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Eggshell quality is a determining factor in food safety, production efficiency, and the commercial acceptance of
eggs. This study proposed the development and validation of an automated system for measuring eggshell
translucency using computer vision and machine learning. A total of 326 commercial eggs from different pro-
duction systems, with white and brown shells, were analyzed. Images were captured in a controlled environment
and digitally processed to extract quantitative translucency measurements. The obtained values were compared
with traditional visual classification and used in supervised classification models (KNN, SVM, and Random
Forest). The SVM model showed the best performance, with accuracy exceeding 90 % in distinguishing trans-
lucency levels. Additionally, predictive models (Multiple Linear Regression and SVM) were tested to estimate
intrusive variables based on translucency, revealing moderate correlations, particularly with shell thickness and
shell weight. It is concluded that translucency can be accurately quantified through automated techniques, with
potential application in the screening and quality control of commercial eggs, although it should be used as a
complementary indicator alongside other technical parameters.

Introduction

Evaluation of egg quality is a crucial process in the poultry produc-
tion chain, directly impacting commercialization, consumer acceptance,
and food safety. Qualitative aspects such as shell thickness and strength,
as well as size, weight, integrity, and internal composition, are key to
ensuring the quality of the final product (Okinda, 2020; Roberts, 2004;
Wengerska et al., 2023), whether it be a table egg (infertile) or a day-old
chick (fertile egg). Moreover, egg quality influences production effi-
ciency, as structural defects can lead to significant economic losses and
indicate the need for adjustments in the management of laying hen
farms (Ledvinka et al., 2012). Therefore, the adoption of precise and
efficient methods to assess these characteristics is essential to meet
market quality standards and health regulations (Atwa et al., 2024).

Traditionally, egg quality assessment involves intrusive measure-
ments that may compromise the integrity of the product and lead to
waste, rendering the analyzed eggs unsuitable for consumption or in-
cubation. In this context, eggshell translucency has emerged as a
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potential variable gaining prominence in research on the quality of
commercial eggs (Xuan & Zheng, 2024). This characteristic provides
relevant information about shell composition and integrity, as its ability
to transmit light may be associated with shell thickness and potential
microstructural deformations, directly influencing egg strength and
durability (Shi et al., 2023). Wang et al. (2017), for example, suggest
that the formation of translucent eggs is related to variations in shell and
membrane structure, with translucent eggs presenting thicker shells,
thinner membranes, and lower final membrane resistance compared to
opaque eggs.

Including translucency as a new parameter in egg quality evaluation
opens new research possibilities for optimizing the production chain.
Chousalkar et al. (2010) demonstrated that eggshell translucency is
associated with a higher risk of bacterial penetration, including Sal-
monella Infantis and E. coli, especially at room temperature, high-
lighting the importance of refrigerated storage to minimize
contamination. In the field of genetics, Zhang et al. (2021) analyzed
shell translucency in different chicken breeds, identifying variations in
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the intensity of this phenomenon among purebred, commercial, and
local lines. In the context of commercial incubation, Neto et al. (2024)
found that highly translucent eggs exhibited greater weight loss, lower
hatchability, and higher embryonic mortality between days 11 and 18 of
incubation.

Traditional methods for assessing shell translucency include visual
inspection using dark environments and controlled lighting (Neto et al.,
2024; Orellana et al., 2023). Modern and validated methodologies allow
for classification of eggs into three translucency levels: 1) mild (few and
small translucent spots on the shell); 2) moderate (translucent spots
more evenly distributed across the shell); and 3) severe (presence of
multiple spots and even large translucent areas across the entire shell).
Although functional, such methodology still requires time and human
expertise for accurate classification.

In addition to the adoption of new variables, such as translucency,
the ongoing pursuit of greater efficiency and quality in poultry farming
has led to the incorporation of innovative technologies in the sector.
Technologies such as system automation, artificial intelligence, and
precision livestock farming have been widely studied to enhance egg
production and make processes more efficient (Narushin et al., 2025;
Ren et al., 2020; Yang et al., 2024). Among these innovations, the use of
computer vision and digital image processing stands out as a promising
alternative for non-invasive egg quality assessment, enabling the auto-
mated measurement of important variables such as width and length
(Aragua & Mabayo, 2018; Abd Aziz et al., 2020), estimation of volume
and weight (Nyalala et al., 2021; Okinda, 2020), defect identification
(Yang et al., 2023), and fertility (Ahmed et al., 2025; Cevik et al., 2022).

Furthermore, machine learning techniques have already been
established as powerful tools for assessing egg quality. Machine learning
algorithms enable the analysis of large datasets throughout the entire
production chain, from bird nutrition to egg processing, allowing the
identification of complex patterns that might go unnoticed with con-
ventional methods (Bischof et al., 2024; Subramani et al., 2025). In
quality control, for example, Sehirli and Arslan (2022) applied machine
learning techniques to classify commercial eggs based on the Haugh
unit. Similarly, Oliveira-Boreli et al. (2023) investigated the combina-
tion of image analysis and machine learning to validate the use of the
Shape Index as a non-destructive method for classifying chicken egg
quality.

