
Journal of Internet Services and Applications, 2025, 16:1, doi: 10.5753/jisa.2025.4905
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Lightweight Malware Classification with FORTUNATE:
Precision Meets Computational Efficiency
César Augusto Borges de Andrade [University of Brasília | cesar.andrade@aluno.unb.br]
Geraldo Pereira Rocha Filho [State University of Southwest Bahia | geraldo.rocha@uesb.edu.br]
Rodolfo I. Meneguette [University of São Paulo | meneguette@icmc.usp.br]
João Paulo Abreu Maranhão [Systems Development Center | joaopaulo.maranhao@eb.mil.br]
Ricardo Sant’Ana [Military Institute of Engineering | santana.ricardo@eb.mil.br]
Julio Cesar Duarte [Military Institute of Engineering | duarte@ime.eb.br]
André Luiz Marques Serrano [University of Brasília | andrelms@unb.br]
Vinícius P. Gonçalves [University of Brasília | vpgvinicius@unb.br]

 Electrical Engineering Dept., University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900,
Brazil.

Received: 05 September 2024 • Accepted: 20 February 2025 • Published: 14 April 2025

Abstract After detecting a malicious artifact, classifying malware into specific families becomes an essential step
to understand the threat’s behavior, implement mitigation strategies, and develop proactive defenses. This task is
particularly challenging due to the diversity of malware formats, the rapid evolution of obfuscation and packing
techniques, as well as the scarcity of labeled data for training robust models. Additionally, the high volume of
samples generated daily demands solutions that combine high accuracy and computational efficiency. Although
transformer-based models are widely recognized as the state-of-the-art for sequence processing tasks, their high
computational demands limit their practical application in resource-constrained environments. In this work, we
present FORTUNATE, a lightweight framework that leverages LSTM networks with one-hot encoding to classify
malware based on variable-length opcode sequences. The framework adopts an optimized opcode extraction pro-
cess focused on reducing redundancies and representing data in compact vectors, minimizing computational costs.
Experimental results indicate that FORTUNATE achieves accuracies of 99.82% for active malware and 99.81% for
inactive malware, with an average classification time of only 56 ms per sample, significantly outperforming related
works. The obtained results demonstrate that lightweight artificial intelligence approaches can deliver competitive
performance in malware classification, especially in scenarios with computational constraints. FORTUNATE not
only fills an important gap in malware classification but also establishes a foundation for future research aimed at
optimizing the balance between accuracy, efficiency, and scalability.

Keywords: Malware Classification, Opcode, Recurrent Neural Networks (RNNs), Long Short Term Memory (LSTM),
Natural Language Processing (NLP), Cybersecurity.

1 Introduction

The classification of malware is a fundamental task in the
field of cybersecurity, aiming to identify and categorize dif-
ferent types of cyber threats, such as viruses, worms, Trojan
horses, and other forms of malicious software (Taher et al.,
2023) and (Vanzan and Duarte, 2023). This process is crucial
for the protection of information systems and for mitigating
the risks associated with information security (Djenna et al.,
2023). In this scenario, where the malware has already been
previously detected, a variety of methods and approaches
have been proposed in academic literature with the aim of
classifying malware effectively (Abusitta et al., 2021) and
(Li et al., 2023).
Analyzing the static and dynamic characteristics of mali-

cious code represents one of the most common approaches
in the classification of malware. The static characteristics
are obtained from information extracted from the malware
executable file, including signatures, strings, specific se-
quencebytes, and code structure. The dynamic features con-

cern the behavior of malware during its execution, cover-
ing system calls, network interactions, and file system activ-
ities (Sikorski and Honig, 2012; Alraizza and Algarni, 2023;
Molina et al., 2022; de Oliveira et al., 2023).
Unlike the dynamic analysis, the static analysis technique

employed in the present research does not require the pro-
gram to run, thus eliminating the risk of activating or rotating
malware during the analysis, providing a safer environment
for analysts. In addition to the issue of security, static analy-
sis has to its advantage the ability to analyze large volumes
of code through its ease of automation (Gaber et al., 2024).
Exploring the presented concepts of static and dynamic

characteristics analysis of malware offers a promising
way to improve the detection and classification of cyber
threats (Moawad et al., 2024). By incorporating artificial
intelligence approaches, such as natural language process-
ing (PLN) and recurring neural networks (RNN), one can de-
velop a more robust and adaptable system. These approaches
allow not only a deeper and more comprehensive analysis of
malware signatures but also the ability to learn and evolve

https://orcid.org/0000-0001-5776-2119
cesar.andrade@aluno.unb.br
https://orcid.org/0000-0001-6795-2768
mailto:geraldo.rocha@uesb.edu.br
https://orcid.org/0000-0003-2982-4006
mailto:meneguette@icmc.usp.br
https://orcid.org/0000-0003-0632-6434
mailto:joaopaulo.maranhao@eb.mil.br
https://orcid.org/0000-0002-4629-6877
mailto:santana.ricardo@eb.mil.br
https://orcid.org/0000-0001-6656-1247
mailto:duarte@ime.eb.br
https://orcid.org/0000-0001-5182-0496
mailto:andrelms@unb.br
https://orcid.org/0000-0002-3771-2605
mailto:vpgvinicius@unb.br

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

with new threat variants, thereby ensuringmore effective and
dynamic cybersecurity (Abid et al., 2023).
Several studies have been conducted to address the grow-

ing challenge of malware classification, driven by the con-
tinuous increase in cyber threats. Executable files in the PE
format allow malicious artifacts to be represented in various
ways. The most common approaches in academic works that
employ deep learning include:

• Representation as Raw Data Images (Jannat Mim et al.,
2024), (El ghabri et al., 2024), (Omar, 2022), (Hebish
and Awni, 2024) and (Aslan and Yilmaz, 2021) ;

• API Call Sequence Vectors (Syeda and Asghar, 2024),
(Aggarwal and Di Troia, 2024), (Owoh et al., 2024), (Li
and Zheng, 2021) and (Catak and Yazi, 2019),; and

• Mnemonic or Executable Code Opcode Vectors (Mehta
et al., 2024), (Kale et al., 2023), (Zhao et al., 2021),
(Zhang et al., 2019) and (Lu, 2019).

In this work, the use of opcode-based representation was
chosen due to the numerous advantages this approach offers.
Firstly, opcodes capture the executable code of the malicious
artifact, enabling the effective identification of malicious be-
havior patterns regardless of the programming language used
or syntactic details. Furthermore, this representation pro-
vides a balanced level of abstraction between binary code and
source code, making it less susceptible to syntactic obfusca-
tion techniques that preserve the code’s logic. Another ad-
vantage is the computational efficiency provided by process-
ing short, standardized opcode sequences, which facilitates
the training of deep learning models. Finally, opcode analy-
sis allows the identification of structural similarities between
different malware samples and enhances the feature engineer-
ing learned by the algorithm, which can be leveraged by mal-
ware analysts to obtain more precise insights. Considering
these advantages, the architectures proposed in this study
employ Recurrent Neural Networks (RNNs), specifically the
Long Short-Term Memory (LSTM) variant, due to its ability
to efficiently process long sequences and capture complex
temporal dependencies present in opcode behavior patterns.
Although many of these studies have successfully

achieved their objectives, they present significant limitations,
such as difficulties in extracting and encoding opcodes Al-
buquerque et al. (2021) and the lack of consideration for
their ordering Awad et al. (2018). These limitations directly
impact the effectiveness of the proposed solutions, as chal-
lenges in extraction may lead to incomplete or inaccurate rep-
resentations of malware characteristics, while disregarding
opcode ordering compromises the identification of sequen-
tial patterns essential for behavioral analysis. Furthermore,
a notable limitation is the reliance on datasets that do not in-
corporate real and active artifacts Kong et al. (2023). This
issue reduces the ability of the solutions to generalize to real-
world scenarios, thereby hindering their practical applicabil-
ity. Additionally, another evident limitation is that current
research tends to analyze malware in its entirety rather than
focusing on specific parts of these artifacts. This approach
not only overlooks the potential for a deeper understanding
of critical components but also tends to require significantly
more computational resources, thereby hindering scalability

and efficiency. This limitation will be addressed in this re-
search by considering strategies to optimize the analysis of
specific parts of malware.
This work goes further and proposes FORTUNATE,

a framework that employs variable-length instruction se-
quences to classify malware more efficiently and accurately.
For this purpose, FORTUNATE applies PLN and LSTM
techniques, specializing in predictive analysis of opcodes in-
struction sequences. This approach not only improves the
efficiency in classifying malware, but also provides a deeper
understanding of the behavior of malware, avoiding data re-
dundancy.
This article presents an extension of the work (Andrade

et al., 2024) initially published at the 13th International Con-
ference on Cloud Networking, where we proposed an inno-
vative framework for malware classification. In this revised
and extended version, we significantly improved the classifi-
cation mechanism and conducted new experiments using an
additional dataset, resulting in a more comprehensive and ac-
curate analysis. The content has been enriched with detailed
subsections on LightGBM, Active Malware, Inactive Mal-
ware, and the Advantages and Limitations of Static Malware
Analysis in opcode extraction. Furthermore, we included a
comprehensive description of the malware families used in
the research, providing a more complete view of the context
and contributions of the framework. Furthermore, new com-
parisons with state-of-the-art works were introduced, cover-
ing both active and inactivemalware, further highlighting the
relevance and effectiveness of the proposed approach.
The main contributions of this research include:

1. the representation of opcode in vectors of smaller di-
mensions possible to improve computational efficiency;

2. the developing of a method that enables the rapid and
accurate classification of malware through the analysis
of specific fragments of the code; and

3. the creation and availability of a new dataset for future
research in the area.

This article is organized as follows. Section 2 presents a
brief background on RNNs, LSTMs, Active Malware, and
Inactive Malware. Section 3 shows the related jobs, high-
lighting the search gap that this search investigates. Section 4
presents how FORTUNATE was modeled, while the perfor-
mance and validation of FORTUNATE in relation literature
works are introduced by Section 5 and Section 6. Finally,
Section 7 presents the findings and future work.

