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A B S T R A C T

Eggshell quality is a determining factor in food safety, production efficiency, and the commercial acceptance of 
eggs. This study proposed the development and validation of an automated system for measuring eggshell 
translucency using computer vision and machine learning. A total of 326 commercial eggs from different pro
duction systems, with white and brown shells, were analyzed. Images were captured in a controlled environment 
and digitally processed to extract quantitative translucency measurements. The obtained values were compared 
with traditional visual classification and used in supervised classification models (KNN, SVM, and Random 
Forest). The SVM model showed the best performance, with accuracy exceeding 90 % in distinguishing trans
lucency levels. Additionally, predictive models (Multiple Linear Regression and SVM) were tested to estimate 
intrusive variables based on translucency, revealing moderate correlations, particularly with shell thickness and 
shell weight. It is concluded that translucency can be accurately quantified through automated techniques, with 
potential application in the screening and quality control of commercial eggs, although it should be used as a 
complementary indicator alongside other technical parameters.

Introduction

Evaluation of egg quality is a crucial process in the poultry produc
tion chain, directly impacting commercialization, consumer acceptance, 
and food safety. Qualitative aspects such as shell thickness and strength, 
as well as size, weight, integrity, and internal composition, are key to 
ensuring the quality of the final product (Okinda, 2020; Roberts, 2004; 
Wengerska et al., 2023), whether it be a table egg (infertile) or a day-old 
chick (fertile egg). Moreover, egg quality influences production effi
ciency, as structural defects can lead to significant economic losses and 
indicate the need for adjustments in the management of laying hen 
farms (Ledvinka et al., 2012). Therefore, the adoption of precise and 
efficient methods to assess these characteristics is essential to meet 
market quality standards and health regulations (Atwa et al., 2024).

Traditionally, egg quality assessment involves intrusive measure
ments that may compromise the integrity of the product and lead to 
waste, rendering the analyzed eggs unsuitable for consumption or in
cubation. In this context, eggshell translucency has emerged as a 

potential variable gaining prominence in research on the quality of 
commercial eggs (Xuan & Zheng, 2024). This characteristic provides 
relevant information about shell composition and integrity, as its ability 
to transmit light may be associated with shell thickness and potential 
microstructural deformations, directly influencing egg strength and 
durability (Shi et al., 2023). Wang et al. (2017), for example, suggest 
that the formation of translucent eggs is related to variations in shell and 
membrane structure, with translucent eggs presenting thicker shells, 
thinner membranes, and lower final membrane resistance compared to 
opaque eggs.

Including translucency as a new parameter in egg quality evaluation 
opens new research possibilities for optimizing the production chain. 
Chousalkar et al. (2010) demonstrated that eggshell translucency is 
associated with a higher risk of bacterial penetration, including Sal
monella Infantis and E. coli, especially at room temperature, high
lighting the importance of refrigerated storage to minimize 
contamination. In the field of genetics, Zhang et al. (2021) analyzed 
shell translucency in different chicken breeds, identifying variations in 
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the intensity of this phenomenon among purebred, commercial, and 
local lines. In the context of commercial incubation, Neto et al. (2024)
found that highly translucent eggs exhibited greater weight loss, lower 
hatchability, and higher embryonic mortality between days 11 and 18 of 
incubation.

Traditional methods for assessing shell translucency include visual 
inspection using dark environments and controlled lighting (Neto et al., 
2024; Orellana et al., 2023). Modern and validated methodologies allow 
for classification of eggs into three translucency levels: 1) mild (few and 
small translucent spots on the shell); 2) moderate (translucent spots 
more evenly distributed across the shell); and 3) severe (presence of 
multiple spots and even large translucent areas across the entire shell). 
Although functional, such methodology still requires time and human 
expertise for accurate classification.

In addition to the adoption of new variables, such as translucency, 
the ongoing pursuit of greater efficiency and quality in poultry farming 
has led to the incorporation of innovative technologies in the sector. 
Technologies such as system automation, artificial intelligence, and 
precision livestock farming have been widely studied to enhance egg 
production and make processes more efficient (Narushin et al., 2025; 
Ren et al., 2020; Yang et al., 2024). Among these innovations, the use of 
computer vision and digital image processing stands out as a promising 
alternative for non-invasive egg quality assessment, enabling the auto
mated measurement of important variables such as width and length 
(Aragua & Mabayo, 2018; Abd Aziz et al., 2020), estimation of volume 
and weight (Nyalala et al., 2021; Okinda, 2020), defect identification 
(Yang et al., 2023), and fertility (Ahmed et al., 2025; Çevik et al., 2022).

Furthermore, machine learning techniques have already been 
established as powerful tools for assessing egg quality. Machine learning 
algorithms enable the analysis of large datasets throughout the entire 
production chain, from bird nutrition to egg processing, allowing the 
identification of complex patterns that might go unnoticed with con
ventional methods (Bischof et al., 2024; Subramani et al., 2025). In 
quality control, for example, Sehirli and Arslan (2022) applied machine 
learning techniques to classify commercial eggs based on the Haugh 
unit. Similarly, Oliveira-Boreli et al. (2023) investigated the combina
tion of image analysis and machine learning to validate the use of the 
Shape Index as a non-destructive method for classifying chicken egg 
quality.