Given this context, different approaches have been proposed to
quantify eggshell translucency more objectively. Wang et al. (2019)
developed a system based on grayscale recognition and colorimetry,
allowing the extraction of variables such as the number, diameter, and
average area of translucent spots. More recently, Wang et al. (2020)
presented an automated computer vision system capable of detecting
dark spots on the shell using techniques such as K-means clustering and
unsharp masking enhancement, achieving high processing speed (0.5 s
per image) and segmentation accuracy. Despite this technical advance-
ment, the study focuses exclusively on the superficial quantification of
spots, without considering correlations with other morphological traits
or internal egg quality parameters.

By combining two emerging themes in the evaluation of commercial
and fertile egg quality - translucency as a qualitative indicator and
process automation through computer vision - this study proposes the
development of an automated system for measuring egg translucency
using image processing and machine learning. Additionally, the study
aimed to correlate translucency with other quality parameters, enabling
more accurate and reproducible analyses.

Material and methods
Experimental samples
For this study, a total of 326 commercial eggs were analyzed,

comprising 162 brown-shelled and 164 white-shelled eggs. To ensure
greater morphological diversity in the sample set, the eggs were sourced
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from nine different brands, representing three production systems:
conventional (caged), free-range, and cage-free. Additionally, the eggs
were commercially classified into three weight categories: large, extra,
and jumbo. The storage time of the samples ranged from 5 to 19 days,
taking the day of evaluation as the reference point. At the beginning of
the experimental phase, each egg was properly labeled and subjected to
all automated (section 2.2) and manual (section 2.3) tests described in
this article.

Automated metrics

Image Database. The experiment was conducted in a climate-
controlled chamber at the Department of Biosystems Engineering,
"Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Brazil.
This environment was chosen and conFig.d to prevent any light input,
whether external (absence of windows) or internal (0 lux illumination).
Image acquisition took place from early to mid-October 2024. Since the
chamber offers controlled lighting and temperature, images were
collected throughout the day without time restrictions or influence from
external conditions.

The system developed for image capture aimed to record the full
structure of each egg, providing a perspective similar to that used in
conventional translucency assessment (Orellana et al., 2023). Image
capture was performed using two main components: a digital camera
and a standardized light source. For this purpose, a smartphone (iPhone
13, Apple Inc., United States) equipped with a 12-megapixel camera,
conFig.d with wide-angle and ultra-wide-angle lenses, was used. To
ensure stability, the device was mounted on a platform with vertical
angle adjustment.

A commercial candling device (Chocmaster, Brazil) equipped with a
white-toned LED light was used as the light source. The standard ring
size recommended for chicken eggs, as indicated by the manufacturer,
was used. Although precise light intensity values were not recorded,
preliminary tests indicated that this setting provided sufficient contrast
between the egg and the background, consistent with approaches vali-
dated in previous studies (Alikhanov et al., 2018; Dal’Alba et al., 2020;
Sokovnin, 2021; Wang et al., 2019).

In total, 326 images were recorded, corresponding to each egg in the
experimental sample. This sample size aligns with previous studies on
image processing applied to eggs (Alikhanov et al., 2018; Ab Nasir et al.,
2018; Soltani et al., 2015). All images were stored and cataloged in a
cloud-based database for further analysis. The images had dimensions of
3024 x 4032 pixels, portrait orientation, and were saved in JPG format
to optimize computational processing.

Model Development. The translucency of the eggshell was calculated
through a digital image processing procedure aimed at non-
destructively quantifying the proportion of more translucent regions
visible under controlled lighting. The algorithm was developed using
MATLAB® (version R2022b, United States), employing image segmen-
tation and morphological analysis functions. The system was designed
based on the fundamental principles of computer vision systems
(Alikhanov et al., 2018; Aziz et al., 2020; Nyalala et al.,, 2021),
encompassing stages such as digital image preprocessing, identification
and isolation of regions of interest, and subsequent extraction of rele-
vant features (Fig. 1).

Initially, the color image of the egg was converted into a mono-
chromatic image by extracting the red channel from the RGB composi-
tion. This choice was based on a qualitative analysis of the acquired
images, which revealed greater contrast between the shell and pores in
the red channel under backlighting. Converting the image to grayscale
simplified the segmentation process, as the light intensity could then be
directly manipulated to distinguish regions with different optical prop-
erties (Gonzalez & Woods, 2010).

From this grayscale image, the total area of the egg was segmented
using a light intensity threshold. Although adaptive thresholding
methods were initially tested, the imaging setup provided a controlled
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Image acquisition

Digital image processing
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Segmentation Feature extraction

326 colorful
images of eggs

Conversion to red channel
Morphological operations

Colors:
White and Brown

Production systems:
conventional,
pasture-raised
and free-range

Storage date:
5to 19 days

Segmented object: egg

Evaluated methods: Total Area

global thresholding

Segmented object: translucency

Evaluated methods: Translucency Area

global thresholding

Relative translucency:
Atranslucency / Atotal

Percentage translucency:
Atranslucency * 100 / Atotal

Fig. 1. Flowchart of the automated system for eggshell translucency extraction and calculation.

environment with no variation in lighting, background, or egg posi-
tioning; therefore, global thresholding was adopted for its simplicity and
reliable performance under these conditions. The threshold values used
for image segmentation were determined empirically through pre-
liminary testing and visual validation. This process involved analyzing a
representative subset of images with varying degrees of translucency
and manually adjusting the threshold values to maximize the contrast
between translucent regions and the surrounding shell. Thresholds were
selected based on their ability to consistently isolate regions of interest
across samples without including background noise or excluding rele-
vant areas.