2 Background
In what follows, we provide some background on RNNs,
LSTM, LightGBM, Active Malware, Inactive Malware, and
Advantages and Limitations of Static Malware Analysis.

2.1 Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs) are a class of artificial
neural networks designed to process sequential data, mak-
ing them particularly effective for tasks that involve ordered
or temporal dependencies (Rumelhart et al., 1986). Unlike

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

traditional feedforward neural networks, where inputs are
treated as independent, RNNs have cyclic connections that
allow information from previous states to influence the inter-
pretation of subsequent states. This property makes RNNs
ideal for a variety of applications, including natural lan-
guage processing, speech recognition, machine translation,
and time series analysis.

The functioning of RNNs is based onmaintaining a hidden
state that is updated at each time step. The hidden state ht at
time t is a function of the current input xt and the previous
hidden state ht−1. This mechanism allows the network to
have a form of ”memory” of past data, accumulating useful
information for the task at hand. However, one of the main
challenges of traditional RNNs is the problem of vanishing
gradients, which hinders the effective training of networks
over long sequences. To mitigate these issues, variants such
as Long Short-Term Memory (LSTM) networks and Gated
Recurrent Units (GRU) were developed. These variants in-
troduce gating mechanisms that regulate the flow of informa-
tion, allowing networks to capture long-term dependencies
more effectively.

2.2 Long Short-Term Memory Networks
(LSTMs)

Long Short-Term Memory (LSTM) networks are an ad-
vanced class of recurrent neural networks (RNNs) developed
to address the limitations of traditional RNNs, such as the
vanishing gradient problem. Proposed by Hochreiter and
Schmidhuber (1997), LSTMs are designed to model and cap-
ture long-term dependencies in data sequences. This makes
them particularly suitable for tasks involving complex se-
quential data, such as machine translation, language model-
ing, speech recognition, and time series forecasting.

The functioning of LSTMs is based on a memory cell and
three key gates: the input gate, the forget gate, and the output
gate. The input gate controls which new information is added
to the memory cell, while the forget gate decides which old
information should be discarded. The output gate determines
which parts of the memory cell are used to compute the out-
put. These gates are activated by sigmoid and tanh functions,
which regulate the flow of information within the cell. This
mechanism allows LSTMs to maintain and utilize relevant
information over long sequences, mitigating the vanishing
gradient problem.

Recently, LSTMs have been widely adopted across vari-
ous applications due to their ability to handle long-term de-
pendencies. Additionally, current research explores combin-
ing LSTMs with other neural network architectures, such as
Convolutional Neural Networks (CNNs) and attention mech-
anisms, to further enhance their performance in complex
tasks. Bidirectional LSTMs, which process information in
both temporal directions, have also shown promising results.
With these innovations, LSTMs continue to play a crucial
role in advancing artificial intelligence and developing ro-
bust solutions for sequential modeling problems.

2.3 LightGBM

The LightGBM (Light Gradient Boosting Machine) is a ma-
chine learning framework widely recognized for its effi-
ciency and performance in predictive modeling tasks. Based
on the Gradient Boosting Decision Tree (GBDT) technique,
it was developed by Microsoft to address classification, re-
gression, and ranking problems in a scalable and preciseman-
ner Ke et al. (2017). Its distinctive architecture, which in-
cludes techniques such as leaf-wise growth and histogram-
based learning, enables the construction of highly optimized
models, even in scenarios with large-scale datasets and high
dimensionality Shi et al. (2024). Furthermore, LightGBM
natively supports sparse data and categorical variables, re-
ducing the need for extensive preprocessing. These features
make the framework a popular choice in both industrial ap-
plications and academic research, where computational per-
formance and model robustness are critical requirements.

2.4 Active Malware

In this search, malware is considered active one character-
ized by its ability to be executed directly by the operating
system, containing all the essential parts, such as headers and
sections, that allow its loading and execution. This includes
the presence of input points and import tables, crucial to the
execution of critical functions in the system, enabling mali-
cious activities to be carried out.
As presented in the following seven families were selected

for this research:
Bifrose: A backdoor trojan that connects to a remote IP

address using TCP port 81 or a random port. It allows an
attacker to access the infected computer and perform various
actions (Microsoft, 2024b).
Vundo: A trojan associated with adware and pop-up in-

fections; often obfuscated to hinder detection (Microsoft,
2024m).
Zwangi: Modifies Internet browser settings, alters search

engine results, and displays pop-up advertisements (Mi-
crosoft, 2024d).
Koutodoor: A malware family that changes the Internet

Explorer homepage and downloads arbitrary files from spe-
cific servers. It can also open certain web pages using Inter-
net Explorer (Microsoft, 2024k).
Rbot: A backdoor trojan family that allows attackers

to control infected computers. It connects to specific IRC
servers and joins channels to receive commands, enabling ac-
tions such as spreading to other computers, exploiting Win-
dows vulnerabilities, launching denial-of-service (DoS) at-
tacks, and retrieving system information (Microsoft, 2024c).
Hupigon: A backdoor trojan family capable of stealing

personal information, such as usernames and passwords, and
granting hackers access to and control over the infected PC
(Microsoft, 2024i).
Startpage: A trojan family that changes the browser

homepage without consent. These threats may also perform
other malicious actions, with behaviors that can vary widely
(Microsoft, 2024f).

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

2.5 Inactive Malware
In the present research, inactive malware refers to malicious
software samples that, despite containing characteristics or
fragments associated with malicious code, cannot be exe-
cuted directly on an operating system due to the absence of
essential components such as headers or import tables. These
malware samples are incapable of initiating or performing au-
tonomous actions within the system environment, being re-
stricted to static analysis or serving as partial representations
of malicious samples.
A widely known and publicly accessible repository of in-

activemalware is theMicrosoftMalware Classification Chal-
lenge (BIG 2015) (Ronen et al., 2018), a competition or-
ganized by Microsoft in collaboration with Kaggle1 to ad-
vance the use of machine learning for malware detection and
classification. To ensure safety, the malware samples were
deactivated, and their binaries were modified, focusing ex-
clusively on static analysis by providing assembly language
(ASM) and bytecode (BYTE) representations of 10,868 sam-
ples from 9 malware families. This approach minimized
risks associated with handling malware and encouraged the
development of practical and secure solutions, establishing
BIG 2015 as a benchmark widely used in academic research
and cybersecurity practices.
The description of each malware family is presented be-

low:
Ramnit: A multifunctional malware capable of behaving

as both a worm and a file infector, primarily used for stealing
banking credentials Microsoft (2024l).
Lollipop: Adware or potentially unwanted program

(PUP) that displays advertisements and collects user data
(Microsoft, 2024a).
Kelihos_ver3: A botnet variant used for spamming, cre-

dential theft, and malware distribution (Microsoft, 2012) and
(Arora et al., 2017).
Vundo: A Trojan associated with adware and pop-up

infections, often obfuscated to evade detection (Microsoft,
2024m).
Simda: A family of Trojans that steal passwords and can

provide remote access to malicious hackers, allowing full
control of the infected computer and data collection (Mi-
crosoft, 2024l).
Tracur: Malware that redirects users to malicious web-

sites and steals information (Microsoft, 2024g).
Kelihos_ver1: An early version of the Kelihos bot-

net, with characteristics similar to Kelihos_ver3 (Microsoft,
2024j).
Obfuscator.ACY: A malware family employing ad-

vanced obfuscation techniques to evade detection (Microsoft,
2024h).
Gatak: A backdoor Trojan used for information theft and

remote control of infected machines (Microsoft, 2024e).

2.6 Advantages of Static Analysis with Op-
code Extraction from Active Malware

Static analysis of active malware focused on opcode extrac-
tion offers notable advantages in terms of accuracy and depth

1https://www.kaggle.com/c/malware-classification

of analysis. The presence of the PE (Portable Executable)
header, particularly the ”AddressOfEntryPoint” field, en-
ables the precise identification of the malware’s execution
entry point, allowing opcode extraction to target the most
relevant instructions. This facilitates understanding the mal-
ware’s operational logic and mapping its critical functional-
ities, such as exploitation routines, persistence, and evasion
mechanisms. Additionally, this approach eliminates the need
to process redundant or irrelevant information, optimizing
the analysis and reducing computational effort.
Another advantage is the ability to perform more robust

comparative studies, as active malware retains the structural
integrity of the file, enabling the identification of unique
patterns associated with specific families. This characteris-
tic is crucial for creating reliable signatures and distinguish-
ing malware from legitimate software with similar structures.
The precision provided by opcode extraction in active mal-
ware also enhances the effectiveness of machine learning
model training, enabling the development of more efficient
classifiers capable of better generalizing to new samples.
Finally, static analysis of active malware offers greater

flexibility for exploring the impact of obfuscation and pack-
ing techniques used by attackers. Since the extracted op-
codes directly reflect the instructions contained in the file,
analysts can evaluate the extent to which these techniques
interfere with the malware’s functionality, aiding in the de-
velopment of specific countermeasures. In summary, static
analysis with opcode extraction in active malware strikes a
balance between safety, accuracy, and efficiency, making it
an indispensable tool for in-depth studies of cyber threats and
the enhancement of defense systems.