Given this context, different approaches have been proposed to 
quantify eggshell translucency more objectively. Wang et al. (2019)
developed a system based on grayscale recognition and colorimetry, 
allowing the extraction of variables such as the number, diameter, and 
average area of translucent spots. More recently, Wang et al. (2020)
presented an automated computer vision system capable of detecting 
dark spots on the shell using techniques such as K-means clustering and 
unsharp masking enhancement, achieving high processing speed (0.5 s 
per image) and segmentation accuracy. Despite this technical advance
ment, the study focuses exclusively on the superficial quantification of 
spots, without considering correlations with other morphological traits 
or internal egg quality parameters.

By combining two emerging themes in the evaluation of commercial 
and fertile egg quality - translucency as a qualitative indicator and 
process automation through computer vision - this study proposes the 
development of an automated system for measuring egg translucency 
using image processing and machine learning. Additionally, the study 
aimed to correlate translucency with other quality parameters, enabling 
more accurate and reproducible analyses.

Material and methods

Experimental samples

For this study, a total of 326 commercial eggs were analyzed, 
comprising 162 brown-shelled and 164 white-shelled eggs. To ensure 
greater morphological diversity in the sample set, the eggs were sourced 

from nine different brands, representing three production systems: 
conventional (caged), free-range, and cage-free. Additionally, the eggs 
were commercially classified into three weight categories: large, extra, 
and jumbo. The storage time of the samples ranged from 5 to 19 days, 
taking the day of evaluation as the reference point. At the beginning of 
the experimental phase, each egg was properly labeled and subjected to 
all automated (section 2.2) and manual (section 2.3) tests described in 
this article.

Automated metrics

Image Database. The experiment was conducted in a climate- 
controlled chamber at the Department of Biosystems Engineering, 
"Luiz de Queiroz" College of Agriculture, University of São Paulo, Brazil. 
This environment was chosen and conFig.d to prevent any light input, 
whether external (absence of windows) or internal (0 lux illumination). 
Image acquisition took place from early to mid-October 2024. Since the 
chamber offers controlled lighting and temperature, images were 
collected throughout the day without time restrictions or influence from 
external conditions.

The system developed for image capture aimed to record the full 
structure of each egg, providing a perspective similar to that used in 
conventional translucency assessment (Orellana et al., 2023). Image 
capture was performed using two main components: a digital camera 
and a standardized light source. For this purpose, a smartphone (iPhone 
13, Apple Inc., United States) equipped with a 12-megapixel camera, 
conFig.d with wide-angle and ultra-wide-angle lenses, was used. To 
ensure stability, the device was mounted on a platform with vertical 
angle adjustment.

A commercial candling device (Chocmaster, Brazil) equipped with a 
white-toned LED light was used as the light source. The standard ring 
size recommended for chicken eggs, as indicated by the manufacturer, 
was used. Although precise light intensity values were not recorded, 
preliminary tests indicated that this setting provided sufficient contrast 
between the egg and the background, consistent with approaches vali
dated in previous studies (Alikhanov et al., 2018; Dal’Alba et al., 2020; 
Sokovnin, 2021; Wang et al., 2019).

In total, 326 images were recorded, corresponding to each egg in the 
experimental sample. This sample size aligns with previous studies on 
image processing applied to eggs (Alikhanov et al., 2018; Ab Nasir et al., 
2018; Soltani et al., 2015). All images were stored and cataloged in a 
cloud-based database for further analysis. The images had dimensions of 
3024 × 4032 pixels, portrait orientation, and were saved in JPG format 
to optimize computational processing.

Model Development. The translucency of the eggshell was calculated 
through a digital image processing procedure aimed at non- 
destructively quantifying the proportion of more translucent regions 
visible under controlled lighting. The algorithm was developed using 
MATLAB® (version R2022b, United States), employing image segmen
tation and morphological analysis functions. The system was designed 
based on the fundamental principles of computer vision systems 
(Alikhanov et al., 2018; Aziz et al., 2020; Nyalala et al., 2021), 
encompassing stages such as digital image preprocessing, identification 
and isolation of regions of interest, and subsequent extraction of rele
vant features (Fig. 1).

Initially, the color image of the egg was converted into a mono
chromatic image by extracting the red channel from the RGB composi
tion. This choice was based on a qualitative analysis of the acquired 
images, which revealed greater contrast between the shell and pores in 
the red channel under backlighting. Converting the image to grayscale 
simplified the segmentation process, as the light intensity could then be 
directly manipulated to distinguish regions with different optical prop
erties (Gonzalez & Woods, 2010).

From this grayscale image, the total area of the egg was segmented 
using a light intensity threshold. Although adaptive thresholding 
methods were initially tested, the imaging setup provided a controlled 
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environment with no variation in lighting, background, or egg posi
tioning; therefore, global thresholding was adopted for its simplicity and 
reliable performance under these conditions. The threshold values used 
for image segmentation were determined empirically through pre
liminary testing and visual validation. This process involved analyzing a 
representative subset of images with varying degrees of translucency 
and manually adjusting the threshold values to maximize the contrast 
between translucent regions and the surrounding shell. Thresholds were 
selected based on their ability to consistently isolate regions of interest 
across samples without including background noise or excluding rele
vant areas.