In this step, all pixels with intensity values above 0.51 (on a
normalized scale from O to 1) were considered part of the object of
interest—the egg—while all others were classified as background. The
same thresholds were applied for both brown and white eggshells. The
resulting binary image was then processed with a region-filling algo-
rithm based on neighborhood connectivity to ensure the integrity of the
segmented objects. This correction was essential to eliminate thresh-
olding artifacts and ensure that the computed area accurately repre-
sented the entire egg structure (Grift et al., 2017). With the corrected
binary mask, the total egg area, Ayal, Was estimated by counting the
number of pixels classified as part of the object.

The identification of translucent regions—presumably associated
with pores or structural imperfections in the shell—was carried out
through a second segmentation step with a higher threshold. From the
same grayscale image, a threshold of 0.91 (white-shelled eggs) and 0.88
(brown-shelled eggs) was applied, based on preliminary tests and visual
observation, to highlight only the pixels with high light intensity, i.e.,
those that allowed greater light transmission. Pixels with intensity above
this threshold were considered part of the translucent regions and were
used to calculate the translucent area, Atranslucency-

Based on these two extracted areas, the relative translucency (T,) was
defined as the ratio between the area of the translucent regions and the
total egg area, as shown in Equation 1:

Almnslucency

T, =
Atutal

(Eq.- 1)
Additionally, this value was converted into a percentage, resulting in
the percent translucency (To,), as shown in Equation 2:

Atranxlucency * 100

T% -
A total

(Eq. 2)

For visual validation and qualitative analysis, an overlay image was
generated by combining the original egg image with the binary mask of
the translucent regions, with those areas highlighted in artificial color.
This visualization step allowed verification of whether the segmentation
effectively corresponded to the regions perceived as translucent in the
original image, as recommended in morphological analysis systems for
segmentation validation (Gonzalez & Woods, 2010).

Automated metrics

To evaluate the qualitative aspects of the experimental eggs, the
measured variables were categorized into two groups. Non-invasive
measurements (collected before breaking the eggs): weight (g),
maximum egg length (mm), maximum egg width (mm), translucency
(score). Invasive measurements (collected after breaking the eggs):
liquid weight (g), shell weight (g), yolk color (score), yolk diameter
(mm), yolk height (mm), albumen height (mm), shell thickness (mm).

The total egg weight, liquid weight, and shell weight were measured
using a precision electronic balance (Gehaka, model BG 2000, Brazil),
factory-calibrated. The maximum egg length, maximum width, albumen
height, and yolk diameter and height were measured using a high-
precision digital caliper (Digimess, model 100.174BL, Brazil). During
the measurements, the eggs and internal contents were placed on a flat
surface to avoid distortion due to tilt. Weight and size measurements
followed standard methodologies presented in previous studies
(Almeida et al., 2021; Nyalala et al., 2021).

Yolk color was manually evaluated using the YolkFan™ colorimetric
scale (dsm-firmenich), which classifies yolk color on a scale from 1 (light
yellow) to 16 (deep orange). This is a widely accepted method for yolk
color characterization and is strongly correlated with the carotenoid
content in the hens’ diet (Ortiz et al., 2021).

Shell translucency was also visually assessed under standardized
lighting in a low-light environment. The evaluation followed the pro-
tocol described by Orellana et al. (2023), in which eggs are classified
into three categories (A, B, and C) based on the presence, size, and
distribution of translucent or mottled regions on the shell surface. To
minimize subjectivity and ensure consistency, a preliminary calibration
session was conducted with an expert in egg quality evaluation, and the
classification strictly adhered to the sample illustrations provided in the
original protocol (Orellana et al., 2023).

To ensure accurate shell thickness measurements, a preparation
protocol was adopted based on the methodology adapted from Carter
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(1968). First, the eggshells were carefully washed under running water
to remove internal residues. The samples were then air-dried at room
temperature (~25°C) for 48 hours in a protected environment. After
complete drying, shell thickness was measured using a high-precision
digital micrometer (Dasqua, model 417.0028, Brazil) with 0.001 mm
resolution. For greater reliability, three measurements were taken in
different regions of the egg — the broad end, narrow end, and equatorial
region — and the average of these values was considered the repre-
sentative thickness of the sample.

Based on the collected data, the yolk index (YI) was calculated using
Equation 3, and the Haugh Unit (HU) using Equation 4:

Yolk Height
Yl = ——2 Eq.
Yolk Diameter (Eq. 3)
HU = 100 xlog(Albumen Height — 1,7 « (Egg Weight °*7)+7,6)
(Eq- 9

Validation and classification

This study aimed to address two main questions regarding the
analysis of eggshell translucency: (1) Can translucency be automated
and measured quantitatively? and (2) Can translucency replace vari-
ables traditionally measured through invasive methods? To investigate
these questions, a two-step methodological approach was adopted. First,
a comparison was conducted between the visual (manual) classification
of translucency and its numerical versions extracted through digital
image processing. Next, the potential of translucency measurements to
serve as substitutes for invasive variables was assessed.

