
� (x−

i2k2
� x−

i3k3
))

= ((x−
jm � x−

i1k1
) � (x−

i2k2
� x−

i3k3
))

= ((x−
jm � x−

i1k1
) � x−

i2k2
) � x−

i3k3
)

and also

x̃−
jm(x−

i1k1
x−
i2k2

x−
i3k3

) = x̃−
jm((x−

i1k1
x−
i2k2

)x−
i3k3

))

= x−
jm � ((x−

i1k1
� x−

i2k2
) � x−

i3k3
))

= ((x−
jm � (x−

i1k1
� x−

i2k2
)) � x−

i3k3
)

So, we will say that the �-product is associative up to order monomials.
We also define the operator Ω̃ψi

(m) by induction on �-monomials (x−
i1k1

� (· · · �
(xil−1kl−1 � x

−
ilkl

) · · · )) as follows:

Ω̃ψi
(m)(x−

jk) := δijδ−m,k.

And for a general �-monomial (x−
i1k1

� (· · · � (x−
il−1kl−1

� x−
ilkl

) · · · )) we define

Ω̃ψi
(m)((x−

i1k1
�(· · ·�(x−

il−1kl−1
�x−

ilkl
) · · · ))) = δii1δ−m,k1(x−

i2k2
�(· · ·�(x−

il−1kl−1
�x−

ilkl
) · · · ))

+
∑
r≥0

qp
mk1
ii1 gi,i1,q−1(r)(x−

i1,m1+r � Ω̃ψi
(m− r)(x−

i2k2
� (· · · � (x−

il−1kl−1
� x−

ilkl
)))

where pmk1
i1i

:= pk2,...,kl

i2,...,il
is defined as

pmk1
i1i

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if (αi|αj) > 0
−(αi|αj) min{� | Ω̃ψi

(m− �)
((x−

i2k2
� (· · · � (x−

il−1kl−1
� x−

ilkl
)) = 0} + 1 if (αi|αj) < 0

2 if (αi|αj) = 0.

Note that pmk1
i1i

exists since the �-monomial (x−
i2k2

�(· · ·�(x−
il−1kl−1

�x−
ilkl

)) is a product 
of usual monomials and the formula (5.5) in [6] holds.

Recall that ordered monomials are the defining elements on M̃q(λ), so we define the 
operators x̃−

jm and Ω̃ψi
(m) on M̃q(λ) as follows: For an ordered monomial x−

i1k1
· · ·x−

ilkl
vλ

we have:

x̃−
jm(x−

i k · · ·x−
i k vλ) = x̃−

jm(x−
i k � · · · � x−

i k vλ) := (x−
jm � x−

i k ) � · · · � x−
i k vλ
1 1 r r 1 1 r r 1 1 r r
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Ω̃ψi
(m)(x−

i1k1
· · ·x−

ilkl
vλ)

= Ω̃ψi
(m)(x−

i1k1
� · · · � x−

ilkl
vλ)

= δii1δ−m,k1x
−
i2k2

� · · · � x−
ilkl

vλ

+
∑
r≥0

qp
mk1
ii1 gi,i1,q−1(r)xi1,m1+r � Ω̃ψi

(m− r)(x−
i2k2

� · · · � x−
ilkl

)vλ

= δii1δ−m,k1x
−
i2k2

· · ·x−
ilkl

vλ

+
∑
r≥0

qp
mk1
ii1 gi,i1,q−1(r)xi1,m1+r � Ω̃ψi

(m− r)(x−
i2k2

· · ·x−
ilkl

)vλ

Remark 6.1. Here we do not emphasize on the parenthesis because �-monomials coincides 
with usual monomials and the associativity holds for �-products up to the order.

Proposition 6.2. x̃−
jm(x−

ik) could be written as a linear combination of ordered monomials 
of length 2 with coefficients in Z[q].

Proof. It follows directly from the definition of the �-product and formula (5.3). �
Proposition 6.3. If x−

i1k1
· · ·x−

ilkl
is an ordered monomial then Ω̃ψi

(m)(x−
i1k1

· · ·x−
ilkl

) is 
a linear combination of ordered monomials of length l-1 with coefficients in Z[q].

Proof. We prove by induction on l. If l = 1 or l = 2 then the statement is clear from the 
definition. Let us prove for clarity when l = 3. In this case we have

Ω̃ψi
(m)(x−

i1k1
x−
i2k2

x−
i3k3

)

= δii1δ−m,k1x
−
i2k2

x−
i3k3

+
∑
r≥0

qp
mk1
ii1 gii1,q−1(r)x−

i1,k1+r � Ω̃ψi
(m− r)(x−

i2k2
x−
i3k3

)

= δii1δ−m,k1x
−
i2k2

x−
i3k3

+
∑
r≥0

qp
mk1
ii1 gii1,q−1(r)x−

i1,k1+r �

(
δii2δ−m+r,k2x

−
i3k3

+
∑
r′≥0

qp
m−r,k2
ii2 gii2,q−1(r′)x−

i2,k2+r′ � Ω̃ψi
(m− r − r′)x−

i3k3

)

= δii1δ−m,k1x
−
i2k2

x−
i3k3

+
∑
r≥0

qp
mk1
ii1 gii1,q−1(r)δii2δ−m+r,k2x

−
i1,k1+r � x

−
i3k3

+
∑
r≥0

∑
r′≥0

δii3δm−r−r′,k3q
p
mk1
ii1 qp

m−r,k2
ii2 qp

m−r−r′,k3
ii3 gii1,q−1(r)gii2,q−1(r′)x−

i1,k1+r � x
−
i2,k2+r′

which by Proposition 6.2 is a linear combination of ordered monomials of length 2 with 
coefficients in Z[q]. Assume now that Ω̃ψi

(m) acting on any monomial of length l− 1 is 
a linear combination of ordered monomials of length l− 2 with coefficients in Z[q]. Then
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Ω̃ψi
(m)(x−

i1k1
· · ·x−

ilkl
) = δii1δ−m,k1x

−
i2k2

· · ·x−
ilkl

+
∑
r≥0

qp
mk1
ii1 gii1,q−1(r)x−

i1,k1+r � Ω̃ψi
(m− r)x−

i2k2
· · ·x−

ilkl

The expression in the first line is clearly ordered of length l − 1. The expression 
x−
i1,k1+r � Ω̃ψi

(m − r)x−
i2k2

· · ·x−
ilkl

in the second line is a linear combination of ordered 
monomials of length l−1 with coefficients in Z[q] by induction and Proposition 6.2 which 
completes the proof. �
7. The bilinear form

We are going to define a new bilinear form on ordered monomials of Nq. For its defini-
tion we consider the unique non-degenerate bilinear form (−, −) given in Proposition 5.1.