In this step, all pixels with intensity values above 0.51 (on a 
normalized scale from 0 to 1) were considered part of the object of 
interest—the egg—while all others were classified as background. The 
same thresholds were applied for both brown and white eggshells. The 
resulting binary image was then processed with a region-filling algo
rithm based on neighborhood connectivity to ensure the integrity of the 
segmented objects. This correction was essential to eliminate thresh
olding artifacts and ensure that the computed area accurately repre
sented the entire egg structure (Grift et al., 2017). With the corrected 
binary mask, the total egg area, Atotal, was estimated by counting the 
number of pixels classified as part of the object.

The identification of translucent regions—presumably associated 
with pores or structural imperfections in the shell—was carried out 
through a second segmentation step with a higher threshold. From the 
same grayscale image, a threshold of 0.91 (white-shelled eggs) and 0.88 
(brown-shelled eggs) was applied, based on preliminary tests and visual 
observation, to highlight only the pixels with high light intensity, i.e., 
those that allowed greater light transmission. Pixels with intensity above 
this threshold were considered part of the translucent regions and were 
used to calculate the translucent area, Atranslucency.

Based on these two extracted areas, the relative translucency (Tr) was 
defined as the ratio between the area of the translucent regions and the 
total egg area, as shown in Equation 1: 

Tr =
Atranslucency

Atotal
(Eq. 1) 

Additionally, this value was converted into a percentage, resulting in 
the percent translucency (T%), as shown in Equation 2: 

T% =
Atranslucency ∗ 100

Atotal
(Eq. 2) 

For visual validation and qualitative analysis, an overlay image was 
generated by combining the original egg image with the binary mask of 
the translucent regions, with those areas highlighted in artificial color. 
This visualization step allowed verification of whether the segmentation 
effectively corresponded to the regions perceived as translucent in the 
original image, as recommended in morphological analysis systems for 
segmentation validation (Gonzalez & Woods, 2010).

Automated metrics

To evaluate the qualitative aspects of the experimental eggs, the 
measured variables were categorized into two groups. Non-invasive 
measurements (collected before breaking the eggs): weight (g), 
maximum egg length (mm), maximum egg width (mm), translucency 
(score). Invasive measurements (collected after breaking the eggs): 
liquid weight (g), shell weight (g), yolk color (score), yolk diameter 
(mm), yolk height (mm), albumen height (mm), shell thickness (mm).

The total egg weight, liquid weight, and shell weight were measured 
using a precision electronic balance (Gehaka, model BG 2000, Brazil), 
factory-calibrated. The maximum egg length, maximum width, albumen 
height, and yolk diameter and height were measured using a high- 
precision digital caliper (Digimess, model 100.174BL, Brazil). During 
the measurements, the eggs and internal contents were placed on a flat 
surface to avoid distortion due to tilt. Weight and size measurements 
followed standard methodologies presented in previous studies 
(Almeida et al., 2021; Nyalala et al., 2021).

Yolk color was manually evaluated using the YolkFan™ colorimetric 
scale (dsm-firmenich), which classifies yolk color on a scale from 1 (light 
yellow) to 16 (deep orange). This is a widely accepted method for yolk 
color characterization and is strongly correlated with the carotenoid 
content in the hens’ diet (Ortiz et al., 2021).

Shell translucency was also visually assessed under standardized 
lighting in a low-light environment. The evaluation followed the pro
tocol described by Orellana et al. (2023), in which eggs are classified 
into three categories (A, B, and C) based on the presence, size, and 
distribution of translucent or mottled regions on the shell surface. To 
minimize subjectivity and ensure consistency, a preliminary calibration 
session was conducted with an expert in egg quality evaluation, and the 
classification strictly adhered to the sample illustrations provided in the 
original protocol (Orellana et al., 2023).

To ensure accurate shell thickness measurements, a preparation 
protocol was adopted based on the methodology adapted from Carter 

Fig. 1. Flowchart of the automated system for eggshell translucency extraction and calculation.
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(1968). First, the eggshells were carefully washed under running water 
to remove internal residues. The samples were then air-dried at room 
temperature (~25◦C) for 48 hours in a protected environment. After 
complete drying, shell thickness was measured using a high-precision 
digital micrometer (Dasqua, model 417.0028, Brazil) with 0.001 mm 
resolution. For greater reliability, three measurements were taken in 
different regions of the egg — the broad end, narrow end, and equatorial 
region — and the average of these values was considered the repre
sentative thickness of the sample.

Based on the collected data, the yolk index (YI) was calculated using 
Equation 3, and the Haugh Unit (HU) using Equation 4: 

YI =
Yolk Height

Yolk Diameter
(Eq. 3) 

HU = 100 xlog
(
Albumen Height − 1, 7 ∗

(
Egg Weight 0,37)+7,6)

(Eq. 4) 

Validation and classification

This study aimed to address two main questions regarding the 
analysis of eggshell translucency: (1) Can translucency be automated 
and measured quantitatively? and (2) Can translucency replace vari
ables traditionally measured through invasive methods? To investigate 
these questions, a two-step methodological approach was adopted. First, 
a comparison was conducted between the visual (manual) classification 
of translucency and its numerical versions extracted through digital 
image processing. Next, the potential of translucency measurements to 
serve as substitutes for invasive variables was assessed.