Automated Quantification of Translucency. The first step consisted
of assessing the feasibility of quantitatively and automatically
measuring eggshell translucency. For this purpose, the visual classifi-
cation of eggs into three categories (A, B, and C), based on the presence
and distribution of spots on the shell, was compared with values ob-
tained from two numerical metrics: relative translucency and percent-
age translucency.

Initially, an exploratory data analysis was performed to visualize the
distribution of numerical translucency measurements within each
manual category. This visualization allowed for the identification of
overlaps, central tendencies, and dispersions associated with each group
— a fundamental step to evaluate class separability.

Subsequently, supervised classification models were applied to pre-
dict the visual class (A, B, or C) based on the numerical measurements.
The input variables (features) were the translucency measures, while the
target variable was the manual classification. The models employed
were: K-Nearest Neighbors (KNN); Support Vector Machine (SVM); and
Random Forest. All tests and statistical analyses were conducted using
the R language via RStudio version 2024.12.1+563. For all tests, the
dataset was randomly and representatively split into training (75 %) and
testing (25 %) sets. To preserve the original class distribution during
model training and evaluation, the dataset was split into training and
testing subsets using stratified random sampling.

The K-Nearest Neighbors (KNN) method was implemented with k =
5, meaning the algorithm classified a new observation based on the
majority labels among its five nearest neighbors, calculated using
Euclidean distance in the translucency variable space (Henderi et al.,
2021). Prior to model application, the numerical variables were stan-
dardized (mean zero and standard deviation one) to ensure equal
contribution to the distance calculation.

The Support Vector Machine (SVM) method was used as a model
aiming to find optimal hyperplanes separating classes in the trans-
lucency variable space, even in high-dimensional contexts. Initially, the
numerical variables were standardized to ensure comparability and
good algorithm performance. The target variable, representing the vi-
sual classification of samples, was converted to a factor type with levels
"A", "B", and "C", preparing the dataset for classification. The classifier
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was conFig.d as "C-classification" with a "linear" kernel, aiming to
maximize the margin between class boundaries.

The Random Forest model is an ensemble learning algorithm that
combines results from multiple decision trees built on random samples
of data and predictor variables, promoting greater stability and pre-
dictive accuracy (Parmar et al., 2018). Here, the target variable was also
treated as a factor, a necessary condition for classification tasks. The
classifier was trained with 10 trees using the standardized numerical
translucency variables as predictors.

Model performance was evaluated and compared based on confusion
matrices and classification performance metrics. In this study, the
following metrics were considered: accuracy, precision, recall, and F1-
score, which together provide a comprehensive view of each model’s
predictive quality.

Replacement of Intrusive Variables. The second stage of data anal-
ysis aimed to investigate whether translucency measurements, obtained
non-invasively, could replace variables traditionally collected through
intrusive methods, such as shell thickness, yolk height, albumen height,
and shell weight. This analysis was conducted in two complementary
approaches: identifying the relevance of translucency via Principal
Component Analysis (PCA) and building regression models to predict
intrusive variables solely based on non-intrusive features. Again, all
analyses were performed using the R language in version
2024.12.1+563 of RStudio.

In the first approach, the correlation matrix among the dataset var-
iables was analyzed to identify potential associations between non-
invasively obtained features—such as percentage translucency—and
traditionally measured intrusive variables, including shell thickness,
shell weight, albumen height, and yolk height. Spearman’s correlation
coefficient was employed for this analysis, a non-parametric measure
that assesses monotonic relationships even in the absence of strict
linearity between variables (Song et al., 2022).

The second approach consisted of constructing predictive models
using supervised regression algorithms. The objective was to verify
whether it is possible to predict quantitative variables based on trans-
lucency measures, specifically percentage translucency.

Two distinct models were utilized. The first was Multiple Linear
Regression, which seeks to establish a linear relationship between pre-
dictor variables and the response variable (Uyanik & Guler, 2013). The
second model used was the Support Vector Machine (SVM) algorithm in
regression mode (epsilon-regression) with a radial kernel function,
enabling the capture of nonlinear relationships between variables
(Parreno & Anter, 2024). The model was trained with all available data,
and predictions were generated from the non-invasive variables.

Both models were evaluated and compared based on performance
metrics: R? (coefficient of determination); ME (mean error); RMSE (root
mean square error); SSR (sum of squares due to regression); SSE (sum of
squared errors); and SST (total sum of squares). The comparison of
model performances allowed identification of whether including trans-
lucency significantly improves predictive capability, providing evidence
that this variable can, in fact, replace or complement intrusive
measurements.

Results and discussion
Digital processing

Fig. 3 illustrates the main steps of the digital processing applied to
the images of white (A) and red (B) eggshells, visually highlighting the
transformation flow from the original image to the final segmentation of
the regions of interest.

