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Objetivos

O objetivo deste trabalho é estudar, através de
simulagbes numéricas, o efeito da esparsidade
e heterogeneidade de graus da distribuicdo de
autovalores da matriz de conexdao de redes
neurais que satisfazem a Lei de Dale e as
condi¢des de balango de inibicdo e excitagao.
Outros estudos anteriores abordam de
diferentes maneiras essas interagdes, podendo
nao ser considerada a Lei de Dale, que
determina que neurdnios sdo exclusivamente
excitatorios ou inibitérios. Este estudo visa
analisar numericamente o comportamento da
esparsidade e heterogeneidade das conexdes
na distribuicdo de autovalores dessa matriz.

Métodos e Procedimentos

O trabalho foi desenvolvido em trés etapas:

Fase I: Estudo de redes neurais
densas, sem e com a lei de Dale. Nesta parte,
o enfoque é a comparagao com resultados da
literatura e a verificagdo de efeitos de tamanho
finito.

Fase Il: Estudo de redes esparsas
homogéneas. Aqui, as redes s&o esparsas,
com cada possivel sinapse existindo ou néo
com uma probabilidade p. Variando p em [0,1]

podemos ajustar o grau de esparsidade da
rede neural e verificar seu efeito. As conexdes
existentes apresentam intensidade aleatodria
com distribuicdes normais e seguindo a lei de
Dale.

Fase I|ll: Estudo de redes
heterogéneas. Nesta fase, ao invés de usar
uma probabilidade fixa para a existéncia de
cada sinapse, uma matriz de conexao sera
gerada na qual o grau de entrada ou de saida
ou ambos de cada neurdnio tem distribuicao
livre de escala, gerando grande
heterogeneidade de grau. Novamente, a
intensidade das conexdes existentes tera
distribuicdo normal e seguira a lei de Dale.

Resultados

Com a variagao do parametro p, como
mostrado na Fig.1, podemos notar que os
valores para p = 0.1 e p = 0.9 resultam em
distribuicdes de autovalores semelhantes,
assim como ocorre para outros pares
simétricos em torno de p = 0.5. Esse
comportamento sugere que o raio espectral dos
autovalores cresce a medida que p se
aproxima de 0.5, atingindo um valor maximo, e
depois decresce conforme p se afasta desse
ponto. Dessa maneira, podemos observar uma
relagcdo quadratica da variancia e, por isso,
apresenta esse comportamento. Podemos
observar que, para alguns valores centrais de
p, como p=0.5, o raio espectral aumenta e a
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densidade de probabilidade diminui, deixando
assim uma distribuicdo mais homogénea ao
longo do plano complexo.
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Figura 1: Densidade de probabilidade ao longo do
raio do plano complexo com a variagdo do
parametro p (pontos dos valores descartados para
facilitar a visualizagdo) com N_e = 1000 sigma_e =
0.22 e sigma_i = 2.2

Ja com respeito a variagdo de mu_e,
representada na Fig.2, podemos observar uma
concentragdo maior de autovalores préximo a
origem para valores menores de mu_e e,
juntamente com isso, podemos observar que
ele também influencia no aumento do raio
espectral.
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Figura 2: Densidade de probabilidade ao longo do
raio do plano complexo com variagdo do parametro
mu_e com N_e = 1000 sigma_e = 0.22 e sigma_i =
22ep=05
Ja na Fig.3 onde apresentamos essa mesma
variagdo, agora para redes densas, ou seja,

quando a probabilidade de conexdo p=1, a
variagdo de mu_e n&o apresenta alteragéo da
probabilidade dos autovalores ao longo do
plano complexo, diferentemente dos casos
onde p<1, j& que o grande numero de
conexdes dilui o impacto das médias
individuais.
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Figura 3: Densidade de probabilidade ao longo do

raio do plano complexo com variagcdo do parametro

mu_e com N_e = 1000 sigma_e = 0.22 e sigma_i =
2.2 e p=1

Conclusoes

O trabalho analisou os efeitos da esparsidade e
da heterogeneidade nas redes neurais
obedecendo a Lei de Dale, com foco na
distribuicdo dos autovalores da matriz de
conexdo. Os resultados mostraram que, em
redes densas, a variacdo de parametros nao
altera significativamente o espectro, enquanto
em redes esparsas homogéneas a variagao de
a, da probabilidade de conexdo p e de pe
influencia de forma marcante a densidade
espectral e o raio dos autovalores. Assim, foi
possivel confirmar e ampliar resultados da
literatura, evidenciando o papel fundamental da
estrutura da rede na definicdo de suas
propriedades espectrais.