Let x−
i1m1

· · ·x−
ikmk

, x−
j1n1

· · ·x−
jlnl

be two ordered monomials of Nq. We define by 
induction the following bilinear form:

〈x−
im, x−

jn〉 = (1, Ω̃ψi
(−m)(x−

jn))

〈x−
i1m1

· · ·x−
ikmk

, x−
j1n1

· · ·x−
jlnl

〉 := 〈x−
i2m2

· · ·x−
ikmk

, Ω̃ψi1
(−m1)(x−

j1n1
· · ·x−

jlnl
)〉

For i = (i1, . . . , ik), m = (m1, . . . , mk) ∈ Zk the monomial x−
i1m1

· · ·x−
ikmk

is denoted 
x−
im.

Lemma 7.1. Let i = (i1, . . . , ik) ∈ Ik0 , m = (m1, . . . , mk) ∈ Zk, j = (j1, . . . , jl) ∈ I l0 and 
n = (n1, . . . , nl) ∈ Zl such that i1 + m1 ≥ · · · ≥ ik + mk, j1 + n1 ≥ · · · ≥ jl + nl and 
k > l, then 〈x−

im, x−
jn〉 = 0.

Proof. The proof is by induction on l. First of all, we have for l = 1,

〈x−
im, x−

j1n1
〉 = 〈xi1m1x

−
i2m2

· · ·x−
ikmk

, xj1n1〉 = 〈x−
i2m2

· · ·x−
ikmk

, Ω̃ψi1
(−m1)xj1n1〉

= 〈x−
i2m2

· · ·x−
ikmk

, δi1j1δm1n1〉 = δi1j1δm1n1〈x−
i2m2

· · ·x−
ikmk

, 1〉
= δi1j1δm1n1〈x−

i3m3
· · ·x−

ikmk
, Ω̃ψi2

(−m2)1〉
= 0

Assume the result is true for ordered monomials of length l−1. Then for the monomial 
x−
j1n1

· · ·x−
jlnl

we have

〈x−
im, x−

jn〉=〈x−
i1m1

· · ·x−
ikmk

, x−
j1n1

· · ·x−
jlnl

〉 = 〈x−
i2m2

· · ·x−
ikmk

, Ω̃ψi1
(−m1)x−

j1n1
· · ·x−

jlnl
〉

=δi1j1δm1n1〈x−
i2m2

· · ·x−
ikmk

, x−
j2n2

· · ·x−
jlnl

〉

+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)〈x−

i2m2
· · ·x−

ikmk
, xj1,n1+r�Ω̃ψi1

(−m1−r)x−
j2n2

· · ·x−
jlnl

〉
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By induction, the term in the second line is zero. For the third line we have that 
xj1,n1+r � Ω̃ψi1

(−m1 − r)x−
j2n2

· · ·x−
jlnl

is a linear combination of ordered monomial of 
length l − 1 by Proposition 6.3. So by induction

〈x−
i2m2

· · ·x−
ikmk

, xj1,n1+r � Ωψi1
(−m1 − r)x−

j2n2
· · ·x−

jlnl
〉 = 0

and we are done. �
Lemma 7.2. Let i = (i1, . . . , ik), j = (j1, . . . , jk) ∈ Ik0 and m = (m1, . . . , mk), n =
(n1, . . . , nk) ∈ Zk, and consider ordered monomials x−

im = x−
i1m1

· · ·x−
ikmk

and x−
jn =

x−
j1n1

· · ·x−
jknk

. Then

〈x−
im, x−

jn〉 ∈ Z[q]

Proof. The proof goes by induction on k. First consider the case k = 1. Then

〈x−
i1m1

, x−
j1n1

〉 = (1, Ω̃ψi1
(−m1)x−

j1n1
) = δi1j1δm1n1 ∈ Z[q].

We will show what happens in the case k = 2.

〈x−
i1m1

x−
i2m2

, x−
j1n1

x−
j2n2

〉 = 〈x−
i2m2

, Ω̃ψi1
(−m1)x−

j1n1
x−
j2n2

〉
= δi1j1δm1n1〈x−

i2m2
, x−

j2n2
〉

+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)〈x−

i2m2
, x−

j1,n1+r � Ω̃ψi1
(−m1 − r)x−

j2n2
〉

= δi1j1δm1n1δi2j2δm2n2

+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)δi1j2δm1+r,n2〈x−

i2m2
, x−

j1,n1+r〉

= δi1j1δm1n1δi2j2δm2n2

+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)δi1j2δm1+r,n2δi2j1δm2,n1+r

= δijδmn

+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)δi1j2δm1+r,n2δi2j1δm2,n1+r.

Since qp
−m1,n1
i1j1 gi1j1,q−1(r) ∈ Z[q], it follows that 〈x−

i1m1
x−
i2m2

, x−
j1n1

x−
j2n2

〉 ∈ Z[q].
Assume by induction that the result is true for monomials of length k − 1. Then

〈x−
im, x−

jn〉 = 〈x−
i1m1

· · ·x−
ikmk

, x−
j1n1

· · ·x−
jknk

〉
= 〈x−

i m · · ·x−
i m , Ω̃ψi

(−m1)x−
j n · · ·x−

k n 〉

2 2 k k 1 1 1 l k
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= δi1j1δm1n1〈x−
i2m2

· · ·x−
ikmk

, x−
j2n2

· · ·x−
jlnl

〉

+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)〈x−

i2m2
· · ·x−

ikmk
, xj1,n1+r�Ωψi1

(−m1−r)x−
j2n2

· · ·x−
jknk

〉

by Proposition 6.3 we have that xj1,n1+r � Ωψi1
(−m1 − r)x−

j2n2
· · ·x−

jknk
is a linear 

combination of ordered monomials of length k − 1 with coefficients in Z[q]. Hence, 
by induction 〈x−

i2m2
· · ·x−

ikmk
, x−

j2n2
· · ·x−

jlnl
〉 and 〈x−

i2m2
· · ·x−

ikmk
, xj1,n1+r �Ωψi1

(−m1 −
r)x−

j2n2
· · ·x−

jknk
〉 are in Z[q]. Since the coefficients in each expression are also in Z[q], 

the result follows. �
Proposition 7.3. Let i = (i1, . . . , ik) ∈ Ik0 , m = (m1, . . . , mk) ∈ Zk, j = (j1, . . . , jl) ∈ I l0
and n = (n1, . . . , nl) ∈ Zl, and consider ordered monomials x−

im, x−
jn such that 

∑k
r=1(ir+

mr) =
∑l

r=1(jr + nr), then

〈x−
im, x−

jn〉 = (δklδijδmn + qZ) mod q2Z[q]

Proof. The proof is by induction on the length of the monomials. First we show that if 
k �= l then 〈x−

im, x−
jn〉 = 0. When k > l it follows from Lemma 7.1. Now assume k < l. 