Automated Quantification of Translucency. The first step consisted 
of assessing the feasibility of quantitatively and automatically 
measuring eggshell translucency. For this purpose, the visual classifi
cation of eggs into three categories (A, B, and C), based on the presence 
and distribution of spots on the shell, was compared with values ob
tained from two numerical metrics: relative translucency and percent
age translucency.

Initially, an exploratory data analysis was performed to visualize the 
distribution of numerical translucency measurements within each 
manual category. This visualization allowed for the identification of 
overlaps, central tendencies, and dispersions associated with each group 
— a fundamental step to evaluate class separability.

Subsequently, supervised classification models were applied to pre
dict the visual class (A, B, or C) based on the numerical measurements. 
The input variables (features) were the translucency measures, while the 
target variable was the manual classification. The models employed 
were: K-Nearest Neighbors (KNN); Support Vector Machine (SVM); and 
Random Forest. All tests and statistical analyses were conducted using 
the R language via RStudio version 2024.12.1+563. For all tests, the 
dataset was randomly and representatively split into training (75 %) and 
testing (25 %) sets. To preserve the original class distribution during 
model training and evaluation, the dataset was split into training and 
testing subsets using stratified random sampling.

The K-Nearest Neighbors (KNN) method was implemented with k =
5, meaning the algorithm classified a new observation based on the 
majority labels among its five nearest neighbors, calculated using 
Euclidean distance in the translucency variable space (Henderi et al., 
2021). Prior to model application, the numerical variables were stan
dardized (mean zero and standard deviation one) to ensure equal 
contribution to the distance calculation.

The Support Vector Machine (SVM) method was used as a model 
aiming to find optimal hyperplanes separating classes in the trans
lucency variable space, even in high-dimensional contexts. Initially, the 
numerical variables were standardized to ensure comparability and 
good algorithm performance. The target variable, representing the vi
sual classification of samples, was converted to a factor type with levels 
"A", "B", and "C", preparing the dataset for classification. The classifier 

was conFig.d as "C-classification" with a "linear" kernel, aiming to 
maximize the margin between class boundaries.

The Random Forest model is an ensemble learning algorithm that 
combines results from multiple decision trees built on random samples 
of data and predictor variables, promoting greater stability and pre
dictive accuracy (Parmar et al., 2018). Here, the target variable was also 
treated as a factor, a necessary condition for classification tasks. The 
classifier was trained with 10 trees using the standardized numerical 
translucency variables as predictors.

Model performance was evaluated and compared based on confusion 
matrices and classification performance metrics. In this study, the 
following metrics were considered: accuracy, precision, recall, and F1- 
score, which together provide a comprehensive view of each model’s 
predictive quality.

Replacement of Intrusive Variables. The second stage of data anal
ysis aimed to investigate whether translucency measurements, obtained 
non-invasively, could replace variables traditionally collected through 
intrusive methods, such as shell thickness, yolk height, albumen height, 
and shell weight. This analysis was conducted in two complementary 
approaches: identifying the relevance of translucency via Principal 
Component Analysis (PCA) and building regression models to predict 
intrusive variables solely based on non-intrusive features. Again, all 
analyses were performed using the R language in version 
2024.12.1+563 of RStudio.

In the first approach, the correlation matrix among the dataset var
iables was analyzed to identify potential associations between non- 
invasively obtained features—such as percentage translucency—and 
traditionally measured intrusive variables, including shell thickness, 
shell weight, albumen height, and yolk height. Spearman’s correlation 
coefficient was employed for this analysis, a non-parametric measure 
that assesses monotonic relationships even in the absence of strict 
linearity between variables (Song et al., 2022).

The second approach consisted of constructing predictive models 
using supervised regression algorithms. The objective was to verify 
whether it is possible to predict quantitative variables based on trans
lucency measures, specifically percentage translucency.

Two distinct models were utilized. The first was Multiple Linear 
Regression, which seeks to establish a linear relationship between pre
dictor variables and the response variable (Uyanik & Guler, 2013). The 
second model used was the Support Vector Machine (SVM) algorithm in 
regression mode (epsilon-regression) with a radial kernel function, 
enabling the capture of nonlinear relationships between variables 
(Parreño & Anter, 2024). The model was trained with all available data, 
and predictions were generated from the non-invasive variables.

Both models were evaluated and compared based on performance 
metrics: R² (coefficient of determination); ME (mean error); RMSE (root 
mean square error); SSR (sum of squares due to regression); SSE (sum of 
squared errors); and SST (total sum of squares). The comparison of 
model performances allowed identification of whether including trans
lucency significantly improves predictive capability, providing evidence 
that this variable can, in fact, replace or complement intrusive 
measurements.

Results and discussion

Digital processing

Fig. 3 illustrates the main steps of the digital processing applied to 
the images of white (A) and red (B) eggshells, visually highlighting the 
transformation flow from the original image to the final segmentation of 
the regions of interest.

Initially, the process started from a color image in RGB format 
(Fig. 2.1), acquired through a standardized capture system. To facilitate 
segmentation and reduce computational complexity, the image was 
decomposed into its three basic channels (red, green, and blue), and only 
the red channel (R) was used, as illustrated in Fig. 2.2. The choice of the 
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R channel is justified by its ability to maximize the contrast between the 
egg and the dark background, favoring the separation of the object of 
interest — the egg — from external elements and visual artifacts. This 
approach is frequently reported in the literature as an effective tech
nique in image analysis contexts with controlled artificial lighting 
(Gonzalez & Woods, 2010).