2.7 Limitations of Static Analysis with Op-
code Extraction from Malware

Static malware analysis, while powerful and widely used,
faces significant limitations when dealing with polymorphic
and metamorphic malware. Polymorphic malware modi-
fies its superficial appearance each time it is executed or
replicated, employing techniques such as code encryption
and obfuscation to hinder detection by signature-based tools
(Mauri and Damiani, 2025) and (Mohammed et al., 2025).
In this scenario, static analysis, which relies on code inspec-
tion without execution, can be easily deceived, as frequent
changes in the malware’s format or structure make it imprac-
tical to create reliable signatures. Furthermore, dependence
on decompilers or disassemblers may be insufficient to han-
dle additional layers of obfuscation or compression, limiting
precise identification capabilities.
Metamorphic malware presents an even greater challenge,

as it can completely rewrite its code while maintaining func-
tionality, removing similarities even between consecutive
instances (Gulmez et al., 2024) and (Habib et al., 2024).
This continuous evolution of code renders pattern-based ap-
proaches ineffective, as no consistent static characteristics
exist for identification. Moreover, advanced evasion tech-
niques, such as the introduction of junk code, instruction re-
ordering, and control flow alteration, further complicate the
static analysis process. This underscores the need to com-
plement static analysis with dynamic or hybrid approaches,

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

which can observe runtime behavior and detect malicious ac-
tions regardless of the code’s superficial appearance.

3 Related Works
The classification of malware is an ever-evolving area of re-
search, exploring various approaches and techniques to iden-
tify and categorize cyber threats effectively. In this section,
the main related works will be analyzed, highlighting their
proposals, methodologies adopted, main contributions, best
metrics achieved, malware sets used and the limitations pre-
sented.
In Mehta et al. (2024), the authors propose an innovative

method for classifyingmalware, using a hybrid approach that
combines Hidden Markov Model (HMM) and Random For-
est (RF). Initially, HMMs are trained with opcode sequences,
and the resulting hidden state sequences are used as charac-
teristic vectors, with RF demonstrating the best performance.
The main contribution is the application of PLN techniques
in the classification of malware, where the hidden state se-
quences of HMMs act as a feature engineering step. The
approach achieved an accuracy of 97.58% using the Malicia
data set, with 11,688 malware binaries categorized into 7 dif-
ferent families, running in a virtualized environment. Lim-
itations include the need for a large set of data for training
HMMs and the possibility that deep learning techniques out-
perform the proposed methods.
In Kong et al. (2023) MalFSM is presented, a feature sub-

set selection method for malware family classification. The
methodology involves extracting opcode sequences from dis-
assembled malicious code, selecting key features, and merg-
ing them with metadata (file size and line count). This re-
sults in a set of 18 selected features. The main contribution
is the construction of a lightweight feature set that reduces
classification time and space, achieving an accuracy of up to
98.6% on the Microsoft Kaggle malware dataset. The used
set consists of inactive malware, and the limitation includes
the need to balance complexity and performance, as well as
the possibility of losing important features when transform-
ing malware samples into grayscale images for classification.
The study of Albuquerque et al. (2021) proposes a

method of analyzing malware using recurring neural net-
works, specifically LSTM, to predict opcodes of malwares
and classify them into families. The methodology involves
extraction and encoding of opcodes, training of LSTM mod-
els for prediction, and the use of an artificial neural network
for classification. The main contribution is the innovation
in using opcodes prediction as an entry to the classification
of malware families, achieving an average accuracy of 92%.
However, the work faces difficulties in the extraction and
correct encoding of the opcodes, which can impact the qual-
ity of the input data. Additional adjustments to the hyperpa-
rameters are needed to improve accuracy, and the model can
benefit from a larger and more varied database for training.
Furthermore, the current approach may not be effective in
detecting new malware families that are not represented in
the database used. The authors use the Microsoft BIG 2015
data set, which does not contain active malware.
In the work of Zhao et al. (2021), the authors propose

the use ofGaussianMixture templatesModel-HMMs (GMM-
HMM) for the classification of malware, comparing the re-
sults with Hidden Markov Models (HMM) discrete. The
methodology involves the analysis of opcodes sequences
and entropy as characteristics. The study’s main contribu-
tion is the demonstration that GMM-HMMs, by modeling
continuous data such as opcodes, can improve the classifi-
cation of malware, raising the average accuracy, measured
by the area under the ROC (AUC) curve, from 73.83% ob-
tained by discrete HMMs to 74.16% achieved by GMMs.
The data set used included active samples from three fami-
lies of malware: Winwebsec, Zbot, and Zeroaccess, divided
into 80% for training and 20% for testing, with 5-fold cross-
validation. The main limitation of the work lies in the com-
plexity and computational cost of training GMM-HMMs,
which are more challenging compared to discreet HMMs and
the effectiveness depends heavily on the choice of character-
istics and modeling parameters, requiring considerable ex-
perimentation.
The article of Dang et al. (2021) addresses the classifica-

tion of malware into 20 distinct families using opcode se-
quences extracted from executables. The study evaluates
the performance of various LSTM-based models, including
more complex variants with embeddings and bidirectional
LSTMs (BiLSTMs). The authors compare five architectures,
culminating in a combination of BiLSTM, embeddings, and
CNN, which demonstrated the best performance. The most
advanced model achieved an average accuracy of 81% when
classifying 20 families, while the LSTMwithout embeddings
showed limited results, with an average accuracy of only
55.73% in simpler scenarios (5 families with 9,952 malware
samples). This highlights that embeddings are essential for
capturing semantic relationships between opcodes and im-
proving the model’s generalization. The proposed solution
does not handle variable-length opcode sequences, as all se-
quences are normalized to a fixed length through truncation
or padding. Consequently, classification is performed by an-
alyzing only part of the malware. The article emphasizes
how integrating NLP techniques, such as embeddings and
BiLSTMs, significantly enhances accuracy, while the inclu-
sion of CNN provides a more detailed analysis of the se-
quences. However, limitations include the reliance on manu-
ally tuned hyperparameters and challenges in handling under-
representedmalware families. The authors suggest exploring
additional techniques, such as dimensionality reduction and
adaptive segment selection, to address these limitations and
enhance the proposed approach.
The study of Sung et al. (2020) proposes an innovative

method for classifying malware in drone control stations us-
ing FastText and Bi-LSTM. The methodology involves cre-
ating low-dimensional vectors from opcodes and API func-
tion names, analyzed by a bi-LSTM to increase classification
accuracy. The main contribution is the demonstration that
FastText and Bi-LSTM can outperform traditional methods
of one-hot encoding. Using dataset Microsoft Malware Clas-
sification Challenge, which contains inactive malware from
several families, themethod achieved an accuracy of 96.76%.
Limitations include the need to optimize the size of the input
vector and the Bi-LSTM model to balance learning time and
cost.

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

The article of Sun et al. (2020) presents an efficient
scheme for malware categorization by combining a pre-
trained Word2Vec model with Temporal Convolutional Net-
works (TCN) to enhance malware detection on IoT devices,
addressing security challenges in edge computing. Using
the Microsoft Malware Classification Challenge (BIG 2015)
dataset, the authors leverage Word2Vec to generate compact,
low-dimensional representations of malicious file names,
overcoming the limitations of one-hot encoding. TCN is em-
ployed to model sequences more efficiently than LSTM net-
works, demonstrating superior speed and reduced memory
usage. The proposed approach achieved a final accuracy of
97.5%, surpassing the LSTM-based model, which reached
96.2%. Additionally, the total training time was reduced
to 732 seconds in the TCN model, compared to 4712 sec-
onds for LSTM, and the testing time was 16.4 seconds for
TCN versus 11.9 seconds for LSTM. This significant reduc-
tion in computational cost highlights TCN as an effective
and scalable alternative for sequence modeling in security
tasks. However, the reliance on the BIG 2015 dataset lim-
its the model’s generalization to other types of malware and
more diverse IoT scenarios. The study represents a signifi-
cant advancement in malware categorization, offering a prac-
tical and efficient solution for securing smart devices.
In Zhang et al. (2019), a hybrid method for detecting mal-

ware variants is proposed that integrates different types of
features, specifically opcodes and API calls. Opcodes are
represented through a bi-grammodel, while API calls are rep-
resented by a frequency vector. PCA (Principal Component
Analysis) is used to optimize these representations and im-
prove convergence speed. Convolutional Neural Networks
(CNN) are employed for opcode-based embedding and back-
propagation neural networks (BPNN) for API-based embed-
ding. These features are combined, and a detection model is
trained using Softmax. The main contribution is the integra-
tion of multiple features to enhance the accuracy in malware
detection and family classification, achieving over 95% accu-
racy in malware detection and nearly 90% in family classifi-
cation. Limitations include the high training time, which ex-
ceeds a day, and difficulties if API calls cannot be extracted
from certain binaries, whether benign or malicious.
In Lu (2019), an innovative method is proposed for mal-

ware classification using LSTM and NLP techniques to ana-
lyze opcode sequences. Themethodology includes disassem-
bling executable files with IDA Pro, extracting opcodes, con-
verting them into vectors using word embedding, and train-
ing a two-layer LSTM model with mean-pooling. The main
contribution is the automation of malware pattern learning,
reducing the need for manual engineering. The model was
evaluated on a dataset with 969 malware samples and 123 be-
nign files, achieving up to 97.87% accuracy for binary clas-
sification and 94.51% for multiclass classification. Limita-
tions include the exclusion of operands and a lack of details
about execution time.
The study by Awad et al. (2018) presents an interesting

approach to static malware analysis, treating malware as a
natural language. The methodology involves transforming
malware executables into malware language documents, us-
ing the word2vec model to semantically represent these doc-
uments, and the word mover’s distance (WMD) algorithm to

measure their proximity. The main contribution is the classi-
fication of malware using this semantic approach, achieving
an accuracy of up to 98% with cross-validation. The dataset
includes 10,868 instances of inactive malware divided into
9 classes, provided by Microsoft. Among the limitations of
the work are the high computational cost, especially with the
increase in the vocabulary of the malware language, and the
disregard for word order by the word2vec model, which can
be a disadvantage in certain contexts.
For a comparative analysis between this research and re-

lated works, Table 1 was created based on criteria such as
whether the used malware set is active or not, whether it
works with variable-length instruction sequences, whether
it is possible to classify malware from a small part or only
from the complete malware, and the number of classes and
samples. This research, FORTUNATE, stands out for using
a large exclusive dataset composed of a wide variety of active
malware. Unlike related works, this research focuses on a re-
stricted set of opcodes, demonstrating its high efficiency and
performance. Additionally, methods for extracting opcodes
from real and active malware, processing data to minimize
redundancies, and representing opcodes by smaller vectors
were developed, contributing to accuracy and effectiveness
in classifying malware into specific families. A new dataset
was also created and made available.