Then

〈x−
i1m1

· · ·x−
ikmk

, x−
j1n1

· · ·x−
jlnl

〉 = 〈x−
i2m2

· · ·x−
ikmk

, Ω̃ψi1
(−m1)x−

j1n1
· · ·x−

jknk
〉

= 〈1, Ω̃ψik
(−mk) · · · Ω̃ψi1

(−m1)x−
j1n1

· · ·x−
jlnl

〉
= (1, Ω̃ψik

(−mk) · · · Ω̃ψi1
(−m1)x−

j1n1
· · ·x−

jlnl
)

= (Ω̃ψik
(−mk) · · · Ω̃ψi1

(−m1)x−
jlnl

· · ·x−
jlnl

, 1)

The second and third equalities follow from definition. The last equality follows by 
the symmetry of the inner product (−, −) given in Proposition 5.1. By Proposition 6.3, 
we know that Ω̃ψik

(−mk) · · · Ω̃ψi1
(−m1)x−

j1n1
· · ·x−

jlnl
is a linear combination of ordered 

monomial of length l− k > 1. So, by [6] Proposition 6.0.6 and the fact that Ω operators 
kill the element 1, we get (Ω̃ψik

(−mk) · · · Ω̃ψi1
(−m1)x−

j1n1
· · ·x−

jlnl
, 1) = 0.

So, we can now assume that k = l. First, we will show the cases of monomials of 
length 1 and 2 to show the idea of the proof and then we will go for the general case.

For k = 1 we have:

〈x−
i1m1

, x−
j1n1

〉 = (1, Ω̃ψi1
(−m1)x−

j1n1
)

= δi1j1δm1n1(1, 1)+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)(1, x−

j1,n1+r � Ωψi1
(−m1 − r) · 1)

= δi1j1δm1n1 ,

since Ωψi
(−m1 − r) · 1 = 0. Assume now k = 2.
1
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〈x−
i1m1

x−
i2m2

, x−
j1n1

x−
j2n2

〉 = 〈x−
i2m2

, Ω̃ψi1
(−m1)x−

j1n1
x−
j2n2

〉
= δi1j1δm1n1〈x−

i2m2
, x−

j2n2
〉

+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)〈x−

i2m2
, x−

j1,n1+r � Ω̃ψi1
(−m1 − r)x−

j2n2
〉

≡ δijδmn + valm1n1
i1j1

〈x−
i2m2

, x−
j1,n1+εi1j1

� Ω̃i1(−m1 − εi1j1)x−
j2n2

〉mod q2Z[q]

≡ δijδmn + valm1n1
i1j1

δi1j2δm1+εi1j1 ,n2〈x−
i2m2

, x−
j1,n1+εi1j1

〉mod q2Z[q]

≡ qp
−m1,n1
i1j1 qp

−m2,n2
i2j2 δijδmn + valm1n1

i1j1
δi1j2δm1+εi1j1 ,n2δi2,j1δm2,n1+εi1j1

mod q2Z[q]

where

εi1j1 =

⎧⎪⎪⎨⎪⎪⎩
1 (αi1 |αj1) > 0
p−m1,n1
i1j1

− 2 (αi1 |αj1) < 0
0 (αi1 |αj1) = 0

and valm1n1
i1j1

= qp
−m1,n1
i1j1 gi1j1,q−1(εi1j1) mod q2Z[q], that is

valm1n1
i1j1

=

⎧⎪⎪⎨⎪⎪⎩
1 (αi1 |αj1) > 0
q (αi1 |αj1) < 0
0 (αi1 |αj1) = 0

The second term is clearly zero if (αi1 |αj1) = 0 (this part becomes zero when we mod 
out by q2). Let us assume that (αi1 |αj1) �= 0 holds. In this case, the second term is 
different from zero only when: i1 = j2, m1 + εi1j1 = n2, i2 = j1 and m2 = n1 + εi1j1 then

i1 + m1 ≥ i2 + m2 = j1 + n1 + εi1j1 > j1 + n1 ≥ j2 + n2 = i1 + m1 + εi1j1

which is not possible. Then we have

〈x−
i1m1

x−
i2m2

, x−
j1n1

x−
j2n2

〉 ≡ δijδmn mod q2Z[q]

Let us now consider the general case.

〈x−
i1m1

· · ·x−
ikmk

, x−
j1n1

· · ·x−
jknk

〉 = 〈x−
i2m2

· · ·x−
ikmk

, Ω̃ψi1
(−m1)x−

j1n1
· · ·x−

jknk
〉

= δi1j1δm1n1〈x−
i2m2

· · ·x−
ikmk

, x−
j2n2

· · ·x−
jknk

〉

+
∑
r≥0

qp
−m1,n1
i1j1 gi1j1,q−1(r)〈x−

i2m2
· · ·x−

ikmk
, x−

j1,n1+r � Ω̃ψi1
(−m1 − r)x−

j2n2
· · ·x−

jknk
〉

≡ δijδmn + qZ

+ valm1n1
i1j1

〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+εi j

� Ω̃ψi1
(−m1 − εi1j1)x−

j2n2
· · ·x−

jknk
〉mod q2Z[q]
1 1
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Let us analyze the term valm1n1
i1j1

〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+εi1j1

� Ω̃ψi1
(−m1 − εi1j1)x−

j2n2

· · ·x−
jknk

〉. If (αi1 |αj1) = 0 it is zero since valm1n1
i1j1

= 0. If (αi1 |αj1) < 0, this term reduces 
to qZ mod q2Z[q] by Lemma 7.2. Now assume (αi1 |αj1) > 0. If i1 = j1 we will get that

valm1n1
i1j1

〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+εi1j1

� Ω̃ψi1
(−m1 − εi1j1)x−

j2n2
· · ·x−

jknk
〉

= 〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+1 � Ω̃ψi1

(−m1 − 1)x−
j2n2

· · ·x−
jknk

〉
≡ δi1j2δm1+1,n2〈x−

i2m2
· · ·x−

ikmk
, x−

j1,n1+1 � x
−
j3n3

· · ·x−
jknk

〉
+ valm1+1,n2

i1j2
〈x−

i2m2
· · ·x−

ikmk
, x−

j1,n1+1 � x
−
j2,n2+εi1j2

� Ω̃ψi1
(−m1 − 1)x−

j3n3
· · ·x−

jknk
〉

× mod q2Z[q].