Next, a thresholding step was applied, converting the intensity ma
trix into a binary image based on a predefined threshold value. This 
thresholding allowed isolating the complete contour of the egg 
(Fig. 2.3), classifying it as the main region of interest in the image. The 
appropriate selection of the threshold value was essential to avoid both 
the inclusion of unwanted noise and the exclusion of significant parts of 
the shell, especially in cases with shadows or non-uniform lighting. As 
noted by Wang et al. (2020), the segmentation effectiveness is directly 
related to the precise choice of the intensity threshold.

To isolate the areas of higher translucency — interpreted as imper
fections in the shell structure — a more restrictive thresholding was 
applied, resulting in the identification of regions with higher luminance 
intensity in the red channel. These regions are shown in Fig. 2.4. In both 
shell types, the method proved sensitive to the presence of these struc
tural variations.

After segmenting the imperfections, the extracted regions were 
overlaid onto the original image, resulting in a visual fusion that allowed 
qualitative inspection of the algorithm’s performance. In Fig. 2.5, the 
imperfections are highlighted in blue over the original egg image, 
showing the correspondence between the segmented regions and the 
points of higher translucency detected.

This process enabled the extraction of morphometric attributes such 
as the total shell area and the area corresponding to the translucent 
regions. Using these data, it was possible to calculate the relative and 
percentage proportion of translucency concerning the total egg area, 
providing a novel and objective metric for the quantitative analysis of 
shell quality.

Can translucency be automated and measured quantitatively?

Table 1 presents descriptive statistics of the percentage translucency 
values (%) calculated per image, segmented by manual translucency 
categories (A, B, and C) and shell type (white and brown). In class A, 
representing eggs with low translucency, the mean percentage trans
lucency values are the lowest in the dataset, with 3.21 % for white eggs 
and 2.99 % for brown eggs. Maximum values remain below 9 %, and 
standard deviations are relatively low, indicating uniformity within 
samples of this class.

In class B, there is a noticeable increase in mean values, with 5.69 % 
and 5.83 % for white and brown shells, respectively. Standard de
viations remain around 1 %, suggesting that class B has greater vari
ability than class A but still presents a relatively compact distribution. In 
class C, there is a marked increase in average translucency, especially for 
brown eggs, reaching 12.21 %, compared to 10.14 % for white eggs. The 
standard deviation for brown eggs (4.51 %) indicates a wide dispersion, 
also reflected in the maximum translucency value (25.52 %). This higher 

variability may be explained by more pronounced differences in shell 
structure or by greater sensitivity of the automated technique in 
capturing subtle variations in eggs with high translucency.

Fig. 3 shows a boxplot comparing the percentage translucency values 
automatically calculated from images with the manually assigned 
translucency categories (A, B, and C) for white and brown eggs. Sup
porting the results presented in Table 1, there is a clear trend of 
increasing translucency (%) as the manual classification progresses from 
A to C, suggesting good correspondence between the visual scores and 
the values obtained through digital image processing.

In class A, representing eggs with the lowest visual translucency, 
percentage values remain concentrated below 5 %, with little variation 
between white and brown eggs. In class B, translucency values increase, 
with a median around 5 to 6 %, remaining relatively consistent across 
the two shell types. The largest difference appears in class C, where there 
is greater data dispersion and both mean and maximum translucency 
values increase significantly, surpassing 10 % in both groups and 
reaching nearly 20 % in brown eggs, with an outlier close to 26 %.

The consistent increasing trend and the spacing between quartiles 
reinforce the validity of the automated methodology to quantify 
eggshell translucency. Additionally, the similarity in behavior between 
white and brown eggs indicates that the automated classification is 
robust to variation in shell pigmentation.

Given these promising exploratory analysis results, Table 2 presents 
a comparison of the KNN, SVM, and Random Forest models regarding 
their performance in classifying eggshell translucency. Overall, the 
Support Vector Machines (SVM) model showed the best performance, 
achieving the highest overall accuracy (93.06 %) and the best F1-scores 
for classes A and B, demonstrating a balance between precision and 
recall. The perfect precision (1.000) of SVM for class A is notable, 
indicating that the model made no false positives in this category during 
testing.

The Random Forest model also showed robust results, with an overall 
accuracy of 91.43 % and competitive performance across the three 
classes. Although slightly behind the SVM in classes A and B, Random 
Forest achieved the highest F1-score for class C (0.750), suggesting an 
advantage in correctly identifying eggs classified with higher trans
lucency. This result is especially relevant since class C generally tends to 
present greater data variability and lower relative frequency, which can 
challenge its correct classification.

The KNN model presented the lowest performance among the three, 
with overall accuracy of 88.89 % and lower F1-scores across the classes, 
especially in class C (0.667), where both precision and recall were the 
lowest. This outcome may indicate greater sensitivity of KNN to data 
distribution and the number of neighbors chosen, which can impair its 
performance in contexts with less represented classes or with more 
overlap between categories. Other comparative studies in different areas 
have also reported inferior KNN performance compared to other 
methods (Islam et al., 2022; Kutlay et al., 2019; Oliveira-Boreli et al., 
2023; Raghuwanshi et al., 2022).