4 FORTUNATE: Framework fOr mal-
waRe classificaTion UsiNg vAriable
insTruction sEquence

FORTUNATE can be presented as a new framework that uses
variable-length instruction sequences to classify malware ef-
ficiently and accurately, with a particular focus on active
malware that represents real threats. Using NLP techniques,
proper data handling, and LSTM, FORTUNATE specializes
in the predictive analysis of opcode sequences. This strat-
egy not only improves the malware classification capability,
but also provides valuable insight into the behavior of these
digital threats, minimizing the occurrence of unnecessary du-
plications in the analyzed datasets.
FORTUNATE, illustrated in Figure 1, is organized into

three modules: (i) Data Collection, where the acquisition,
disassembly, and extraction of malware opcodes occur; (ii)
Data Processing, dedicated to data cleaning and transforma-
tion; and (iii) ClassificationMechanism, which encompasses
the training and performance evaluation of the model.

4.1 Problem Definition
In this subsection, the problem of malware classification in a
multi-class context will be addressed, using an LSTM-based
model for the prediction of subsequent opcodes. As pre-
sented in Figure 2, the modeling process includes convert-
ing opcode sequences (i.e., “push”, “call”, “jnz”, “mov”)
into vectors, where identical opcodes are mapped to equiv-
alent vectors. The LSTM model is trained with temporal se-
quences of k = 5 consecutive opcodes (lookback) to predict
the k + 1 = 6th opcode, which constitutes the desired out-

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

Table 1. Comparative analysis of related works.

Work Active VLIS CPM CAD Classes # Samples
Mehta et al. (2024) ! % ! % 7 11.688
Kong et al. (2023) % % % % 9 10.868
Albuquerque et al. (2021) % % % % 9 10.868
Zhao et al. (2021) ! % % % 3 7.801
Dang et al. (2021) ! % ! % 5 9.952
Sung et al. (2020) % % % % 9 10.868
Sun et al. (2020) % % % % 9 10.868
Zhang et al. (2019) ! % % % 5 3.250
Lu (2019) ! ! % % 6 1.092
Awad et al. (2018) % % % % 9 10.868
This ! ! ! ! 7 13.719

1 VLIS (Variable-Length Instruction Sequences). 2 CPM (Classification from a Small Part of the Malware). 3 CAD (Creation and Availability of a New
Dataset).

put. For example, given a malware that presents an opcode
sequence from op1 to op6, the input for the model consists of
the first five opcodes (op1 to op5), and the sixth opcode (op6)
represents the desired output. The value of k can be adjusted
to represent a larger or smaller opcode window, depending
on the experiment conducted.
The step of encoding opcode sequences for the intended

inputs and outputs is crucial for the effective training of the
LSTM model, as illustrated in Figure 3.
This process is replicated for different categories of mal-

ware, resulting in the creation of seven distinct LSTM mod-
els, each dedicated to a specific malware family. This ap-
proach aims to improve the accuracy of opcode predictions,
allowing a deeper exploration of the behavior of various mal-
ware families.
In this way, it significantly contributes to the improvement

of classification and understanding of the threats that these
malware represent.

4.2 Data Collection
This section presents how the collection, disassembly, and
extraction of malware opcodes were performed.
For the selection of samples frommalware families, seven

VirusShare2 packages were selected: 00015, 00021, 00023,
00024, 00026, 00047 and 00094. With the exception of the fi-
nal package, which encompasses 65,536 samples, each of the
other packages consists of 131,072 samples, in accordance
with the standard prevailing at the time of their release.
Subsequently, a set of acceptance criteria for the selection

and labeling of samples was established:

• The artifact was detected by Microsoft’s antivirus;
• The artifact was detected by at least 10 other antivirus
solutions;

• At least two additional antivirus solutions use terminol-
ogy similar to the family nomenclature employed byMi-
crosoft’s Windows antivirus.

2https://virusshare.com/

These samples were categorized into twelve distinct mal-
ware families to cover a wide spectrum of malicious behav-
iors.
As seen in Table 2, column # malware (a), the criterion

used to select malware families was to consider only those
with more than 900 and less than 7000 samples, resulting in
only seven families.
The compatibility of the artifacts with the executable stan-

dard of the Microsoft Windows platform was verified using
the PEFile library3, a technical choice that ensures the rele-
vance of the samples within the scope of this research.
For the disassembly of the malware, a Python program

was developed to automate this process for the malware base.
The program calculated the exact location of the first op-
code of each malware by using the ”AddressOfEntryPoint”4
header field of the PE (Portable Executable) file. This step
is crucial for the effective extraction of data from active mal-
ware, differentiating it from approaches that use inactive or
inoperative samples.
The effectiveness of the program was corroborated

through comparative analyses with the outputs produced by
IDA Pro5, a leading disassembler in the market, ensuring the
reliability of the extracted data.
After disassembly, the focus turns to extracting opcode

sequences from the malicious artifacts. Unlike other ap-
proaches, this research concentrates exclusively on the op-
code sequence, such as “mov”, “push”, “call”, “or” which is
extracted and stored for subsequent analyses. This method-
ological selection allows for a detailed analysis of the ma-
licious code’s behavior, grounding the research in concrete
data derived directly from the malware samples.
For the validation of our proposal, we used the BIG 2015

dataset. We exclusively utilized ASM files as the data source.
To achieve this, we developed a Python script aimed at ex-
tracting the opcode sequences present in all code sections of
the ASM files. However, the extraction process was con-
strained by the absence of the file headers in the PE (Portable

3https://github.com/erocarrera/pefile
4Address of the entry point, where the program execution begins.
5https://hex-rays.com/ida-pro/

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

Figure 1. Operational Scenario of FORTUNATE.

Figure 2. Example of an opcode sequence from a specific artifact.

Executable) format, which had been previously removed by

Figure 3. Each sequence of five opcodes and the output opcode are used in
the LSTM training.

Microsoft for security reasons. As a result, it was not possi-

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

ble to determine the exact location of the first opcode, ”Ad-
dressOfEntryPoint”, for each malware. This information is
crucial for a more precise and efficient extraction of relevant
data associated with the malware’s behavior. The number of
malware samples per family can be found in Table 3, column
malware (a).

4.3 Data Processing
The first step in the cleaning process involved identifying and
removing duplicate files. The files were organized by MD5
hash, and identified duplicates were automatically deleted.
This procedure resulted in a significant reduction in data vol-
ume, facilitating subsequent handling and analysis. The ef-
fectiveness of this step is demonstrated by the quantitative
reduction in files, as presented in Table 2, column #malware
(b) and in Table 3, column # malware (b).
Next, the focus was on eliminating repeated opcode se-

quences among the samples, aiming to only preserve unique
instances for analysis. It is worth noting that automatic fil-
tering was performed, removing redundant mnemonic se-
quences. This action contributed to a substantial decrease
in the number of opcodes per class, as presented in Table 2,
column # opcodes (b) and in Table 3, column # opcodes (b).
To avoid analytical distortions caused by class imbalance

in the dataset, all classes were balanced. The number of op-
codes in each class was adjusted to match the total in the
class with the smallest volume. In the first case, involving
the analyzed classes, class 3 was used as the reference, as it
contained 3,621,441 opcodes. This adjustment ensured a fair
comparison between classes, as shown in Table 2, column #
opcodes (c).
For the BIG 2015 dataset, the same criterion was applied,

using class 5 as the reference since it had 84,735 opcodes.
This adjustment also provided an equitable basis for compar-
ison between classes, as detailed in Table 3, column # op-
codes (c).
It should be noted that, to enable processing of opcodes by

deep learning algorithms, it was essential to perform a data
transformation step, converting them into numerical vectors.
To this end, the prevalent opcodes in each class analyzed
were identified and cataloged. This activity is fundamental to
understanding the distribution and relevance of terms within
the data corpus. Using the extracted information, bar charts
(Figure 4) and word clouds (Figure 5) were generated for an
intuitive analysis of the frequency and importance of the op-
codes in each class. In addition, a specific dictionary for each
class was developed, where the terms are defined and orga-
nized according to their relevance and frequency. This dic-
tionary is of utmost importance as it serves as the basis for
subsequent data processing steps.
Following the creation of the dictionaries, the next step

involved transforming the opcodes into vectors to serve as
input for the classification mechanism. For our real malware
dataset, the One Hot Encoder vectorization technique with
dimension 64 was employed, as it offered greater computa-
tional efficiency and reduced processing time. During this
stage, 80,000 opcodes from each malware class were allo-
cated for model training, while 17,000 opcodes from each
class were reserved for validation. The size of the test set

Figure 4. the 32 most frequent opcodes from class 1.

was adjusted according to the specific requirements of each
experiment.
For the BIG 2015 dataset, the One Hot Encoder vectoriza-

tion technique with dimension 40 was used, as class/family 5
had only 40 distinct opcodes. In this phase, 70,000 opcodes
from each class were selected for training the model, while
14,000 opcodes from each class were used for validation.

4.4 Classification Mechanism
This section presents how the malware classification mecha-
nism was modeled. A sequential neural network was used,
equipped with four CuDNNLSTM layers, a variation of
LSTM layers optimized for GPU processing. This choice
was made due to the effectiveness of these layers in analyz-
ing temporal sequences or sequential data, which are essen-
tial characteristics for malware classification.
Figure 6 presents the classification process structured in

five stages, showing how the data is processed from input
to the final malware classification. The first stage of the
process (Label 1, Figure 6) involves the reception of mal-
ware opcodes, which are specific assembly instructions used
by malware during its execution. These opcodes, including
commands like “push”, “call”, “jnz”, “mov”, “add” and “or”
represent the various operations that can be performed by the
malware, serving as an initial signature for its identification.
After reception, the assembly instructions are converted

into a one-hot encoding format (Label 2, Figure 6). In this
format, each opcode is transformed into a binary vector,
where only the index corresponding to the specific instruc-
tion is marked with ”1”, while all other indices are filled with
”0”. This vector representation simplifies the analysis and
processing of data by machine learning models, maintaining
a uniform and easily interpretable structure.
The encoded vectors are then fed into a series of LSTM

models, each designed to recognize a specific malware class
(Label 3, Figure 6). The LSTM architecture is particularly
suitable for this task, given its ability to process data se-
quences and identify complex patterns over time. Each
LSTM model outputs a probability or confidence level asso-
ciated with each malware class, identified as “acc 1” to “acc
n”, indicating the existence of n distinct classes.