Since j1 + n1 + 1 ≥ j3 + n3 we have by induction that

δi1j2δm1+1,n2〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+1 � x

−
j3n3

· · ·x−
jknk

〉
= 〈x−

i2m2
· · ·x−

ikmk
, x−

j1,n1+1x
−
j3n3

· · ·x−
jknk

〉
≡ δi1j2δm1+1,n2δi2j1δm2,n1+1δi3j3δm3n3 · · · δikjkδmknk

+ qZmod q2Z[q]

and the first term is different from zero only if i1 = j2, i2 = j1, m1 +1 = n2, m2 = n1 +1
and il = jl, ml = nl for 3 ≤ l ≤ k. But in this case

i1 + m1 ≥ i2 + m2 = j1 + n1 + 1 > j1 + n1 ≥ j2 + n2 = i1 + m1 + 1

which is impossible. So, when i1 = j1 we get

valm1n1
i1j1

〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+εi1j1

� Ω̃ψi1
(−m1 − εi1j1)x−

j2n2
· · ·x−

jknk
〉

≡valm1+1,n2
i1j2

〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+1 � x

−
j2,n2+εi1j2

� Ω̃ψi1
(−m1 − 1)x−

j3n3
· · ·x−

jknk
〉

+ qZmod q2Z[q]

Now applying the same argument as above for i1 and j2 we get

valm1+1,n2
i1j2

〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+1 � x

−
j2,n2+εi1j2

� Ω̃ψi1
(−m1 − 1)x−

j3n3
· · ·x−

jknk
〉

≡ valm1+2,n3
i1j3

〈x−
i2m2

· · ·x−
ikmk

, x−
j1,n1+1�x

−
j2,n2+1�x

−
j3,n3+εi1j3

�Ω̃ψi1
(−m1−1)x−

j3n3
· · ·x−

jknk
〉

+ qZmod q2Z[q]

Continuing this way, we see that the case to be analyzed is when i1 = j1 = · · · = jk. 
However, this case reduces to the same proof as for ŝl2 given in [7].

Hence, we see that

〈x−
i m · · ·x−

i m , x−
j n · · ·x−

j n 〉 ≡ (δijδmn + qZ) mod q2Z[q] �

1 1 k k 1 1 k k
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8. Crystal lattices

Recall that A0 = C[q1/2](q) the ring of rational functions in q1/2 regular at 0. Let 
π = {−α + nδ|α ∈ Δ0,+, n ∈ Z} ∪ {0}.

Definition 8.1. Let M be a Uq(ĝ)-module. We call a free A0-submodule L of M an 
imaginary crystal lattice of M if the following holds:

(1) C(q1/2) ⊗A0 L ∼= M .
(2) L ∼= ⊕λ∈πLλ and Lλ = L ∩Mλ.
(3) Ω̃ψi

(m)L ⊆ L and x̃−
imL ⊆ L, for i ∈ I0 and m ∈ Z.

We will show now that imaginary crystal lattices exist. Let λ ∈ P such that λ(c) = 0
and λ(hi) �= 0, i ∈ I0, then M̃q(λ) is a simple reduced imaginary Verma module.

Consider the following A0-module:

L(λ) :=
⊕
k≥0

i1+m1≥···≥ik+mk
il,ml∈Z

A0x
−
i1m1

· · ·x−
ikmk

vλ

Properties (1) and (2) clearly hold. To show that the property (3) in Definition 8.1
holds, consider the element x−

i1m1
· · ·x−

ikmk
vλ in L(λ). Using induction on the length k

of the monomial we will show that Ω̃ψi
(m)x−

i1m1
· · ·x−

ikmk
vλ ∈ L(λ). It holds for k = 1

since

Ω̃ψi
(m)x−

i1m1
vλ = δii1δ−m,m1 ∈ L(λ). (8.1)

Assume that the result is true for monomials of length k − 1. Then by definition we 
have

Ω̃ψi
(m)(x−

i1m1
· · ·x−

ikmk
vλ)

= δii1δ−m,m1x
−
i2m2

· · ·x−
ikmk

vλ+
∑
r≥0

qp
mm1
ii1 gi,i1,q−1(r)xi1,m1+r�Ω̃ψi

(m)(x−
i2m2

· · ·x−
ikmk

)vλ

and qp
mm1
i11 gi1i,q−1(r) ∈ A0 for 0 ≤ r ≤ εii1 . By Proposition 6.3, xi1,m1+r �

Ω̃ψi
(m)(x−

i2m2
· · ·x−

ikmk
)vλ is a linear combination of ordered monomials of length k− 1

with coefficients in Z[q]. So by induction we have that Ω̃ψi
(m)x−

i1m1
· · ·x−

ikmk
vλ ∈ L(λ).

Proposition 6.2 implies that x̃−
im(x−

i1m1
· · ·x−

ikmk
vλ) ∈ L(λ). This proves that L(λ) is 

an imaginary crystal lattice of M .

Proposition 8.2.

L(λ) = {u ∈ M̃q(λ)|〈u,L(λ)〉 ⊂ A0}
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Proof. Let L1 = {u ∈ M̃q(λ)|〈u, L(λ)〉 ⊂ A0}. From Proposition 7.3 it follows that 
L(λ) ⊆ L1, because the monomials in consideration are ordered. Let see the converse. 
Suppose u ∈ L1, then u ∈ M̃q(λ) and 〈u, v〉 ∈ A0, for any v ∈ L(λ).