It is noteworthy that all models performed worse on class C, with 
recall only 66.7 % in all cases, indicating a common difficulty in 
correctly identifying eggs with higher translucency. This highlights the 
need for additional strategies, such as weight adjustment or balancing 
techniques, to improve model sensitivity regarding this class.

Finally, Fig. 4 presents specific classification cases that are worth 
highlighting. In images A, B, and C, there is a correct match between the 
automatic method and the manual classification, demonstrating the 
system’s ability to accurately identify different levels of eggshell trans
lucency. In contrast, images D and E show disagreement between the 
methods. In the case of image D, the automatic method overestimated 
the translucent area by mistakenly interpreting the air cell as a trans
lucent region, which led to classifying the egg as Class B, whereas 
manual analysis correctly assigned it to Class A. On the other hand, 
image E represents an atypical case involving a rotten egg, in which the 
dark internal content interfered with segmentation (as seen in Step 3 of 

Table 1 
Descriptive statistics of percentage translucency (%) obtained by digital image 
processing, according to manual classification (A, B, and C) and shell type (white 
and brown).

Translucency (Score) Shell Percentage transluscency (%)

Mean Std. Dev. Min Max

A White 3.2122 0.8937 1.4504 4.9102
Brown 2.9908 1.1129 0.6379 8.6023

B White 5.6861 0.9944 3.5400 8.6368
Brown 5.8279 1.0262 3.1470 9.4947

C White 10.1386 1.8971 7.4208 13.9067
Brown 12.2099 4.5054 7.0698 25.5183
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Fig. 2). In this scenario, the algorithm underestimated the translucent 
area, since a significant portion of the egg’s interior was interpreted as 
background, reducing the region considered in the analysis. To address 
these errors, it is recommended to evaluate alternative thresholding 
methods, such as adaptive thresholding techniques that dynamically 
adjust to variations in lighting and contrast. Furthermore, the algorithm 
should be revised to handle anomalous cases more effectively, such as 
rotten or fertile eggs, by incorporating anomaly detection mechanisms 
or specialized pre-processing steps for such conditions.

These case analyses complement the broader findings of this study, 
which align closely with prior research on quantitative translucency 
assessment. Wang et al. (2019) proposed a grayscale recognition method 
combined with colorimetry, identifying relative translucent area values 
(RSS) ranging from approximately 1.3 % to 11.9 % across different 
translucency levels. Similarly, our results showed increasing percentage 
translucency values from Class A to Class C, with averages and disper
sion patterns that reflect progressive intensities of the phenomenon, 
especially in brown-shelled eggs. While the grayscale and colorimetric 

Table 2 
Performance of translucency classification models based on automated measures (numerical translucency).

Model Overall Accuracy Precision Recall F1-Score

A B C A B C A B C

KNN 0.8889 0.914 0.903 0.667 0.970 0.848 0.667 0.941 0.875 0.667
SVM 0.9306 1.000 0.912 0.667 0.969 0.939 0.667 0.985 0.925 0.667
Random Forest 0.9143 0.914 0.867 0.857 0.941 0.897 0.667 0.927 0.882 0.750

Fig. 2. Steps of the digital processing of a white eggshell sample (A) and a red eggshell sample (B). 1: original RGB image; 2: image with the R channel; 3: segmented 
image of the eggs; 4: segmented image of the imperfections; 5: original image overlaid with imperfections (in blue).

Fig. 3. Boxplots of translucency metrics by visual class (A, B, and C).
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techniques introduced by Wang et al. (2019) provided an important 
foundation for quantifying translucency with greater objectivity, the 
present study builds upon these advances by implementing a fully 
automated workflow. In particular, the use of red-channel segmentation 
and morphological analysis offers a simplified and scalable alternative 
that retains strong correspondence with manual classification. Com
plementary to this, Wang et al. (2020) demonstrated the feasibility of 
using machine vision to detect and quantify dark spots related to 
translucency through techniques such as K-means clustering and un
sharp masking. Their system achieved high processing speeds and ac
curacy, reinforcing the potential of automated approaches. The 
methodology proposed here aligns with that objective, offering a robust 
and flexible pipeline that can also be integrated with machine learning 
models and extended to investigate correlations with internal quality 
parameters, expanding the practical applications of automated trans
lucency analysis in egg grading systems.

Although the proposed image acquisition setup, which was con
ducted in a controlled dark environment with fixed lighting and posi
tioning, ensured high consistency and image quality, its direct 
implementation in commercial production lines may be challenging. 
Real-world environments are subject to variations in lighting, vibration, 
egg positioning, and equipment constraints. To facilitate deployment in 
industrial settings, future adaptations should consider integrating the 
system into existing candling or grading stations, using enclosed imag
ing chambers with diffuse LED lighting and mechanical guides to stan
dardize egg orientation. Additionally, real-time calibration algorithms 
and adaptive segmentation techniques could be employed to compen
sate for environmental variability, enabling robust performance without 
requiring fully controlled conditions.

Can translucency predict other qualitative parameters?

