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a b s t r a c t 

Modeling unbounded or semi-infinite media with numerical methods, such as finite ele- 

ments, requires avoiding that waves pass through the boundaries of the truncated compu- 

tational domain without reflection. For this reason, in areas such as Geophysics or Acous- 

tics, absorbing layers are used to circumvent this issue. Nevertheless, sizing them is an 

open problem due to the necessary calibration of their parameters for an adequate per- 

formance and to prevent numerical instabilities. Absorbing layers are dependent on both 

wave frequency and material properties set up inside them and, affect the convergence 

of iterative methods in inverse problems by the inherent variation of domain properties 

within the process, especially in the transient regime. On the other hand, hybrid absorbing 

boundary conditions are the combination of absorbing layers and the application of non- 

reflecting boundary conditions on the layer boundary with the purpose of increasing their 

effectiveness. In this work, an analytical approach is presented to size the portion added to 

the original domain and to determine its damping parameters simultaneously. Hyperellipti- 

cal absorbing layers are introduced and, for generating the hybrid absorbing boundary con- 

ditions scheme, Sommerfeld or 1 st -Higdon boundary conditions are imposed on the outer 

layer boundary. Therefore, this methodology is adaptive according to the intermediate so- 

lutions of the transient optimization process for reducing possible numerical instabilities 

and spurious information for the inverse problem. The transient equilibrium equations are 

implemented by using the finite element method and an implicit time integration method. 

Results are presented to show the potential of the proposal. 

© 2022 Elsevier Inc. All rights reserved. 
1. Introduction 

In areas such as Geophysics or Acoustics, the simulation of waves propagation in an unbounded domain by using nu- 

merical methods requires special treatment for the boundaries of the truncated computational domain so that waves should 

pass through truncated domain boundary without reflections. In this way, numerical models can fit into computers with 

limited computational time and memory in order to mimic the infinite or semi-infinite domain. Thus, the boundary con- 

ditions (BCs) applied in this type of problems are named Absorbing Boundary Conditions (ABCs). Some requirements that 

ABCs should satisfy are: well-posedness, accuracy in both continuous and discrete level, compatibility and stability with 

the numerical method used, efficiency, and ease and generality of the implementation. However, in practice is extremely 
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Abbreviations 

ABC Absorbing Boundary Condition 

AL Absorbing Layer 

AML Automatically Matched Layer 

BC Boundary Condition 

DoF Degrees of Freedom 

DGFE Discontinuous Galerkin Finite Element 

FD Finite Difference 

FDM Finite Difference Method 

FE Finite Element 

FEM Finite Element Method 

GABC Generating Absorbing Boundary Condition 

HABC Hybrid Absorbing Boundary Condition 

IC Initial Condition 

NRBC Non-Reflecting Boundary Condition 

PML Perfectly Matched Layer 

SEM Spectral Element Method 

SL Sponge Layer 

VOFM Volume of Fluid Method 

Symbol List 

a Layer major semi-axis 

a ∗ Adimensional propagation speed parameter 

a C R Coefficient for quadratic part in regression for computing minimum damping ratio 

a ξ Coefficient for quadratic part in proposed damping function 

A al Area of the model including the AL 

A H Hyperelliptical domain area 

A Hp Partial hyperellipse domain area 

A orig Area of the original model without AL 

A R Rectangular domain area 

b Layer minor semi-axis 

b C R Coefficient for linear part in regression for computing minimum damping ratio 

b ξ Coefficient for linear part in proposed damping function 

c Propagation speed 

c eq Equivalent propagation speed 

c C R Coefficient for constant part in regression for computing minimum damping ratio 

c max Maximum propagation speed in the model 

c min Minimum propagation speed in the model 

C R Reflection coefficient 

C Rmin Minimum reflection coefficient 

C FDM 

Rmin Spurious reflection coefficient for FDM 

C FEM 

Rmin Spurious reflection coefficient for FEM 

C QUA 

Rmin 
Minimum reflection coefficient for proposed quadratic damping function 

C RDF 
Rmin Minimum reflection coefficient for a given reference damping function 

C ∗Rmin Approximated optimized minimum reflection coefficient 

c � Propagation speed at the boundary 

d Normalized element size 

e I Integral error 

e P Peak error 

f Linear frequency 

f E Ellipse eccentricity 

f m 

m -th linear frequency 

f min Dominant frequency at the critical point at the boundary 

f REF Reference frequency for calculating layer size 

f s Source central frequency 

F A Area factor 

F A H Hyperelliptical area factor 
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F GHM 