Let u =
∑

aim(q1/2)x−
imvλ and take the biggest k ≥ 0 such that there exists j, n ∈ Zl, 

for some l, with the property that ajn(q1/2) = q−k/2bjn(q1/2), i.e., ajm(q1/2) has a pole 
of order k. The remaining aim(q1/2) has poles of order at most k, i.e., aim(q1/2) =
q−lim/2bim(q1/2) where lim ≤ k and bim(q1/2) ∈ C[q1/2]. Then by Proposition 7.3 we 
have

〈u, x−
jnvλ〉 = q−k/2bjn(q1/2)(1 + qa + q2sjn(q)) +

∑
i	=j,m	=n

q−li/2bim(q1/2)(qc + q2sim(q))

where sjn(q), sim(q) ∈ Z[q], a, c ∈ Z. By hypothesis 〈u, x−
jmvλ〉 ∈ A0, which is possible 

when k = 0, so li = 0 and bimq2si(q) ∈ C[q1/2]. Hence, we get aim ∈ A0 and u ∈ L(λ)
as desired.

Definition 8.3. An imaginary crystal basis of a reduced imaginary Verma module M̃q(λ)
is a pair (L, B) satisfying:

(1) L is an imaginary crystal lattice of M̃q(λ).
(2) B is a C-basis of L/qL ∼= C ⊗A0 L.
(3) B = ∪μ∈πBμ where Bμ = B ∩ (Lμ/qLμ).
(4) x̃−

imB ⊂ ±B ∪ {0} and Ω̃ψi
(m)B ⊂ ±B ∪ {0}, for i ∈ I0 and m ∈ Z.

(5) For m ∈ Z and i ∈ I0 if Ω̃ψi
(−m)b �= 0 and x̃−

imb �= 0 for b ∈ B, then x̃−
imΩ̃ψi

(−m)b =
Ω̃ψi

(−m)x̃−
imb.

For λ ∈ h∗ define

B(λ) =
{
x−
i1m1

· · ·x−
ikmk

vλ + qL(λ) ∈ L(λ)/qL(λ)

∣∣∣∣∣ i1 + m1 ≥ · · · ≥ ik + mk,

m1, . . . ,mk ∈ Z, i1, . . . , ik ∈ I0

}
.

Remark 8.4. Note that in the above definition we are taking the quotient of L by qL and 
not by q1/2L. This is because by Proposition 7.3 ordered monomials of the form x−

im are 
orthogonal up to a scalar multiple of q.

Theorem 8.5. If λ ∈ h∗ such that λ(c) = 0 and λ(hi) �= 0 for all i ∈ I0, then (L(λ), B(λ))
is an imaginary crystal bases for M̃q(λ).

Proof. Properties (1), (2) and (3) clearly hold. To see property (4) holds, assume that 
b = x−

i1m1
· · ·x−

ikmk
vλ + qL(λ) ∈ B(λ), and consider x̃−

imb. If it is already ordered, we 
are done. In other cases, by the definition of the �-product x̃−

imb + qL(λ) = 0 in the 
second, third and fifth case. For the fourth and sixth cases, we can order the expression 
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by induction thanks to the �-associativity over ordered monomials and Equation (5.3). 
Hence, x̃−

imb + qL(λ) ∈ B(λ) ∪ {0}.
Note that x̃−

imb = 0 in B(λ) for example when there exists j ≥ 1 such that i =
i1 = · · · = ij and mj = m + j. Other possibility is when there exists j > 1, such that 
i = i1 = · · · = ij , ml > m + l, for 1 < l < j − 1 and mj = m + j.

Next we will see that Ω̃ψi
(m)b + qL(λ) ∈ B(λ) ∪ {0} by induction on the length of 

the monomial b. Using Equation (8.1) we see that Ω̃ψi
(m)x−

i1m1
+ qL(λ) ∈ B(λ) ∪ {0}. 

Consider now

Ω̃ψi
(m)x−

i1m1
· · ·x−

ikmk
vλ = δii1δ−m,m1x

−
i2m2

· · ·x−
ikmk

vλ

+
∑
r≥0

qp
mm1
i11 gi1i,q−1(r)x−

i1,m1+r � Ω̃ψi
(m− r)x−

i2m2
· · ·x−

ikmk
vλ

≡ δii1δm,−m1x
−
i2m2

· · ·x−
ikmk

vλ + walmm1
ii1

x−
i1,m1+εii1

� Ω̃ψi
(m− εii1)x−

i2m2
· · ·x−

ikmk
vλ mod qL(λ)

where εii1 is defined as in Proposition 7.3 and

walm1n1
ii1

=
{
−1 (αi1 |αj1) > 0
0 (αi1 |αj1) ≤ 0

Then, if (αi1 |αj1) ≤ 0 we get Ω̃ψi
(m)x−

i1m1
· · ·x−

ikmk
vλ = 0 ∈ B(λ) ∪ {0}. In other 

case,

Ω̃ψi
(m)x−

i1m1
· · ·x−

ikmk
vλ

≡ δm,−m1x
−
i2m2

· · ·x−
ikmk

vλ − x−
i1,m1+1 � Ω̃ψi

(m− 1)x−
i2m2

· · ·x−
ikmk

vλ mod qL(λ).

By induction Ω̃ψi
(m −1)x−

i2m2
· · ·x−

ikmk
vλ mod qL(λ) �= 0 only if i = i2 = · · · = ik and 

in this situation we get

Ω̃ψi
(m)x−

i1m1
· · ·x−

ikmk
vλ

≡ δm,−m1x
−
i2m2

· · ·x−
ikmk

vλ + x−
i1,m1+1 � Ω̃ψi

(m− 1)x−
i2m2

· · ·x−
ikmk

vλ mod qL(λ)

≡
k+1∑
j=1

(−1)j−1δm−j+1,−mj
x−
i1,m1+1 � x

−
i2,m2+1 � · · · � x−

ij−1,mj−1+1

� · · · � x−
ikmk+1 mod qL(λ),

where x0,m0+1 = 1. Note that x−
i1,m1+1 � x

−
i2,m2+1 � · · · � x−

ij−1,mj−1+1 � · · · � x−
ikmk+1 is al-

ready order because x−
i1m1

· · ·x−
ikmk

is ordered. So, Ω̃ψi
(m)x−

i1m1
· · ·x−

ikmk
vλ mod qL(λ) ∈

B(λ) ∪ {0}.
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For (5) consider b = x−
i1m1

· · ·x−
ikmk

vλ + qL(λ) ∈ B(λ) assume that Ω̃ψi
(−m)b �= 0

and x̃imb �= 0. As we saw, this is just possible if i = i1 = · · · = ik and there does not 
exist j such that mj = m + j. In such a case it reduces the proof to the ŝl2 situation 
which is already proved in [7]. Hence we are done. �
9. The category Oq

red,im

Let Gq be the quantized Heisenberg subalgebra generated by hin and γ, for i ∈ I0, 
n ∈ Z \ {0}.