The correlation matrix analysis (Table 3) revealed that relative shell 
translucency exhibited weak to moderate positive associations with a 
few variables, most notably average shell thickness (correlation coeffi
cient = 0.258) and shell weight (r = 0.192). These findings suggest that 
eggs with thicker or heavier shells may tend to show higher translucency 
values, potentially due to structural or compositional differences. This 
may be explained by the multifactorial nature of translucency, which is 
influenced not only by one specific shell characteristic but also by in
ternal microstructural features and membrane properties not captured 
in this study. However, since no hypothesis testing was conducted, these 
coefficients should be interpreted as descriptive indicators of monotonic 
relationships, rather than statistically significant parameters.

This result partially corroborates the findings of Wang et al. (2017), 
who observed that translucent eggs had significantly thicker shells than 
opaque ones, especially in brown-egg laying hen lines. Furthermore, in 
the same study, the shell membrane thickness was significantly lower in 
translucent eggs, which may indicate a microstructural reorganization 
responsible for the formation of translucent areas in the shell. Orellana 
et al. (2023) also reported a positive association between translucency 
and shell thickness in fertile eggs from broiler breeder hens. Eggs with 
high translucency exhibited significantly thicker shells compared to less 
translucent eggs (P < 0.0001). However, the initial egg weight (prior to 
incubation) did not differ significantly among the different translucency 
levels. Although the genetic lines and purposes of the eggs used in those 
studies differ from the present work, the results offer relevant in
dications. This reinforces the need for further investigation into the 
relationship between translucency and other egg quality parameters.

Table 4, in turn, presents the performance metrics of two predictive 
models for estimating shell thickness and shell weight — variables 
selected based on the correlation analysis. The predictive variables 

Fig. 4. Sample images of red-shelled eggs. The values in the top right corner indicate the percentage translucency (%); green values represent correct classification by 
the automatic method compared to the manual method, while red values indicate disagreement between the two methods tested. Image A was classified as Class A 
(low translucency); images B, D, and E were classified as Class B; and image C was classified as Class C (high translucency).

Table 3 
Spearman correlation matrix between relative shell translucency (T) and morphometric and qualitative egg variables.

T TW EH EW IW YC YD AH YH SW YI HU ST

T 1.000 0.069 0.037 0.015 0.049 -0.031 -0.048 0.135 0.057 0.192 0.064 0.103 0.258
TW ​ 1.000 0.835 0.883 0.972 -0.126 0.678 -0.048 0.011 0.665 -0.367 -0.296 0.115
EH ​ ​ 1.000 0.628 0.803 -0.146 0.645 -0.094 -0.065 0.596 -0.398 -0.302 0.019
EW ​ ​ ​ 1.000 0.873 -0.047 0.630 -0.090 -0.054 0.589 -0.394 -0.311 0.094
IW ​ ​ ​ ​ 1.000 -0.096 0.653 -0.003 0.032 0.522 -0.340 -0.248 0.041
YC ​ ​ ​ ​ ​ 1.000 -0.018 -0.208 -0.395 -0.015 -0.237 -0.174 -0.021
YD ​ ​ ​ ​ ​ ​ 1.000 -0.147 -0.297 0.510 -0.739 -0.319 0.221
AH ​ ​ ​ ​ ​ ​ ​ 1.000 0.366 -0.141 0.328 0.9618 0.058
YH ​ ​ ​ ​ ​ ​ ​ ​ 1.000 -0.039 0.838 0.346 -0.061
SW ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.000 -0.305 -0.305 0.400
YI ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.000 0.411 -0.157
HU ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.000 0.022
ST ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.000

Notes: T – Relative translucency; TW – Total weight; EH – Egg height; EW – Egg width; IW – Internal weight; YC – Yolk color; YD – Yolk diameter; AH – Albumen height; 
YH – Yolk height; SW – Shell weight; YI – Yolk index; HU – Haugh unit; ST – Average shell thickness.
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focused on non-invasive parameters: relative translucency, total weight, 
egg height, and egg width.

In the analysis of the shell thickness variable, the results indicate that 
the Multiple Linear Regression model obtained an R² of 0.122, sug
gesting a limited capacity to explain the variability of shell thickness 
based on the chosen predictor variables. This is reinforced by the mean 
error value, which was 0.048, indicating that the model has a relatively 
high average prediction error.

In comparison, the Artificial Neural Network (Deep Learning) model 
showed slightly better performance, with an R² of 0.192, indicating a 
greater capacity to explain shell thickness variability. The root mean 
square error for the ANN was 0.070, significantly lower than the value 
obtained by linear regression, indicating that the ANN is more efficient 
in terms of prediction error. Although the regression sum of squares is 
higher for the ANN, the model still presents a lower sum of squared 
errors, suggesting that the ANN is more effective at minimizing pre
diction error.

For the shell weight variable, the models’ performance was more 
consistent. Multiple Linear Regression obtained an R² of 0.354, reflect
ing a more significant explanation of the variability of shell weight 
compared to the shell thickness model. However, the mean error was 
0.632, indicating that despite reasonable variability explanation, the 
model still presents considerable error in predicting shell weight values.

The ANN (Deep Learning) outperformed Multiple Linear Regression, 
with an R² of 0.463, demonstrating a substantial improvement in model 
explanatory power. Additionally, the ANN’s RMSE of 0.954 was lower 
than that of linear regression, suggesting that the neural network model 
had a more robust performance in predicting shell weight. The RSS and 
SSE values for the ANN also indicate that the neural network model is 
more effective in minimizing both explained variability and prediction 
error, with an TSS of 448.94 compared to 488.94 for the linear regres
sion model.