Initially, the process started from a color image in RGB format
(Fig. 2.1), acquired through a standardized capture system. To facilitate
segmentation and reduce computational complexity, the image was
decomposed into its three basic channels (red, green, and blue), and only
the red channel (R) was used, as illustrated in Fig. 2.2. The choice of the
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R channel is justified by its ability to maximize the contrast between the
egg and the dark background, favoring the separation of the object of
interest — the egg — from external elements and visual artifacts. This
approach is frequently reported in the literature as an effective tech-
nique in image analysis contexts with controlled artificial lighting
(Gonzalez & Woods, 2010).

Next, a thresholding step was applied, converting the intensity ma-
trix into a binary image based on a predefined threshold value. This
thresholding allowed isolating the complete contour of the egg
(Fig. 2.3), classifying it as the main region of interest in the image. The
appropriate selection of the threshold value was essential to avoid both
the inclusion of unwanted noise and the exclusion of significant parts of
the shell, especially in cases with shadows or non-uniform lighting. As
noted by Wang et al. (2020), the segmentation effectiveness is directly
related to the precise choice of the intensity threshold.

To isolate the areas of higher translucency — interpreted as imper-
fections in the shell structure — a more restrictive thresholding was
applied, resulting in the identification of regions with higher luminance
intensity in the red channel. These regions are shown in Fig. 2.4. In both
shell types, the method proved sensitive to the presence of these struc-
tural variations.

After segmenting the imperfections, the extracted regions were
overlaid onto the original image, resulting in a visual fusion that allowed
qualitative inspection of the algorithm’s performance. In Fig. 2.5, the
imperfections are highlighted in blue over the original egg image,
showing the correspondence between the segmented regions and the
points of higher translucency detected.

This process enabled the extraction of morphometric attributes such
as the total shell area and the area corresponding to the translucent
regions. Using these data, it was possible to calculate the relative and
percentage proportion of translucency concerning the total egg area,
providing a novel and objective metric for the quantitative analysis of
shell quality.

Can translucency be automated and measured quantitatively?

Table 1 presents descriptive statistics of the percentage translucency
values (%) calculated per image, segmented by manual translucency
categories (A, B, and C) and shell type (white and brown). In class A,
representing eggs with low translucency, the mean percentage trans-
lucency values are the lowest in the dataset, with 3.21 % for white eggs
and 2.99 % for brown eggs. Maximum values remain below 9 %, and
standard deviations are relatively low, indicating uniformity within
samples of this class.

In class B, there is a noticeable increase in mean values, with 5.69 %
and 5.83 % for white and brown shells, respectively. Standard de-
viations remain around 1 %, suggesting that class B has greater vari-
ability than class A but still presents a relatively compact distribution. In
class C, there is a marked increase in average translucency, especially for
brown eggs, reaching 12.21 %, compared to 10.14 % for white eggs. The
standard deviation for brown eggs (4.51 %) indicates a wide dispersion,
also reflected in the maximum translucency value (25.52 %). This higher

Table 1

Descriptive statistics of percentage translucency (%) obtained by digital image
processing, according to manual classification (A, B, and C) and shell type (white
and brown).

Translucency (Score) Shell Percentage transluscency (%)
Mean Std. Dev. Min Max
A White 3.2122 0.8937 1.4504 4.9102
Brown 2.9908 1.1129 0.6379 8.6023
B White 5.6861 0.9944 3.5400 8.6368
Brown 5.8279 1.0262 3.1470 9.4947
C White 10.1386 1.8971 7.4208 13.9067
Brown 12.2099 4.5054 7.0698 25.5183
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variability may be explained by more pronounced differences in shell
structure or by greater sensitivity of the automated technique in
capturing subtle variations in eggs with high translucency.

Fig. 3 shows a boxplot comparing the percentage translucency values
automatically calculated from images with the manually assigned
translucency categories (A, B, and C) for white and brown eggs. Sup-
porting the results presented in Table 1, there is a clear trend of
increasing translucency (%) as the manual classification progresses from
A to C, suggesting good correspondence between the visual scores and
the values obtained through digital image processing.

In class A, representing eggs with the lowest visual translucency,
percentage values remain concentrated below 5 %, with little variation
between white and brown eggs. In class B, translucency values increase,
with a median around 5 to 6 %, remaining relatively consistent across
the two shell types. The largest difference appears in class C, where there
is greater data dispersion and both mean and maximum translucency
values increase significantly, surpassing 10 % in both groups and
reaching nearly 20 % in brown eggs, with an outlier close to 26 %.

The consistent increasing trend and the spacing between quartiles
reinforce the validity of the automated methodology to quantify
eggshell translucency. Additionally, the similarity in behavior between
white and brown eggs indicates that the automated classification is
robust to variation in shell pigmentation.

Given these promising exploratory analysis results, Table 2 presents
a comparison of the KNN, SVM, and Random Forest models regarding
their performance in classifying eggshell translucency. Overall, the
Support Vector Machines (SVM) model showed the best performance,
achieving the highest overall accuracy (93.06 %) and the best F1-scores
for classes A and B, demonstrating a balance between precision and
recall. The perfect precision (1.000) of SVM for class A is notable,
indicating that the model made no false positives in this category during
testing.