We will say that a Uq(ĝ)-module V is Gq-compatible if:

(i) V has a decomposition V = T (V ) ⊕ TF (V ) where T (V ) and TF (V ) are non-zero 
Gq-modules, called, respectively, torsion and torsion free module associated to V .

(ii) him for i ∈ I0, m ∈ Z \ {0} acts bijectively on TF (V ), i.e., they are bijections on 
TF (V ).

(iii) TF (V ) has no non-zero Uq(ĝ)-submodules.
(iv) Gq · T (V ) = 0.

Consider the set

h∗q,red = {λ ∈ P | λ(c) = 0, λ(hi) �= 0, i ∈ I0}

The category Oq
red,im is defined as the category whose objects are Uq(ĝ)-modules M

such that

(1) M is ĥ∗q,red-diagonalizable, that means,

M =
⊕

ν∈ĥ∗
q,red

Mν , where Mν = {m ∈ M |Kim = qλ(hi)m,Dm = qλ(d)m, i ∈ I0}

(2) For any i ∈ I0 and any n ∈ Z, x+
in acts locally nilpotently.

(3) M is Gq-compatible.
(4) the morphisms in Oq

red,im are Uq(ĝ)-homomorphisms.

Reduced imaginary Verma modules belong to Oq
red,im. Indeed, for M̃q(λ) consider 

T (M̃q(λ)) = C(q1/2)vλ and TF (V ) =
⊕

k∈Z,n1,...,nN∈Z≥0
M̃q(λ)λ+kδ−n1α1−...−nNαN

, 
and at least one nj �= 0. Moreover, direct sums of reduced imaginary Verma modules 
belong to Oq

red,im.
Due to [13], we can deform U(ĝ)-imaginary Verma modules preserving weight space 

decompositions and weight multiplicities. So the proof of the following theorem is com-
pletely analogues to the one presented in Theorem 5.1, Theorem 5.3 and Proposition 5.4 
in [1] which we sketch here.
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Theorem 9.1.

(1) If λ, μ ∈ ĥ∗q,red then Ext1Oq
red,im

(M̃q(λ), M̃q(μ)) = 0.
(2) If M is an irreducible module in the category Oq

red,im, then M ∼= M̃q(λ) for some λ ∈
ĥ∗q,red. Moreover, if N is an arbitrary object of Oq

red,im then N ∼=
⊕

λi∈ĥ∗
q,red

M̃(λi), 
for some λ′

is.

Proof. Suppose there exists an extension M that fits in the following short exact se-
quence:

0 M̃q(λ) ι
M

π
M̃q(μ) 0 .

If λ and μ just differ by a multiple of the null root, we will get two vectors in M , 
which are annihilated by x+

in for i ∈ I0 and n ∈ Z and, by the Gq-compatibility, they 
are isolated. Hence, they are highest weight vectors, which generates two irreducible 
submodules isomorphic to M̃q(λ) and M̃q(μ) and then the extension splits.

Assume now μ = λ + kδ −
∑N

i=1 siαi, for si ∈ Z, k ∈ Z and with not all si equal to 
zero. First of all, let si ∈ Z≥0 and let vμ be a preimage under π of a highest weight vector 
vμ of M̃q(μ) of highest weight qμ. Because x+

invμ = Gqvμ = 0, for any i ∈ I0 and n ∈ Z, 
it is possible to show that T (M) = C(q1/2)vμ. Moreover, for i ∈ I0 and s ∈ Z \ {0}
we have that π(hisvμ) = hisvμ = 0, then hisvμ ∈ M̃q(λ), but it is just possible that 
hisvμ = 0 and so Gqvμ = 0.

Since the operators x+
in are locally nilpotent, we can see that x+

invμ = 0 for all i ∈ I0
and n ∈ Z. Indeed, if this is not the case, there exists j ∈ I0 and m ∈ Z such that 
0 �= x+

invμ ∈ M̃q(λ). If we fixed j we have a Uq(sl2)-subalgebra Uq(j) such that the Uq(j)-
submodule of M generated by vμ, say Mq(j), it is an extension of reduced imaginary 
Uq(j)-Verma modules, one of them of weight qμ. So, because M ∈ Oq

red,im we have that 
Mq(j) ∈ Oq

red,im(Uq(j)), but this is a semisimple category by [7], hence x+
invμ = 0 for all 

i and n. Therefore, vμ generates a Uq(g)-submodule of M isomorphic to M̃q(μ) and the 
short exact sequence splits.

In case si ∈ Z≤0 for all i and at least one different from 0, because M̃q(μ) is irreducible 
and M̃(λ) is a Uq(g)-submodule of M , the short exact sequence splits completing the 
proof of statement (1).

Assume now that M ∈ Oq
red,im is irreducible. Let v ∈ T (M) be a nonzero element of 

weight λ ∈ h∗q,red. For each i ∈ I0 let pi ∈ Z>0 be the minimum possible integer such 
that (x+

i0)piv = 0. If all pi = 1 we see that x+
inv = 0 for all i ∈ I0 and n ∈ Z \ {0}. Hence, 

we have an epimorphism M̃q(λ) � M , so M ∼= M̃(λ).
On the other hand, assume there exists at least one pi such that pi > 1. Then, there 

exists � ∈ Z>0 and a nonzero element wi, for i = (i1, . . . , i�) ∈ I�0 such that x+
jnwi = 0, 

for any j ∈ I0 and n ∈ Z. Consider the Gq-submodule Wi = U(Gq)wi of M and the 

induced module I(Wi) = IndUq(ĝ)
B Wi, where Bq is generated by x+

in, K±1
i , D±1, him
q
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and γ for i ∈ I0, m, n ∈ Z, m �= 0. Since M is irreducible, it is a quotient of I(Wi). If 
wi ∈ T (M), we have Wi = C(q1/2)wi, and so M is a quotient of I(Wi) = M̃q(λ) and we 
are done. In case wi /∈ T (M), we get a contradiction. We conclude that M ∼= M̃q(λ) for 
some λ ∈ ĥ∗q,red.