Therefore, eggshell translucency stands out as a unique attribute 
with its own characteristics that provide valuable information about egg 
quality. It is important to note that translucent regions may arise from a 
range of underlying causes, including uneven shell thickness, localized 
pigment concentration, differences in mineralization, or membrane 
structure, rather than exclusively from defects such as pores or micro
cracks. Thus, translucency should be understood as an optical manifes
tation of multiple shell characteristics.

However, although it is a relevant variable by itself, the use of 
translucency to directly estimate other parameters, such as shell thick
ness or shell weight, is not recommended. This is because translucency, 
despite being correlated with certain aspects of egg quality, does not 
directly reflect all involved variables, such as the physical shell structure 
or internal egg composition, which are determined by distinct biological 
processes. Moreover, relying on predictive models to estimate these 
parameters based on translucency may lead to a loss of precision, since 
other invasive variables (such as actual shell thickness) provide more 
direct and reliable data. Thus, the recommendation of this article is that 
translucency should be valued as a complementary, not substitutive, 

measure for comprehensive egg quality assessment.

Limitations and future research

Despite the positive results obtained in this study, some limitations 
must be considered to ensure the applicability and generalization of the 
automated eggshell translucency analysis system in real-world produc
tion contexts.

Firstly, although the sample included eggs with different shell types, 
production systems, and weight ranges, it remains limited by unknown 
factors such as hen lineage, age, and feeding management. Literature 
indicates that genetics, nutrition, and layer age strongly influence the 
morphometric properties of the shell, including its thickness, strength, 
and permeability (Abdelqader et al., 2013; Elnesr et al., 2024; Santos 
et al., 2024). Therefore, future research should expand the dataset both 
qualitatively and quantitatively to include eggs from broiler breeders, 
alternative breeds, and different laying stages, aiming to develop more 
robust and generalizable models.

Moreover, the image acquisition in this study was conducted under 
controlled conditions, with no ambient light interference and using 
standardized equipment, which favored consistency in digital process
ing. However, such conditions are rarely replicated in commercial en
vironments, such as automated farms or egg grading units, where light 
variability, motion, and egg positioning can compromise the system’s 
accuracy (Ahmed et al., 2023; Wu et al., 2025). Thus, validation of the 
method under real operational conditions is recommended, along with 
technical adaptations to handle noise and visual interference commonly 
found in such settings. In future developments, the evaluation of adap
tive or hybrid thresholding techniques may also prove beneficial to 
enhance the robustness of the segmentation process under variable 
lighting conditions.

Another critical issue lies in the reliance on manual labeling for 
training supervised models. While visual classification of translucency is 
widely used, it carries a degree of subjectivity—particularly in inter
mediate categories—that may affect the quality of training data 
(Orellana et al., 2023; Wang et al., 2019). Future studies could adopt 
semi-supervised or active learning strategies to reduce the need for 
continuous human labeling and make the models more adaptive to new 
usage conditions, as suggested by the methodologies presented by Ouali 
et al. (2020).

From a technical standpoint, the predictive models used in this study 
showed only moderate performance in estimating variables such as shell 
thickness and shell weight, with relatively low coefficients of determi
nation (R² < 0.5). This indicates that, although translucency is associ
ated with structural aspects of the shell, it does not fully replace 
intrusive measurements, as it reflects an optical phenomenon and does 
not directly measure attributes such as mineral composition or crystal
line structure. Therefore, its application should be considered a com
plementary quality indicator, rather than a direct substitute for more 
specific structural variables.

In conclusion, the automated system developed represents a signif
icant innovation in egg quality assessment, but it requires further vali
dation and technological refinement to be established as a practical and 
reliable tool within the poultry production chain.

Conclusion

This study demonstrated that the application of computer vision and 
machine learning can serve as a viable, objective, and non-destructive 
alternative for analyzing eggshell translucency, showing a high degree 
of agreement with traditional visual evaluation. The proposed system 
was able to accurately quantify translucent regions and classify them 
with high performance, especially through the SVM model, which ach
ieved an accuracy above 90 %. Although the regression models indicated 
moderate correlations between translucency and intrusive variables 
such as shell thickness and shell weight, the results suggest that 

Table 4 
Average performance of regression models.

Models R² ME RMSE RSS SSE TSS

Target variable: Shell Thickness
Multiple Linear 

Regression
0.122 0.048 0.219 0.216 1.548 1.765

ANN (Deep Learning) 0.192 -0.019 0.070 0.294 1.426 1.765
Target variable: Shell Weight
Multiple Linear 

Regression
0.354 0.632 0.795 173.18 315.76 488.94

ANN (Deep Learning) 0.463 -0.093 0.954 262.36 170.34 448.94

Notes: R² - coefficient of determination; ME - mean error; RMSE - root mean 
square error; RSS - regression sum of squares; SSE - sum of squared errors; TSS - 
total sum of squares.
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translucency should be treated as a complementary rather than a sub
stitutive parameter. The approach presented is promising for modern
izing quality control processes in the poultry production chain, 
contributing to automation, standardization, and increased operational 
efficiency. Finally, further studies are recommended with a more diverse 
sample set and under real-world production conditions in order to 
consolidate its use on a commercial scale.
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