The Random Forest model also showed robust results, with an overall
accuracy of 91.43 % and competitive performance across the three
classes. Although slightly behind the SVM in classes A and B, Random
Forest achieved the highest F1-score for class C (0.750), suggesting an
advantage in correctly identifying eggs classified with higher trans-
lucency. This result is especially relevant since class C generally tends to
present greater data variability and lower relative frequency, which can
challenge its correct classification.

The KNN model presented the lowest performance among the three,
with overall accuracy of 88.89 % and lower F1-scores across the classes,
especially in class C (0.667), where both precision and recall were the
lowest. This outcome may indicate greater sensitivity of KNN to data
distribution and the number of neighbors chosen, which can impair its
performance in contexts with less represented classes or with more
overlap between categories. Other comparative studies in different areas
have also reported inferior KNN performance compared to other
methods (Islam et al., 2022; Kutlay et al., 2019; Oliveira-Boreli et al.,
2023; Raghuwanshi et al., 2022).

It is noteworthy that all models performed worse on class C, with
recall only 66.7 % in all cases, indicating a common difficulty in
correctly identifying eggs with higher translucency. This highlights the
need for additional strategies, such as weight adjustment or balancing
techniques, to improve model sensitivity regarding this class.

Finally, Fig. 4 presents specific classification cases that are worth
highlighting. In images A, B, and C, there is a correct match between the
automatic method and the manual classification, demonstrating the
system’s ability to accurately identify different levels of eggshell trans-
lucency. In contrast, images D and E show disagreement between the
methods. In the case of image D, the automatic method overestimated
the translucent area by mistakenly interpreting the air cell as a trans-
lucent region, which led to classifying the egg as Class B, whereas
manual analysis correctly assigned it to Class A. On the other hand,
image E represents an atypical case involving a rotten egg, in which the
dark internal content interfered with segmentation (as seen in Step 3 of
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Table 2
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Performance of translucency classification models based on automated measures (numerical translucency).

Model

Overall Accuracy Precision Recall F1-Score
A B C A B C A B C
KNN 0.8889 0.914 0.903 0.667 0.970 0.848 0.667 0.941 0.875 0.667
SVM 0.9306 1.000 0.912 0.667 0.969 0.939 0.667 0.985 0.925 0.667
Random Forest 0.9143 0.914 0.867 0.857 0.941 0.897 0.667 0.927 0.882 0.750

Fig. 2. Steps of the digital processing of a white eggshell sample (A) and a red eggshell sample (B). 1: original RGB image; 2: image with the R channel; 3: segmented
image of the eggs; 4: segmented image of the imperfections; 5: original image overlaid with imperfections (in blue).
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Fig. 3. Boxplots of translucency metrics by visual class (A, B, and C).

Fig. 2). In this scenario, the algorithm underestimated the translucent
area, since a significant portion of the egg’s interior was interpreted as
background, reducing the region considered in the analysis. To address
these errors, it is recommended to evaluate alternative thresholding
methods, such as adaptive thresholding techniques that dynamically
adjust to variations in lighting and contrast. Furthermore, the algorithm
should be revised to handle anomalous cases more effectively, such as
rotten or fertile eggs, by incorporating anomaly detection mechanisms
or specialized pre-processing steps for such conditions.

These case analyses complement the broader findings of this study,
which align closely with prior research on quantitative translucency
assessment. Wang et al. (2019) proposed a grayscale recognition method
combined with colorimetry, identifying relative translucent area values
(RSS) ranging from approximately 1.3 % to 11.9 % across different
translucency levels. Similarly, our results showed increasing percentage
translucency values from Class A to Class C, with averages and disper-
sion patterns that reflect progressive intensities of the phenomenon,
especially in brown-shelled eggs. While the grayscale and colorimetric
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Fig. 4. Sample images of red-shelled eggs. The values in the top right corner indicate the percentage translucency (%); green values represent correct classification by
the automatic method compared to the manual method, while red values indicate disagreement between the two methods tested. Image A was classified as Class A
(low translucency); images B, D, and E were classified as Class B; and image C was classified as Class C (high translucency).

techniques introduced by Wang et al. (2019) provided an important
foundation for quantifying translucency with greater objectivity, the
present study builds upon these advances by implementing a fully
automated workflow. In particular, the use of red-channel segmentation
and morphological analysis offers a simplified and scalable alternative
that retains strong correspondence with manual classification. Com-
plementary to this, Wang et al. (2020) demonstrated the feasibility of
using machine vision to detect and quantify dark spots related to
translucency through techniques such as K-means clustering and un-
sharp masking. Their system achieved high processing speeds and ac-
curacy, reinforcing the potential of automated approaches. The
methodology proposed here aligns with that objective, offering a robust
and flexible pipeline that can also be integrated with machine learning
models and extended to investigate correlations with internal quality
parameters, expanding the practical applications of automated trans-
lucency analysis in egg grading systems.

Although the proposed image acquisition setup, which was con-
ducted in a controlled dark environment with fixed lighting and posi-
tioning, ensured high consistency and image quality, its direct
implementation in commercial production lines may be challenging.
Real-world environments are subject to variations in lighting, vibration,
egg positioning, and equipment constraints. To facilitate deployment in
industrial settings, future adaptations should consider integrating the
system into existing candling or grading stations, using enclosed imag-
ing chambers with diffuse LED lighting and mechanical guides to stan-
dardize egg orientation. Additionally, real-time calibration algorithms
and adaptive segmentation techniques could be employed to compen-
sate for environmental variability, enabling robust performance without
requiring fully controlled conditions.