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

Table 2. Distribution of the number of malware samples and opcodes by family.

Nr Family # malware # opcodes
(a) (b) (a) (b) (c)

1 Bifrose 2291 1079 42.935.835 28.186.045 3.621.441
2 Vundo 6794 5644 123.161.189 101.995.711 3.621.441
3 Zwangi 920 468 4.910.368 3.621.441 3.621.441
4 Koutodoor 5605 3937 45.849.096 27.896.441 3.621.441
5 Rbot 1170 771 35.864.389 26.273.978 3.621.441
6 Hupigon 1943 1174 115.136.258 79.103.051 3.621.441
7 Startpage 1648 646 49.431.472 30.048.605 3.621.441

Total 20.371 13.719 417.288.607 297.125.272 25.350.087

Table 3. Distribution of the number of malware samples and opcodes by family of dataset BIG 2015.

Nr Family # malware # opcodes
(a) (b) (a) (b) (c)

1 Ramnit 1541 1458 86.537.983 54.720.902 84.735
2 Lollipop 2478 2471 690.360.592 44.889.117 84.735
3 Kelihos_ver3 2942 2934 333.158.665 3.371.778 84.735
4 Vundo 475 447 43.505.289 1.109.759 84.735
5 Simda 42 42 3.117.280 84.735 84.735
6 Tracur 751 625 85.342.069 15.243.812 84.735
7 Kelihos_ver1 398 386 7.226.591 1.139.816 84.735
8 Obfuscator.ACY 1228 1195 23.515.457 5.848.263 84.735
9 Gatak 1013 904 290.823.473 5.369.644 84.735

Total 10.868 10.462 1.563.587.399 132.777.826 762.615

Stages four and five of the process represent decision-
making phases. In the fourth stage, the argmax function is
applied to identify the malware class with the highest prob-
ability among the outputs generated by the LSTM models
(Label 4, Figure 6). This procedure provides an initial classi-
fication of the malware, based on the class with the highest
confidence or likelihood of association.
In the fifth stage, a LightGBM classifier is employed to

enhance the classification process. At this stage, the model
is trained using 80% of the accuracies from the samples of
the entire malware dataset and tested on the remaining 20%
(Label 5, Figure 6). The primary objective of this phase is to
assess the classifier’s ability to accurately identify the classes
of previously unseen malwares.

5 Performance Evaluation
To evaluate FORTUNATE, the experiments were conducted
on hardware that includes an Intel® Core™ i7-10700 pro-
cessor, an NVIDIA® GeForce® RTX™ 3060 graphics card,
and 16GB of DDR4 memory. In terms of software, Linux
Mint 20.1, Python 3.6.5, tensorflow-gpu 1.8.0, and Keras
2.2.0 were used. The neural network architecture was se-

quential and comprised four CuDNNLSTM layers. Seven
LSTMmodels were trained, each dedicated to a specific class
of malicious artifacts, aiming to predict sequences of five
opcodes. The Pandas and Numpy libraries were used for
data handling, and the Scikit-Learn and TensorFlow libraries
were used to implement ML and DL techniques.

To determine the minimum number of opcodes required to
correctly classify malware, 182 experiments were conducted,
distributed equally among seven malware classes. The num-
ber of mnemonics/opcodes tested ranged from 7 to 600 per
segment, with a total of 1000 segments analyzed. These seg-
ments were evaluated across all classes to determine suitabil-
ity, thereby providing a detailed understanding of classifi-
cation effectiveness. Additionally, to define the best neural
network hyperparameters, experiments were conducted with
various values, including batch sizes of 2, 5, 10, 20, 50, and
100; epochs of 20, 25, 50, and 100; a lookback of 5; units of
64 and 128; loss function defined as mean squared error; and
the use of the Adam optimizer. Table 4 presents the descrip-
tion of the parameters used in these experiments.

To evaluate FORTUNATE, the following metrics were
used: (i) Precision (Precision = T P

T P +F P) which as-
sesses the accuracy of positive identifications; (ii) Accuracy

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

Figure 5. Opcode clouds for 9 family of BIG 2015.

Figure 6. Operation of the classification mechanism.

(Accuracy = T P +T N
T P +T N+F P +F N), the percentage of correct

predictions for all instances; (iii) Recall (Recall = T P
T P +F N),

the proportion of relevant instances identified; (iv) F1-Score
(F1-Score = 2 · Precision·Recall

Precision+Recall), balancing Precision and Re-

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

Table 4. Set of parameters adopted for conducting the experiments
in FORTUNATE
Parameter Description
Total experiments 182
Experiments per malware class/family 18
of malware classes/families 7
of segments analyzed 1000
of mnemonics/opcodes per segment Varies from 7 to 600
Batch size 2, 5, 10, 20, 50, 100
Epochs 20, 25, 50, 100
Lookback 5
Units 64 e 128
Loss function mean squared error
Optimizer Adam

call; and (v) MCC (MCC =
c×s−

∑
k

(pk×tk)√
(s2−

∑
k

(p2
k

))×(s2−
∑

k
(t2

k
))
),

which considers all categories of predictions. The impact of
the achieved results will be presented below.
Initially, the effectiveness of FORTUNATE in detecting

different malware families based on opcode sequence anal-
ysis was evaluated, as presented in Figure 7. The results
demonstrate high effectiveness in detecting seven distinct
malware families through opcode sequence analysis. Par-
ticularly, the models for Backdoor:Win32/Bifrose and Tro-
jan:Win32/Vundo achieve high precision with few opcodes,
while the models for BrowserModifier:Win32/Zwangi and
Trojan:Win32/Koutodoor maintain high accuracy regardless
of the number of opcodes. It is important to note that there
are variations in the precision of identifying other malware,
such as Backdoor:Win32/Rbot, Backdoor:Win32/Hupigo,
and Trojan:Win32/Startpage. These variations are attributed
to the complexity of opcode patterns and their similarity. It is
highlighted that approximately 390 opcodes are required to
achieve accurate classification, resulting in an average accu-
racy of 99.7%. This result illustrates FORTUNATE’s ability
to effectively recognize complex code patterns.
Next, considering only the first 390 opcodes of each mal-

ware and from the perspective of the argmax function, the
correct classification of all samples in our malware dataset
into their respective categories was evaluated, as presented
in Figure 8. The evaluation of FORTUNATE revealed sat-
isfactory performance across all metrics analyzed, achiev-
ing, at best, 99.44% F1-Score and, at worst, 99.23% MCC.
These results indicate FORTUNATE’s capability to correctly
classify instances, effectively balancing precision and recall,
and demonstrating its robustness and reliability in detections.
Precision varied between 97.60% and 99.91% for all classes,
reflecting the model’s high capacity to minimize false pos-
itives. The overall accuracy of 99.44%, with recall values
ranging between 97.01% and 100%, and F1-Scores above
98% for all classes, presents a robust overall performance,
highlighting a balance between precision and recall and con-
firming the model’s effectiveness even in the presence of po-
tential class imbalances and a large amount of packaged mal-
ware. Table 5 presents the percentage of packed malware
samples in each family of our dataset.
For the LightGBM model, the parameters used configure

various aspects of the model’s learning process and struc-
ture. The boosting_type parameter defines the type of

Table 5. Percentage of packed malware by family.

Family Packed Family Packed

Family 1 39,30% Family 5 6,36%
Family 2 33,03% Family 6 35,95%
Family 3 2,14% Family 7 51,39%
Family 4 66,78% Total 41,77%

boosting used, with the default being Gradient Boosting De-
cision Tree (gbdt), which is suitable for classification and re-
gression problems. The objective parameter specifies the
loss function to be optimized, which is automatically set to
multiclass for problems with more than two classes. The
learning_rate controls the learning rate, balancing the
contribution of each tree in the model, while n_estimators
defines the total number of trees to be trained. The
num_leaves parameter specifies the maximum number of
leaves per tree, controlling its complexity, and max_depth
sets the maximum depth of the trees, allowing for greater
flexibility or limiting overfitting. Regularization parame-
ters, such as reg_alpha and reg_lambda, apply L1 and
L2 penalties, respectively, to reduce model complexity and
avoid overfitting. The subsample and colsample_bytree
parameters determine the proportions of samples and fea-
tures used for each tree, promoting generalization. Ad-
ditionally, min_child_samples and min_child_weight
specify the minimum conditions for splits to occur, pre-
venting splits with low representativeness in the data. Fi-
nally, random_state ensures result reproducibility when
set, while importance_type defines how feature impor-
tance is calculated, defaulting to being based on the number
of splits. These parameters were tuned to provide a balance
between performance and efficiency in the model. Table 6
presents the description of the parameters used in these ex-
periments.

Table 6. Set of parameters adopted for conducting the experiments
with LightGBM
Parameter Description
boosting_type Gradient Boosting Decision Tree (gbdt)
objective Automatically inferred (e.g., multiclass)
learning_rate 0.1
n_estimators 100
num_leaves 31
max_depth -1 (no limit)
min_child_samples 20
min_child_weight 0.001
min_split_gain 0.0
subsample 1.0 (100% of the data)
subsample_for_bin 200000
subsample_freq 0
colsample_bytree 1.0 (100% of the features)
reg_alpha 0.0 (no L1 regularization)
reg_lambda 0.0 (no L2 regularization)
importance_type Split-based feature importance
random_state None (not set)

Subsequently, using 80% of the malware dataset samples
for training and the remaining 20% for testing, the correct
classification ofmalware into their respective categories was

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

Figure 7. Impact of accuracy in identifying malware segments.