Os autores declaram ndo haver conflito de
interesses.
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Objectives

The objective of this work is to study, through
numerical simulations, the effect of sparsity and
degree heterogeneity on the eigenvalue
distribution of the connection matrix of neural
networks that satisfy Dale's Law and the
excitation-inhibition balance conditions. Other
previous studies have approached these
interactions in different ways, and Dale's Law,
which determines whether neurons are
exclusively excitatory or inhibitory, may not be
considered. This study aims to numerically
analyze the behavior of connection sparsity and
heterogeneity on the eigenvalue distribution of
this matrix.

Methods and Procedures

The work was developed in three stages:

Phase I: Study of dense neural networks, with
and without Dale's law. This part focuses on
comparing results with literature and verifying
finite-size effects.

Phase Il: Study of homogeneous sparse
networks. Here, the networks are sparse, with
each possible synapse existing or not with a
probability p. By varying p in [0,1], we can
adjust the sparsity of the neural network and
verify its effect. The existing connections

present random strengths with normal
distributions and follow Dale's law.

Phase Ill: Study of heterogeneous networks. In
this phase, instead of using a fixed probability
for the existence of each synapse, a connection
matrix will be generated in which the input or
output degree, or both, of each neuron has a
scale-free distribution, generating significant
degree heterogeneity. Again, the strength of the
existing connections will be normally distributed
and follow Dale's law.

Results

By varying the parameter p, as shown in Fig. 1,
we can see that the values for p = 0.1 and p =
0.9 result in similar eigenvalue distributions, as
is the case for other symmetric pairs around p =
0.5. This behavior suggests that the spectral
radius of the eigenvalues increases as p
approaches 0.5, reaching a maximum value,
and then decreases as p moves away from this
point. Thus, we can observe a quadratic
relationship of the variance, and therefore, it
presents this behavior. We can observe that, for
some central values of p, such as p = 0.5, the
spectral radius increases and the probability
density decreases, thus leaving a more
homogeneous distribution along the complex
plane.
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Figure 1: Probability density along the radius of the
complex plane with the variation of the parameter p

(points of the values discarded to facilitate
visualization) with N_e = 1000 sigma_e = 0.22 and
sigma_i=2.2

Regarding the variation of mu_e, represented in
Fig.2, we can observe a greater concentration
of eigenvalues close to the origin for smaller
values of mu_e and, together with this, we can
observe that it also influences the increase in
the spectral radius.
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Figure 2: Probability density along the radius of the

complex plane with variation of the parameter mu_e
with N_e = 1000 sigma_e = 0.22 and sigma_i = 2.2

andp=0.5

In Fig. 3, where we present this same variation,
now for dense networks, that is, when the
connection probability p=1, the variation of
mu_e does not present a change in the
probability of the eigenvalues along the
complex plane, unlike the cases where p<1,
since the large number of connections dilutes
the impact of the individual averages.
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Figure 3: Probability density along the radius of the
complex plane with variation of the parameter mu_e
with N_e = 1000 sigma_e = 0.22 and sigma_i = 2.2
and p=1

Conclusions

This study analyzed the effects of sparsity and
heterogeneity on neural networks following
Dale's Law, focusing on the distribution of the
eigenvalues of the connection matrix. The
results showed that, in dense networks,
parameter variations do not significantly alter
the spectrum, while in homogeneous sparse
networks, variations in a, the connection
probability p, and pe significantly influence the
spectral density and the eigenvalue radius.
Thus, it was possible to confirm and expand
upon results from the literature, highlighting the
fundamental role of network structure in
defining its spectral properties.

The authors declare no conflict of interest.
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