Let N be an arbitrary module in Oq
red,im and v ∈ T (N) is nonzero. Let wi and Wi

as above. Then we have two possibilities: either wi /∈ T (N) or wi ∈ T (N). In the first 
case, we get a proper Gq-submodule of TF (N) which is not possible. In the second case, 
Wi = C(q1/2)wi ⊆ T (N) and for some λi, I(Wi) ∼= M̃q(λi) is a Uq(ĝ)-submodule of N . 
Then, any non-zero element of T (N) generates an irreducible reduced imaginary Verma 
module which is a Uq(ĝ)-submodule of N and because there are no extensions between 
them, they are direct summands of N . �

For i ∈ I0 and n, m ∈ Z we have defined operators x̃−
in and Ω̃ψi

(m) on irreducible 
reduced imaginary Verma modules. So, due to the above theorem we have the following:

Theorem 9.2. The operators x̃−
in and Ω̃ψi

(m) are well defined on objects in the category 
Oq

red,im. �
For an object M ∈ Oq

red,im, we can define imaginary crystal lattices and bases anal-
ogous to the Definitions 8.1 and 8.3. In what follows we will prove that crystal basis of 
irreducible reduced imaginary Verma modules extend to direct sums of these modules. 
We also prove a partial converse of this statement. The proofs are analogues to the proofs 
in the ŝl2-case given in [8].

Now suppose M ∈ Oq
red,im, then there exists λk ∈ ĥ∗q,red for k ∈ J (J an index set) 

such that M ∼=
⊕

k∈J M̃q(λk). For k ∈ J , let (L(λk), B(λk)) be the imaginary crystal 
basis of M̃q(λk) given in Theorem 8.5. Set L =

⊕
k∈J L(λk) and B = �k∈J B(λk).

Theorem 9.3. Let M ∈ Oq
red,im such that M ∼=

⊕
λk∈J M̃q(λk) as above. Then the pair 

(L, B) is an imaginary crystal basis for M .

Proof. We need to check that the five conditions in Definition 8.3 hold. For the first 
one we need to see that L is an imaginary crystal lattice. Clearly, C(q1/2) ⊗A0 L ∼=⊕

k∈J C(q1/2) ⊗A0 L(λk) ∼=
⊕

k∈J M̃q(λk) ∼= M . The third property follows directly be-
cause Ω̃ψi

(m)(L) = Ω̃ψi
(m)(

⊕
k∈J L(λk)) = (

⊕
k∈J Ω̃ψi

(m)L(λk)) ⊆
⊕

k∈J L(λk) =
L and similarly we have that x̃−

im(L) = x̃−
im(

⊕
k∈J L(λk)) = (

⊕
k∈J x̃−

imL(λk)) ⊆⊕
k∈J L(λk) = L, for any i ∈ I0 and m ∈ Z. So let us see the second property in 

Definition 8.1. For this we first show that Lμ = (
⊕

k∈J L(λk))μ =
⊕

k∈J L(λk)μ, where 
L(λk)μ = L(λk) ∩Mμ.

In fact, assume u ∈ (
⊕

k∈J L(λk))μ, then u =
∑

k∈J uk where uk ∈ L(λk) and Kiu =
qμ(hi)u for any i ∈ I0. Since L(λk) =

⊕
μk∈π L(λk)μk

, we can write uk =
∑

μk∈π uk,μk

where uk,μk
∈ L(λk)μk

and Kiuk,μk
= qμk(hi)uk,μk

for any i ∈ I0. Hence, we have the 
following



J.C. Arias et al. / Journal of Algebra 655 (2024) 3–28 25
Kiu =
∑
k∈J

Kiuk =
∑
k∈J

∑
μk∈π

Kiuk,μk
=

∑
k∈J

∑
μk∈π

qμk(hi)uk,μk

‖

qμ(hi)u =
∑
k∈J

qμ(hi)uk =
∑
k∈J

∑
μk∈π

qμ(hi)uk,μk
.

Hence 
∑

k∈J (
∑

μk∈π(qμ(hi) − qμk(hi))uk,μk
) = 0. Since the sum 

⊕
k∈J L(λk) is direct 

we get μ(hi) = μk(hk) for any i ∈ I0 and k ∈ J . Then uk,μk
∈ L(λk) ∩Mμ = L(λk)μ. 

Finally note that L =
⊕

k∈J L(λk) =
⊕

k∈J

⊕
μ∈π L(λk)μ =

⊕
μ∈π

⊕
k∈J L(λk)μ =⊕

μ∈π Lμ, where Lμ = L ∩Mμ. So L is an imaginary crystal lattice of M .
Let us now look at the second property in Definition 8.3. We know that B(λk) is a 

C-basis of L(λk)/qL(λk) ∼= C ⊗A0 L(λk) for all k ∈ J . Now,

L/qL ∼=
⊕
k∈J

L(λk)/q
⊕
k∈J

L(λk) ∼=
⊕
k∈J

(L(λk)/qL(λk))

∼=
⊕
k∈J

(C ⊗A0 L(λk)) ∼= C ⊗A0 L.

Hence, L/qL has the C-basis �k∈J B(λk) = B. For the third property we have

B =�
k∈J

B(λk) =�
k∈J
�
μ∈π

B(λk)μ =�
μ∈π
�
k∈J

B(λk)μ =�
μ∈π

Bμ

where Bμ = �k∈J B(λk)μ and so

Bμ =�
k∈J

(B(λk) ∩ (L(λk)μ/qL(λk)μ))

=(�
k∈J

(B(λk)) ∩ (
⊕
k′∈J

L(λk′)μ/qL(λk′)μ))

=B ∩ (
⊕
k′∈J

L(λk′)μ/qL(λk′)μ))

=B ∩ Lμ/qLμ

The fourth property holds since Ω̃ψi
(m)(B) = Ω̃ψi

(m)(�k∈J B(λk)) =
(�k∈J Ω̃ψi

(m)B(λk)) ⊆ �k∈J ±B(λk) ∪{0} = ±B∪{0} and similarly x̃−
im(B) ⊆ ±B∪{0}, 

for any i ∈ I0 and m ∈ Z.
Finally, for the fifth property suppose b ∈ B such that Ω̃ψi

(−m)b �= 0 and x̃−
imb �= 0

for m ∈ Z and i ∈ I0. Since by definition B = �k∈J B(λk) is a disjoint union there is 
unique index k′ ∈ J such that b ∈ B(λk′). Since (L(λk′), B(λk′)) is an imaginary crystal 
basis we have that x̃−

imΩ̃ψi
(−m)b = Ω̃ψi

(−m)x̃−
imb as desired. �

To prove a partial converse of the Theorem 9.3 below, we need the following lemma.
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Lemma 9.4. For any i ∈ I0 and m ∈ Z the operators Ω̃ψi
(m) and x̃−

im commutes with 
any Uq(ĝ)-homomorphism in the category Oq

red,im.