Figure 8. Confusion matrix for malware family classification.

analyzed, as illustrated in Figure 9. The evaluation of FOR-
TUNATE revealed highly satisfactory performance, achiev-
ing an accuracy of 99.82%. Other metrics also showed ex-
ceptional results, with a precision (macro) of 99.64%, recall
(macro) of 99.72%, F1-Score (macro) of 99.68%, and MCC
of 99.75%. These results highlight the remarkable capability
of FORTUNATE to correctly classify instances, effectively
balancing precision and sensitivity, while demonstrating its
robustness and reliability. The overall performance confirms
the model’s effectiveness even in scenarios with potential
class imbalances.

Finally, a comparison was conducted between FORTU-
NATE and five related works that also utilize active mal-
wares, as illustrated in Table 7. The results demonstrate
the superior performance of FORTUNATE, achieving accu-
racies of 99.44% with the argmax function and 99.82% with
the LightGBM model, regardless of the solution compared.
Among the analyzed studies, Dang et al. (2021) stands out
as the most comparable approach, given the similar num-
ber of samples, classes, and dataset partitioning. However,
the LSTM model without embeddings presented by Dang et
al. achieved only 55.73% accuracy. In comparison, FOR-
TUNATE offers a substantial improvement of 43.71% with
the argmax function and 44.09% with the LightGBM model,
highlighting its superior efficiency in terms of accuracy.

Figure 9. Confusion Matrix LightGBM.

Table 7. Impact of FORTUNATE compared to the state of the art
using active malware.

Work Year Accuracy

Mehta et al. (2024) 2024 97,58%
Zhao et al. (2021) 2021 74,16%
Dang et al. (2021) 2021 55,73%
Zhang et al. (2019) 2019 90%

Lu (2019) 2019 94.51%
Argumax function 2024 99,44%
LGBMClassifier 2024 99,82%

6 Validation of FORTUNATE with
the BIG 2015 dataset

To validate FORTUNATE, the BIG 2015 dataset was used.
Considering only the first 390 opcodes of each malware and
from the perspective of the argmax function, the correct clas-
sification of themalware into their respective categories was
analyzed, as illustrated in Figure 10. The evaluation of FOR-
TUNATE revealed highly satisfactory performance, achiev-
ing an accuracy of 97.80%. Other metrics also showed re-
markable results, with a precision (macro) of 97.09%, recall
(macro) of 96.49%, F1-Score (macro) of 96.58%, and MCC
of 97.34%. These results demonstrate FORTUNATE’s abil-
ity to correctly classify instances, effectively balancing preci-

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

sion and sensitivity, while confirming its robustness and reli-
ability in multi-class classification. The overall performance
highlights the model’s effectiveness even in the presence of
potential class imbalances.

Figure 10. Confusion Matrix BIG.

Considering 80% of the accuracy of the malware sam-
ples from the BIG 2015 dataset for training and the remain-
ing 20% for testing, and from the perspective of the Light-
GBM classifier, the correct classification of malware into
their respective categories was analyzed, as illustrated in Fig-
ure 9. The evaluation of FORTUNATE demonstrated excep-
tional performance, achieving an accuracy of 99.81%. Other
metrics also showed equally impressive results, with a pre-
cision (macro) of 99.69%, recall (macro) of 99.78%, F1-
Score (macro) of 99.74%, and an MCC of 99.77%. These re-
sults highlight FORTUNATE’s ability to correctly classify in-
stances, efficiently balancing precision and sensitivity, while
also demonstrating its robustness and reliability. The overall
performance reaffirms the model’s effectiveness, even in sce-
narios with potential class imbalances.

Figure 11. Confusion Matrix BIG LightGBM.

Finally, a comparison of FORTUNATE was conducted
with five related works that utilize inactive malware, as il-
lustrated in Table 8. The results highlight the superior per-

formance of FORTUNATE, achieving accuracies of 97.80%
with the argmax function and 99.81% with the LightGBM
model. Considering the lowest recorded value of 92.00%,
attributed to the work in Albuquerque et al. (2021), FOR-
TUNATE demonstrates a significant improvement of 5.80%
with the argmax function and 7.81% with the LightGBM
model, reinforcing its efficiency and robustness in terms of
accuracy for the classification of inactive malware.

Table 8. Impact of FORTUNATE compared to the state of the art
using inactive malware.

Work Year Accuracy

Kong et al. (2023) 2023 98,60%
Albuquerque et al. (2021) 2021 92%

Sung et al. (2020) 2020 96,76%
Sun et al. (2020) 2020 96,2%
Awad et al. (2018) 2018 98%
Argumax function 2024 97,80%
LGBMClassifier 2024 99,81%

In the context of the conducted experiment, the use of the
BIG 2015 dataset resulted in accuracy metrics, based on the
Argmax function, slightly lower than those observed in ex-
periments with active malware from our own dataset. We be-
lieve this outcome is directly related to the absence of headers
and critical fields, such as the ’AddressOfEntryPoint’, in the
inactive malware samples from BIG 2015. The lack of these
elements hinders the precise identification of entry points and
the optimized extraction of opcodes, negatively impacting
the analysis and classification.
Regarding execution time, FORTUNATE exhibited a

training time of approximately 130 seconds per model, while
the classification time per sample was about 56 milliseconds.
This result represents a significant improvement in classifi-
cation time compared to the study by Kong et al. (2023), the
only related work that reports classification time per sample,
which is 7.6 seconds.
The ability of FORTUNATE to train a malware family

model in just 130 seconds stands out as a competitive advan-
tage, directly addressing the challenges posed by polymor-
phic and metamorphic malware. This speed enables not only
frequent updates and rapid responses to emerging threats but
also facilitates the deployment of scalable, specialized, and
cost-effective solutions. When integrated with a continuous
update pipeline, this efficiency establishes FORTUNATE as
a robust and adaptable tool, essential for defense in an ever-
evolving cybersecurity landscape.
This result can be attributed to the combination of three

factors: the use of NLP, proper data handling, and the appli-
cation of LSTM, which together make FORTUNATE effec-
tive in malware classification.

7 Conclusions and Future Work
Despite transformers being widely recognized as the state-
of-the-art in sequence processing tasks, this work opted for a
model based on LSTMwith one-hot encoding. Our goal was
to investigate a lighter and more accessible approach, suit-

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

able for scenarios with computational constraints. Models
such as BERT, GPT, RoBERTa, XLNet, and T5 demonstrate
excellent performance in complex natural language process-
ing and classification tasks. However, these architectures of-
ten require significant computational resources for training
and inference, which may limit their practical application in
systems with hardware restrictions.
In this context, our results show that simpler methods,

such as LSTM with one-hot encoding, can still achieve
competitive performance in malware classification through
opcodes, particularly in specific scenarios. This observa-
tion paves the way for future research to compare these ap-
proaches with transformer-based models, investigating dif-
ferences in performance, efficiency, and generalization to
identify the most suitable solution for each context.
In this research, we presented FORTUNATE, a frame-

work that utilizes variable-length instruction sequences to
classify malware efficiently and accurately. FORTUNATE
excelled in predictive analysis of opcode sequences, demon-
strating high effectiveness in identifying cyber threats. In
addition to optimizing classification, FORTUNATE also pro-
vided relevant insights into the behavior of these threats.
The results obtained demonstrate that FORTUNATE

achieves satisfactory performance in classifyingmalware dis-
tributed across n distinct families. Metrics such as precision,
accuracy, recall, F1-Score, and MCC confirm its ability to
precisely identify different malware classes. The framework
also demonstrated an effective balance by reducing false pos-
itives while maintaining high efficiency in detecting true
positives—an essential characteristic in the field of cyberse-
curity.
Additionally, FORTUNATE’s performance in classifying

active and inactive malware was highlighted, achieving accu-
racies of 99.82% and 99.81%, respectively. Furthermore, the
average classification time per sample using FORTUNATE
was approximately 56 ms, demonstrating its high efficiency
in terms of speed.
For future directions, we propose expanding FORTU-

NATE through additional tests using different recurrent
neural networks, exploring new opcode encoding method-
ologies, and applying the techniques to various malware
datasets. These initiatives aim not only to enhance FORTU-
NATE’s effectiveness but also to adapt it to a wide variety of
neural network architectures and encoding techniques, fur-
ther promoting its versatility and efficiency across different
scenarios.

Acknowledgements
The authors thank the University of Brasília (UnB), the LATITUDE
Laboratory, and the research groups Projectum and Lincex for their
institutional and technical support. This workwas also supported by
the Research Support Foundation of the Federal District (FAPDF),
through the Grant Agreement No. 550/2024 — Call 06/2024 –
FAPDF Learning Program, and by the Coordination for the Im-
provement of Higher Education Personnel (CAPES).

Authors’ Contributions
The authors equally contributed to the elaboration of this paper. All

the authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets generated and analyzed during the cur-
rent study are available in SMARTNESS (dataSet Mal-
wAre fRom The wiNdows opErating SyStem) repository,
https://github.com/CABorges72/SMARTNESS.

References
Abid, Y. A., Wu, J., Farhan, M., and Ahmad, T. (2023).
ECMT Framework for Internet of Things: An Integrative
Approach Employing In-Memory Attribute Examination
and Sophisticated Neural Network Architectures in Con-
junction With Hybridized Machine Learning Methodolo-
gies. IEEE Internet of Things Journal, pages 1–1. Con-
ference Name: IEEE Internet of Things Journal. DOI:
10.1109/JIOT.2023.3312152.

Abusitta, A., Li, M. Q., and Fung, B. C. (2021).
Malware classification and composition analysis: A
survey of recent developments. Journal of Infor-
mation Security and Applications, 59:102828. DOI:
https://doi.org/10.1016/j.jisa.2021.102828.