Can translucency predict other qualitative parameters?

The correlation matrix analysis (Table 3) revealed that relative shell
translucency exhibited weak to moderate positive associations with a
few variables, most notably average shell thickness (correlation coeffi-
cient = 0.258) and shell weight (r = 0.192). These findings suggest that
eggs with thicker or heavier shells may tend to show higher translucency
values, potentially due to structural or compositional differences. This
may be explained by the multifactorial nature of translucency, which is
influenced not only by one specific shell characteristic but also by in-
ternal microstructural features and membrane properties not captured
in this study. However, since no hypothesis testing was conducted, these
coefficients should be interpreted as descriptive indicators of monotonic
relationships, rather than statistically significant parameters.

This result partially corroborates the findings of Wang et al. (2017),
who observed that translucent eggs had significantly thicker shells than
opaque ones, especially in brown-egg laying hen lines. Furthermore, in
the same study, the shell membrane thickness was significantly lower in
translucent eggs, which may indicate a microstructural reorganization
responsible for the formation of translucent areas in the shell. Orellana
et al. (2023) also reported a positive association between translucency
and shell thickness in fertile eggs from broiler breeder hens. Eggs with
high translucency exhibited significantly thicker shells compared to less
translucent eggs (P < 0.0001). However, the initial egg weight (prior to
incubation) did not differ significantly among the different translucency
levels. Although the genetic lines and purposes of the eggs used in those
studies differ from the present work, the results offer relevant in-
dications. This reinforces the need for further investigation into the
relationship between translucency and other egg quality parameters.

Table 4, in turn, presents the performance metrics of two predictive
models for estimating shell thickness and shell weight — variables
selected based on the correlation analysis. The predictive variables

Table 3
Spearman correlation matrix between relative shell translucency (T) and morphometric and qualitative egg variables.
T ™ EH EW w YC YD AH YH SW YI HU ST

T 1.000 0.069 0.037 0.015 0.049 -0.031 -0.048 0.135 0.057 0.192 0.064 0.103 0.258
™ 1.000 0.835 0.883 0.972 -0.126 0.678 -0.048 0.011 0.665 -0.367 -0.296 0.115
EH 1.000 0.628 0.803 -0.146 0.645 -0.094 -0.065 0.596 -0.398 -0.302 0.019
EW 1.000 0.873 -0.047 0.630 -0.090 -0.054 0.589 -0.394 -0.311 0.094
w 1.000 -0.096 0.653 -0.003 0.032 0.522 -0.340 -0.248 0.041
YC 1.000 -0.018 -0.208 -0.395 -0.015 -0.237 -0.174 -0.021
YD 1.000 -0.147 -0.297 0.510 -0.739 -0.319 0.221
AH 1.000 0.366 -0.141 0.328 0.9618 0.058
YH 1.000 -0.039 0.838 0.346 -0.061
SW 1.000 -0.305 -0.305 0.400
YI 1.000 0.411 -0.157
HU 1.000 0.022
ST 1.000

Notes: T - Relative translucency; TW — Total weight; EH — Egg height; EW — Egg width; IW - Internal weight; YC — Yolk color; YD - Yolk diameter; AH — Albumen height;

YH - Yolk height; SW — Shell weight; YI — Yolk index; HU — Haugh unit; ST — Average shell thickness.
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Table 4
Average performance of regression models.
Models R? ME RMSE  RSS SSE TSS
Target variable: Shell Thickness
Multiple Linear 0.122 0.048 0.219 0.216 1.548 1.765
Regression

ANN (Deep Learning) 0.192
Target variable: Shell Weight

-0.019  0.070  0.294 1.426 1.765

Multiple Linear 0.354  0.632 0.795 173.18 315.76  488.94
Regression
ANN (Deep Learning)  0.463  -0.093  0.954  262.36 170.34  448.94

Notes: R? - coefficient of determination; ME - mean error; RMSE - root mean
square error; RSS - regression sum of squares; SSE - sum of squared errors; TSS -
total sum of squares.

focused on non-invasive parameters: relative translucency, total weight,
egg height, and egg width.

In the analysis of the shell thickness variable, the results indicate that
the Multiple Linear Regression model obtained an R* of 0.122, sug-
gesting a limited capacity to explain the variability of shell thickness
based on the chosen predictor variables. This is reinforced by the mean
error value, which was 0.048, indicating that the model has a relatively
high average prediction error.

In comparison, the Artificial Neural Network (Deep Learning) model
showed slightly better performance, with an R? of 0.192, indicating a
greater capacity to explain shell thickness variability. The root mean
square error for the ANN was 0.070, significantly lower than the value
obtained by linear regression, indicating that the ANN is more efficient
in terms of prediction error. Although the regression sum of squares is
higher for the ANN, the model still presents a lower sum of squared
errors, suggesting that the ANN is more effective at minimizing pre-
diction error.