Proof. Let M ∈ Oq
red,im. It is enough to prove the statement for an Uq(ĝ)-homomorphism 

ϕ : M̃q(λ) → M for some λ ∈ ĥ∗q,red. Let x−
i1n1

· · ·x−
iknk

vλ be an ordered monomial basis 
element of M̃q(λ), then

ϕ(x̃im(x−
i1n1

· · ·x−
iknk

vλ)) =ϕ((xim � x−
i1n1

) · · · � x−
iknk

vλ)

=((xim � x−
i1n1

) · · · � x−
iknk

)ϕ(vλ)

=x̃im(x−
i1n1

· · ·x−
iknk

ϕ(vλ))

=x̃im(ϕ(x−
i1n1

· · ·x−
iknk

vλ)).

ϕ(Ω̃ψi
(m)(x−

i1n1
· · ·x−

iknk
vλ))

= ϕ(δii1δ−m,n1x
−
i2n2

· · ·x−
iknk

vλ)

+
∑
r≥0

qp
mn1
ii1 gii1,q−1(r)ϕ(x−

i1,n1+r � Ω̃ψ1(m− r)(x−
i2n2

· · ·x−
iknk

vλ))

= δii1δ−m,n1x
−
i2n2

· · ·x−
iknk

ϕ(vλ)

+
∑
r≥0

qp
mn1
ii1 gii1,q−1(r)x−

i1,n1+r � Ω̃ψ1(m− r)(x−
i2n2

· · ·x−
iknk

ϕ(vλ))

= Ω̃ψi
(m)(x−

i1n1
x−
i2n2

· · ·x−
iknk

ϕ(vλ))

= Ω̃ψi
(m)(ϕ(x−

i1n1
x−
i2n2

· · ·x−
iknk

vλ)),

which proves the statement. �
Theorem 9.5. Let M = M1 ⊕M2 where M1 and M2 are modules in the category Oq

red,im

and suppose (L, B) is an imaginary crystal basis for M . Furthermore, suppose that there 
exists A0-submodules Lj ⊂ Mj, and subsets Bj ⊂ Lj/qLj, for j = 1, 2 such that L =
L1⊕L2 and B = B1�B2. Then (Lj , Bj) is an imaginary crystal basis of Mj, for j = 1, 2.

Proof. It is straightforward to see that C(q1/2) ⊗A0 (Lj)μ = (Mj)μ, μ ∈ π, Lj = L ∩Mj

and Bj = B ∩ (Lj/qLj) (see Theorem 4.2.10 (2) from [15]).
Let see that Lμ = (L1)μ ⊕ (L2)μ, for μ ∈ π. The “⊇” part is obvious. For the other 

inclusion assume u ∈ Lμ, then u = u1 + u2 where u1 ∈ L1 and u2 ∈ L2. Let i ∈ I0 then 
Kiu = Kiu1 +Kiu2 = qμ(hi)u1 + qμ(hi)u2 and so Kiu1 − qμ(hi)u1 = −Kiu2 + qμ(hi)u2 ∈
L1 ∩ L2 = {0}. Hence, u1 ∈ (L1)μ and u2 ∈ (L2)μ and we are done.

For u ∈ Lj ⊂ L =
⊕

μ∈π Lμ we have u =
∑

μ∈π uμ where uμ ∈ Lμ. We have 
decomposition uμ = (u1)μ + (u2)μ with (uj)μ ∈ (Lj)μ, j = 1, 2. Consequently u −∑

μ∈π(uj)μ =
∑

μ∈π(uk)μ for j �= k, which implies that u −
∑

μ∈π(uj)μ ∈ Lj ∩Lk = {0}. 
So we have u ∈

⊕
μ∈π(Lj)μ.
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Let prj : M → Mj be the canonical projection into the j-component. Let uj ∈ Lj and 
recall that for any i ∈ I0 and m ∈ Z, Ω̃ψi

(m)L ⊂ L and x̃−
imL ⊂ L. Then Ω̃ψi

(m)uj =
u1 + u2 and x̃−

imuj = ǔ1 + ǔ2, where uj , ̌uj ∈ Lj . By Lemma 9.4 we have Ω̃ψi
(m)(u1) =

Ω̃ψi
(m)(p1(u1)) = p1(Ω̃ψi

(m)(u1)) = u1 and x̃−
im(u1) = x̃−

im(p1(u1)) = p1(x̃−
im(u1)) =

ǔ1. Hence Ω̃ψi
(m)(u1), ̃x−

im(u1) ∈ L1. Similarly, Ω̃ψi
(m)(u2), ̃x−

im(u2) ∈ L2. This shows 
that Lj is a crystal lattice for j = 1, 2.

Notice that

L/qL ∼= C ⊗A0 L ∼= (C ⊗A0 L1) ⊕ (C ⊗A0 L2) ∼= (L1/qL1) ⊕ (L2/qL2).

Using this isomorphism we have that Bj = B ∩ (Lj/qLj) is a C-basis of Lj/qLj
∼=

C ⊗A0 Lj . We also have that B = B1 � B2 and thus Bj = �μ∈π(Bj)μ where (Bj)μ =
B ∩ ((Lj)μ/q(Lj)μ).

The operators Ω̃ψi
(m) and x̃−

im, for i ∈ I0, m ∈ Z leaves stable the bases Bj because 
of Lemma 9.4, i.e., Ω̃ψi

(m)Bj ⊂ Bj ∪ {0} and x̃−
imBj ⊂ Bj ∪ {0}, for j = 1, 2. Finally, if 

b ∈ Bj is such that Ω̃ψi
(−m)b �= 0 and x̃−

imb �= 0, then x̃−
imΩ̃ψi

(−m)b = Ω̃ψi
(−m)x̃−

imb

since b ∈ B.
This completes the proof that (Lj , Bj) is an imaginary crystal basis for Mj , j =

1, 2. �
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