Aggarwal, S. and Di Troia, F. (2024). Malware classification
using dynamically extracted api call embeddings. Applied
Sciences, 14(13). DOI: 10.3390/app14135731.

Albuquerque, D. G. d., Vieira, L. d. Q., Sant’Ana, R., and
Duarte, J. C. (2021). Análise de comportamento de
malware utilizando redes neurais recorrentes - uma abor-
dagem por intermédio da previsão de opcodes. Revista
Militar de Ciência e Tecnologia, 37(3). Available at:http:
//ebrevistas.eb.mil.br/CT/article/view/6914.

Alraizza, A. and Algarni, A. (2023). Ransomware De-
tection Using Machine Learning: A Survey. Big Data
and Cognitive Computing, 7(3):143. Number: 3 Pub-
lisher: Multidisciplinary Digital Publishing Institute. DOI:
10.3390/bdcc7030143.

Andrade, C. A. B., Rocha Filho, G. P., Meneguette, R. I.,
Maranhão, J. P. A., Sant’Ana, R., Duarte, J. C., Serrano,
A. L. M., and Gonçalves, V. P. (2024). Fortunate: De-
crypting and classifying malware by variable length in-
struction sequences. In 2024 IEEE 13th International Con-
ference on Cloud Networking (CloudNet), pages 1–9. DOI:
10.1109/CloudNet62863.2024.10815801.

Arora, A., Gannon, M., and Warner, G. (2017). Kelihos
botnet: A never-ending saga. Available at: https://
commons.erau.edu/cgi/viewcontent.cgi?article=
1271&context=adfsl.

Aslan, Ö. and Yilmaz, A. A. (2021). A new malware
classification framework based on deep learning algo-
rithms. IEEE Access, 9:87936–87951. DOI: 10.1109/AC-
CESS.2021.3089586.

Awad, Y., Nassar, M., and Safa, H. (2018). Modeling Mal-
ware as a Language. In 2018 IEEE International Confer-

https://doi.org/10.1109/JIOT.2023.3312152
https://doi.org/https://doi.org/10.1016/j.jisa.2021.102828
https://doi.org/10.3390/app14135731
http://ebrevistas.eb.mil.br/CT/article/view/6914
http://ebrevistas.eb.mil.br/CT/article/view/6914
https://doi.org/10.3390/bdcc7030143
https://doi.org/10.1109/CloudNet62863.2024.10815801
https://commons.erau.edu/cgi/viewcontent.cgi?article=1271&context=adfsl
https://commons.erau.edu/cgi/viewcontent.cgi?article=1271&context=adfsl
https://commons.erau.edu/cgi/viewcontent.cgi?article=1271&context=adfsl
https://doi.org/10.1109/ACCESS.2021.3089586
https://doi.org/10.1109/ACCESS.2021.3089586

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

ence on Communications (ICC), pages 1–6. ISSN: 1938-
1883. DOI: 10.1109/ICC.2018.8422083.

Catak, F. O. and Yazi, A. F. (2019). A benchmark
api call dataset for windows pe malware classifica-
tion. ArXiv, abs/1905.01999. Available at: https://
api.semanticscholar.org/CorpusID:146120927.

Dang, D., Troia, F. D., and Stamp, M. (2021). Malware
classification using long short-term memory models. DOI:
10.5220/0010378007430752.

de Oliveira, J. A., Gonçalves, V. P., Meneguette, R. I.,
de Sousa Jr, R. T., Guidoni, D. L., Oliveira, J. C., and
Rocha Filho, G. P. (2023). F-nids—a network intrusion de-
tection system based on federated learning. Computer Net-
works, 236:110010. DOI: 10.1016/j.comnet.2023.110010.

Djenna, A., Bouridane, A., Rubab, S., and Marou, I. M.
(2023). Artificial Intelligence-Based Malware Detection,
Analysis, and Mitigation. Symmetry, 15(3):677. Number:
3 Publisher: Multidisciplinary Digital Publishing Institute.
DOI: 10.3390/sym15030677.

El ghabri, N., Belmekki, E., and Bellafkih, M. (2024).
Pre-trained deep learning models for malware im-
age based classification and detection. In 2024
Sixth International Conference on Intelligent Com-
puting in Data Sciences (ICDS), pages 1–7. DOI:
10.1109/ICDS62089.2024.10756501.

Gaber, M. G., Ahmed, M., and Janicke, H. (2024). Malware
Detection with Artificial Intelligence: A Systematic Liter-
ature Review. ACM Comput. Surv., 56(6):148:1–148:33.
DOI: 10.1145/3638552.

Gulmez, S., Kakisim, A. G., and Sogukpinar, I. (2024).
Analysis of the zero-day detection of metamorphic mal-
ware. In 2024 9th International Conference on Com-
puter Science and Engineering (UBMK), pages 1–6. DOI:
10.1109/UBMK63289.2024.10773421.

Habib, F., Shirazi, S. H., Aurangzeb, K., Khan, A., Bhushan,
B., and Alhussein, M. (2024). Deep neural networks
for enhanced security: Detecting metamorphic malware
in iot devices. IEEE Access, 12:48570–48582. DOI:
10.1109/ACCESS.2024.3383831.

Hebish, M. W. and Awni, M. (2024). Cnn-based
malware family classification and evaluation. In
2024 14th International Conference on Electri-
cal Engineering (ICEENG), pages 219–224. DOI:
10.1109/ICEENG58856.2024.10566448.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Comput., 9(8):1735–1780. DOI:
10.1162/neco.1997.9.8.1735.

Jannat Mim, M. M., Nela, N. A., Das, T. R., Rahman,
M. S., and Ahmed Shibly, M. M. (2024). Enhanc-
ing malware detection through convolutional neural net-
works and explainable ai. In 2024 IEEE Region 10
Symposium (TENSYMP), pages 1–6. DOI: 10.1109/TEN-
SYMP61132.2024.10752108.

Kale, A. S., Pandya, V., Di Troia, F., and Stamp,
M. (2023). Malware classification with Word2Vec,
HMM2Vec, BERT, and ELMo. J Comput Virol Hack Tech,
19(1):1–16. DOI: 10.1007/s11416-022-00424-3.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. (2017). Lightgbm: a highly efficient

gradient boosting decision tree. In Proceedings of the
31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, page 3149–3157, Red Hook,
NY, USA. Curran Associates Inc. Available at: https:
//proceedings.neurips.cc/paper_files/paper/
2017/file/6449f44a102fde848669bdd9eb6b76fa-
Paper.pdf.

Kong, Z., Xue, J., Wang, Y., Zhang, Q., Han, W., and Zhu, Y.
(2023). Malfsm: Feature subset selection method for mal-
ware family classification. Chinese Journal of Electronics,
32(1):26–38. DOI: 10.23919/cje.2022.00.038.

Li, C. and Zheng, J. (2021). Api call-based malware clas-
sification using recurrent neural networks. Journal of
Cyber Security and Mobility. DOI: 10.13052/jcsm2245-
1439.1036.

Li, Z., Liu, H., Shan, R., Sun, Y., Jiang, Y., and Hu, N.
(2023). Binary code similarity detection: State and fu-
ture. In 12th IEEE International Conference on Cloud Net-
working, CloudNet 2023, Hoboken, NJ, USA, November
1-3, 2023, pages 408–412. IEEE. DOI: 10.1109/CLOUD-
NET59005.2023.10490019.

Lu, R. (2019). Malware detection with lstm using op-
code language. Available at: https://arxiv.org/abs/
1906.04593.

Mauri, L. and Damiani, E. (2025). Hardening
behavioral classifiers against polymorphic mal-
ware: An ensemble approach based on minority
report. Information Sciences, 689:121499. DOI:
https://doi.org/10.1016/j.ins.2024.121499.

Mehta, R., Jurečková, O., and Stamp, M. (2024). A natu-
ral language processing approach to Malware classifica-
tion. J Comput Virol Hack Tech, 20(1):173–184. DOI:
10.1007/s11416-023-00506-w.

Microsoft (2012). Update on kelihos botnet and
new related malware. Available at: https:
//blogs.microsoft.com/blog/2012/02/03/
update-on-kelihos-botnet-and-new-related-
malware/Accessed: 2024-12-09.

Microsoft (2024a). Adware:win32/lollipop - mal-
ware encyclopedia. Available at: https:
//www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=
Adware:Win32/LollipopAccessed: 2024-12-09.

Microsoft (2024b). Backdoor:win32/bifrose - mal-
ware encyclopedia. Available at: {https:
//www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=
Backdoor%3AWin32%2FBifrose} Accessed: 2024-12-
09.

Microsoft (2024c). Backdoor:win32/rbot - malware ency-
clopedia. Available at: https://www.microsoft.com/
en-us/wdsi/threats/malware-encyclopedia-
description?Name=Backdoor:Win32/Rbot Ac-
cessed: 2024-12-09.