For the shell weight variable, the models’ performance was more
consistent. Multiple Linear Regression obtained an R? of 0.354, reflect-
ing a more significant explanation of the variability of shell weight
compared to the shell thickness model. However, the mean error was
0.632, indicating that despite reasonable variability explanation, the
model still presents considerable error in predicting shell weight values.

The ANN (Deep Learning) outperformed Multiple Linear Regression,
with an R? of 0.463, demonstrating a substantial improvement in model
explanatory power. Additionally, the ANN’s RMSE of 0.954 was lower
than that of linear regression, suggesting that the neural network model
had a more robust performance in predicting shell weight. The RSS and
SSE values for the ANN also indicate that the neural network model is
more effective in minimizing both explained variability and prediction
error, with an TSS of 448.94 compared to 488.94 for the linear regres-
sion model.

Therefore, eggshell translucency stands out as a unique attribute
with its own characteristics that provide valuable information about egg
quality. It is important to note that translucent regions may arise from a
range of underlying causes, including uneven shell thickness, localized
pigment concentration, differences in mineralization, or membrane
structure, rather than exclusively from defects such as pores or micro-
cracks. Thus, translucency should be understood as an optical manifes-
tation of multiple shell characteristics.

However, although it is a relevant variable by itself, the use of
translucency to directly estimate other parameters, such as shell thick-
ness or shell weight, is not recommended. This is because translucency,
despite being correlated with certain aspects of egg quality, does not
directly reflect all involved variables, such as the physical shell structure
or internal egg composition, which are determined by distinct biological
processes. Moreover, relying on predictive models to estimate these
parameters based on translucency may lead to a loss of precision, since
other invasive variables (such as actual shell thickness) provide more
direct and reliable data. Thus, the recommendation of this article is that
translucency should be valued as a complementary, not substitutive,
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measure for comprehensive egg quality assessment.
Limitations and future research

Despite the positive results obtained in this study, some limitations
must be considered to ensure the applicability and generalization of the
automated eggshell translucency analysis system in real-world produc-
tion contexts.

Firstly, although the sample included eggs with different shell types,
production systems, and weight ranges, it remains limited by unknown
factors such as hen lineage, age, and feeding management. Literature
indicates that genetics, nutrition, and layer age strongly influence the
morphometric properties of the shell, including its thickness, strength,
and permeability (Abdelqader et al., 2013; Elnesr et al., 2024; Santos
et al., 2024). Therefore, future research should expand the dataset both
qualitatively and quantitatively to include eggs from broiler breeders,
alternative breeds, and different laying stages, aiming to develop more
robust and generalizable models.

Moreover, the image acquisition in this study was conducted under
controlled conditions, with no ambient light interference and using
standardized equipment, which favored consistency in digital process-
ing. However, such conditions are rarely replicated in commercial en-
vironments, such as automated farms or egg grading units, where light
variability, motion, and egg positioning can compromise the system’s
accuracy (Ahmed et al., 2023; Wu et al., 2025). Thus, validation of the
method under real operational conditions is recommended, along with
technical adaptations to handle noise and visual interference commonly
found in such settings. In future developments, the evaluation of adap-
tive or hybrid thresholding techniques may also prove beneficial to
enhance the robustness of the segmentation process under variable
lighting conditions.

Another critical issue lies in the reliance on manual labeling for
training supervised models. While visual classification of translucency is
widely used, it carries a degree of subjectivity—particularly in inter-
mediate categories—that may affect the quality of training data
(Orellana et al., 2023; Wang et al., 2019). Future studies could adopt
semi-supervised or active learning strategies to reduce the need for
continuous human labeling and make the models more adaptive to new
usage conditions, as suggested by the methodologies presented by Ouali
et al. (2020).

From a technical standpoint, the predictive models used in this study
showed only moderate performance in estimating variables such as shell
thickness and shell weight, with relatively low coefficients of determi-
nation (R? < 0.5). This indicates that, although translucency is associ-
ated with structural aspects of the shell, it does not fully replace
intrusive measurements, as it reflects an optical phenomenon and does
not directly measure attributes such as mineral composition or crystal-
line structure. Therefore, its application should be considered a com-
plementary quality indicator, rather than a direct substitute for more
specific structural variables.

In conclusion, the automated system developed represents a signif-
icant innovation in egg quality assessment, but it requires further vali-
dation and technological refinement to be established as a practical and
reliable tool within the poultry production chain.

Conclusion

This study demonstrated that the application of computer vision and
machine learning can serve as a viable, objective, and non-destructive
alternative for analyzing eggshell translucency, showing a high degree
of agreement with traditional visual evaluation. The proposed system
was able to accurately quantify translucent regions and classify them
with high performance, especially through the SVM model, which ach-
ieved an accuracy above 90 %. Although the regression models indicated
moderate correlations between translucency and intrusive variables
such as shell thickness and shell weight, the results suggest that
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translucency should be treated as a complementary rather than a sub-
stitutive parameter. The approach presented is promising for modern-
izing quality control processes in the poultry production chain,
contributing to automation, standardization, and increased operational
efficiency. Finally, further studies are recommended with a more diverse
sample set and under real-world production conditions in order to
consolidate its use on a commercial scale.
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