Microsoft (2024d). Browsermodifier:win32/zwangi
- malware encyclopedia. Available at: https:
//www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=
BrowserModifier%3AWin32%2FZwangiAccessed:

https://doi.org/10.1109/ICC.2018.8422083
https://api.semanticscholar.org/CorpusID:146120927
https://api.semanticscholar.org/CorpusID:146120927
https://doi.org/10.5220/0010378007430752
https://doi.org/10.1016/j.comnet.2023.110010
https://doi.org/10.3390/sym15030677
https://doi.org/10.1109/ICDS62089.2024.10756501
https://doi.org/10.1145/3638552
https://doi.org/10.1109/UBMK63289.2024.10773421
https://doi.org/10.1109/ACCESS.2024.3383831
https://doi.org/10.1109/ICEENG58856.2024.10566448
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TENSYMP61132.2024.10752108
https://doi.org/10.1109/TENSYMP61132.2024.10752108
https://doi.org/10.1007/s11416-022-00424-3
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.23919/cje.2022.00.038
https://doi.org/10.13052/jcsm2245-1439.1036
https://doi.org/10.13052/jcsm2245-1439.1036
https://doi.org/10.1109/CLOUDNET59005.2023.10490019
https://doi.org/10.1109/CLOUDNET59005.2023.10490019
https://arxiv.org/abs/1906.04593
https://arxiv.org/abs/1906.04593
https://doi.org/https://doi.org/10.1016/j.ins.2024.121499
https://doi.org/10.1007/s11416-023-00506-w
https://blogs.microsoft.com/blog/2012/02/03/update-on-kelihos-botnet-and-new-related-malware/
https://blogs.microsoft.com/blog/2012/02/03/update-on-kelihos-botnet-and-new-related-malware/
https://blogs.microsoft.com/blog/2012/02/03/update-on-kelihos-botnet-and-new-related-malware/
https://blogs.microsoft.com/blog/2012/02/03/update-on-kelihos-botnet-and-new-related-malware/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Lollipop
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Lollipop
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Lollipop
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Lollipop
 {https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%3AWin32%2FBifrose}
 {https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%3AWin32%2FBifrose}
 {https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%3AWin32%2FBifrose}
 {https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%3AWin32%2FBifrose}
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Rbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Rbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Rbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=BrowserModifier%3AWin32%2FZwangi
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=BrowserModifier%3AWin32%2FZwangi
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=BrowserModifier%3AWin32%2FZwangi
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=BrowserModifier%3AWin32%2FZwangi

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

2024-12-09.
Microsoft (2024e). Trojan:win32/gatak - mal-
ware encyclopedia. Available at: https:
//www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=
Trojan%3AWin32%2FGatakAccessed: 2024-12-09.

Microsoft (2024f). Trojan:win32/startpage - mal-
ware encyclopedia. Available at : https://
www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Trojan:
Win32/Startpage&threatId=15435Accessed: 2024-
12-09.

Microsoft (2024g). Trojan:win32/tracur.b - mal-
ware encyclopedia. Available at: https:
//www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=
Trojan:Win32/Tracur.B&threatId=-2147311368
Accessed: 2024-12-09.

Microsoft (2024h). Virtool:win32/obfuscator.acy
- malware encyclopedia. Available at: https:
//www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=
VirTool:Win32/Obfuscator.ACYAccessed: 2024-12-
09.

Microsoft (2024i). Win32/hupigon - malware encyclo-
pedia. Available at: https://www.microsoft.com/
en-us/wdsi/threats/malware-encyclopedia-
description?Name=Win32/HupigonAccessed: 2024-
12-09.

Microsoft (2024j). Win32/kelihos - malware encyclo-
pedia. Available at: https://www.microsoft.com/
en-us/wdsi/threats/malware-encyclopedia-
description?Name=Win32/Kelihos Accessed: 2024-
12-09.

Microsoft (2024k). Win32/koutodoor - malware encyclo-
pedia. Available at https://www.microsoft.com/
en-us/wdsi/threats/malware-encyclopedia-
description?Name=Win32/Koutodoor Accessed:
2024-12-09.

Microsoft (2024l). Win32/ramnit - malware encyclo-
pedia. Availble at: https://www.microsoft.com/
en-us/wdsi/threats/malware-encyclopedia-
description?Name=Win32/Ramnit Accessed: 2024-
12-09.

Microsoft (2024m). Win32/vundo - malware encyclo-
pedia. Available at: https://www.microsoft.com/
en-us/wdsi/threats/malware-encyclopedia-
description?Name=Win32%2FVundoAccessed: 2024-
12-09.

Moawad, A., Ebada, A. I., El-Harby, A., and Al-
Zoghby, A. M. (2024). An Automatic Artificial In-
telligence System for Malware Detection, chapter 6,
pages 115–138. John Wiley & Sons, Ltd. DOI:
https://doi.org/10.1002/9781394213948.ch6.

Mohammed, M., Abdalla, M., and Elhoseny, M. (2025).
Detecting zero-day polymorphic worms using honeywall.
Journal of Cybersecurity and Information Management,
pages 34–49. DOI: 10.54216/JCIM.150104.

Molina, A. L., Gonçalves, V. P., De Sousa, R. T., Pivi-

dal, M., Meneguette, R. I., and Rocha Filho, G. P.
(2022). A lightweight unsupervised learning architec-
ture to enhance user behavior anomaly detection. In
2022 IEEE Latin-American Conference on Communica-
tions (LATINCOM), pages 1–6. IEEE. DOI: 10.1109/lat-
incom56090.2022.10000477.

Omar, M. (2022). New Approach to Malware Detection
Using Optimized Convolutional Neural Network, pages
13–35. Springer International Publishing, Cham. DOI:
10.1007/978-3-031-15893-32.

Owoh, N., Adejoh, J., Hosseinzadeh, S., Ashawa, M., Os-
amor, J., and Qureshi, A. (2024). Malware detection based
on api call sequence analysis: A gated recurrent unit–
generative adversarial network model approach. Future
Internet, 16(10). DOI: 10.3390/fi16100369.

Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., and
Ahmadi, M. (2018). Microsoft malware classification
challenge. Available at: https://arxiv.org/abs/
1802.10135.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning representations by back-propagating er-
rors. Nature, 323:533–536. Available at: https://
api.semanticscholar.org/CorpusID:205001834.

Shi, Y., Ke, G., Chen, Z., Zheng, S., and Liu, T.-Y. (2024).
Quantized training of gradient boosting decision trees.
In Proceedings of the 36th International Conference
on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA. Curran Associates Inc.. DOI:
https://doi.org/10.48550/arXiv.2207.0968210.48550/arXiv.2207.09682.

Sikorski, M. and Honig, A. (2012). Practical Malware Anal-
ysis: The Hands-On Guide to Dissecting Malicious Soft-
ware. No Starch Press, USA, 1st edition. Book.

Sun, J., Luo, X., Gao, H., Wang, W., Gao, Y., and Yang, X.
(2020). Categorizing malware via a word2vec-based tem-
poral convolutional network scheme. Journal of Cloud
Computing, 9. DOI: 10.1186/s13677-020-00200-y.

Sung, Y., Jang, S., Jeong, Y.-S., and Park, J. H. J. J. .
(2020). Malware classification algorithm using ad-
vanced Word2vec-based Bi-LSTM for ground control sta-
tions. Computer Communications, 153:342–348. DOI:
https://doi.org/10.1016/j.comcom.2020.02.005.

Syeda, D. Z. and Asghar, M. N. (2024). Dynamic malware
classification and api categorisation of windows portable
executable files using machine learning. Applied Sciences,
14(3). DOI: 10.3390/app14031015.

Taher, F., AlFandi, O., Al-kfairy, M., Al Hamadi, H.,
and Alrabaee, S. (2023). DroidDetectMW: A Hy-
brid Intelligent Model for Android Malware Detection.
Applied Sciences, 13(13):7720. Number: 13 Pub-
lisher: Multidisciplinary Digital Publishing Institute. DOI:
10.3390/app13137720.

Vanzan, M. and Duarte, J. (2023). Malware classification us-
ing transfer learning through the gpt-2 model. In Anais do
XXIII Simpósio Brasileiro de Segurança da Informação e
de Sistemas Computacionais, pages 167–180, Porto Ale-
gre, RS, Brasil. SBC. DOI: 10.5753/sbseg.2023.233086.

Zhang, J., Qin, Z., Yin, H., Ou, L., and Zhang, K.
(2019). A feature-hybrid malware variants detection us-
ing cnn based opcode embedding and bpnn based api

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan%3AWin32%2FGatak
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan%3AWin32%2FGatak
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan%3AWin32%2FGatak
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan%3AWin32%2FGatak
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Tracur.B&threatId=-2147311368
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Tracur.B&threatId=-2147311368
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Tracur.B&threatId=-2147311368
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Tracur.B&threatId=-2147311368
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/Obfuscator.ACY
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/Obfuscator.ACY
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/Obfuscator.ACY
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/Obfuscator.ACY
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Hupigon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Hupigon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Hupigon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Kelihos
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Kelihos
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Kelihos
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Koutodoor
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Koutodoor
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Koutodoor
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Ramnit
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Ramnit
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Ramnit
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVundo
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVundo
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVundo
https://doi.org/https://doi.org/10.1002/9781394213948.ch6
https://doi.org/10.54216/JCIM.150104
https://doi.org/10.1109/latincom56090.2022.10000477
https://doi.org/10.1109/latincom56090.2022.10000477
https://doi.org/10.1007/978-3-031-15893-3_2
https://doi.org/10.3390/fi16100369
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1802.10135
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://doi.org/10.1186/s13677-020-00200-y
https://doi.org/https://doi.org/10.1016/j.comcom.2020.02.005
https://doi.org/10.3390/app14031015
https://doi.org/10.3390/app13137720
https://doi.org/10.5753/sbseg.2023.233086

Lightweight Malware Classification with FORTUNATE: Precision Meets Computational Efficiency Andrade et al. 2024

embedding. Computers & Security, 84:376–392. DOI:
https://doi.org/10.1016/j.cose.2019.04.005.

Zhao, J., Basole, S., and Stamp, M. (2021). Malware Clas-
sification with GMM-HMM Models. arXiv:2103.02753
[cs, stat]. DOI: 10.48550/arXiv.2103.02753.

https://doi.org/https://doi.org/10.1016/j.cose.2019.04.005
https://doi.org/10.48550/arXiv.2103.02753

	Introduction
	Background
	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory Networks (LSTMs)
	LightGBM
	Active Malware
	Inactive Malware
	Advantages of Static Analysis with Opcode Extraction from Active Malware
	Limitations of Static Analysis with Opcode Extraction from Malware

	Related Works
	FORTUNATE: Framework fOr malwaRe classificaTion UsiNg vAriable insTruction sEquence
	Problem Definition
	Data Collection
	Data Processing
	Classification Mechanism

	Performance Evaluation
	Validation of FORTUNATE with the BIG 2015 dataset
	Conclusions and Future Work