Fictitious correction factor by geometry for heterogeneous media 

F L Domain fraction that must be added as an absorbing layer 

F R Points for representing the central wavelength of the source 

F ω∗ Frequency factor for domains with absorbing layer 

F ω E Frequency factor for elliptical domains 

F ω H Frequency factor for hyperelliptical domains 

F ω R Frequency factor for rectangular domains 

j Imaginary unit 

k Wave number 

k a Layer wave number 

k ω Eikonal factor to estimate the natural frequency 

l Loss factor 

l min Minimal dimension of the finite element 

L Length of the original domain in 1D models 

L a Absorbing layer length in 1D models 

L s Distance from the source to the point with φmin 

L x Domain length in the coordinate x 

L y Domain length in the coordinate y 

L ξ Absorbing layer length in 2D models 

m Vibration mode 

n Hyperellipse degree 

n max Maximum hyperellipse degree 

n min Minimum hyperellipse degree 

n ari 
∗ Hyperellipse degree calculated by arithmetic mean 

n 
geo 
∗ Hyperellipse degree calculated by geometric mean 

n har 
∗ Hyperellipse degree calculated by harmonic mean 

N el Number of elements inside the layer 

N �t Number of time steps 

p Dimensionless wave number 

R Amplitude attenuation factor 

R A Domain aspect ratio 

R bc Initial boundary condition ratio 

R eik Residual for the Eikonal equation 

R F Frequency factor ratio 

s Hyperellipse superness 

t Time 

t a Time spent for a wavefront to travel the layer 

t f Final time for the simulation 

u Vibration amplitude 

u 0 Initial disturbance 

u Pk max Maximum peak observed in the time response 

v p Approximated speed propagation 

x i Reference distance based on the original domain centroid 

x crit 
i Coordinates for the critical point 

x REF 
i Reference distance based on the original domain boundary 

x 
ξ
i 

Point inside the absorbing layer 

x 
�D 
i 

Nearest point that belongs to the boundary of the original domain 

X C R Heuristic factor for computing minimum damping ratio 

X ini 
C R 

Initial heuristic factor for computing minimum damping ratio 

X max 
C R 

Maximum heuristic factor for computing minimum damping ratio 

X min 
C R 

Minimum heuristic factor for computing minimum damping ratio 

X FEM 

C R 
Heuristic factor for computing minimum damping calculated from FEM reflection coefficient 

X MDF 
C R 

Heuristic factor for computing minimum damping calculated from FDM reflection coefficient 

X RDF 
C R 

Equivalent factor for estimating minimum damping ratio 

X ∗C R Approximate optimized factor for computing minimum damping ratio 

γ Complex wave number 
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�D Original domain boundary 

�L Layer domain boundary in unidimensional model 

�ξ Outer absorbing layer boundary 

�t Time step size 

�t max Maximum time step size 

ε i Spurious reflection rate due to the imposition of discretized boundary conditions 

η Damping coefficient 

ηcr Critical damping 

θ1 Angle between the normal of the surface and point on the boundary 

λs Source central wavelength 

μeik Pseudo-viscosity to smooth the solution in the Eikonal equation 

νξ Proposed damping function inside the layer 

ξ Damping ratio 

ξmax Maximum damping ratio 

ξmin Minimum damping ratio 

φ Arrival time 

φmin Minimum arrival time 

φ� Boundary arrival time 

ω n Angular natural frequency 

ω 1 REF Approximated fundamental frequency for model without absorbing layer 

ω 1 Fundamental frequency 


 Original truncated domain 


ξ Absorbing layer domain 

difficult [1] . Detailed information and comparisons about all types of ABCs can be found in the reviews of Tsynkov [2] ,

Bérenger [3] , Cohen [4] , Givoli [5] , Gao et al . [6] and, Pled and Desceliers [7] . 

Two solutions have been suggested for ABCs: Non-Reflecting Boundary Conditions (NRBCs) and Absorbing Layers 

(ALs) [8] . NRBCs are boundary conditions applied on the artificial domain boundary (“original” computational or truncated 

domain boundary) that try to avoid reflections back to it without adding more material. Their most important characteristics 

are: wave directionality, wave dispersion and, generation and absorption of waves [9] . While ALs are an alternative to NRBCs

where the domain of interest is surrounded by some artificial material in which waves are trapped and attenuated. How- 

ever, the modeling of these layers is an open problem since they are described by attenuation functions with parameters 

that require proper calibration in any approach, and sometimes it may present numerical instabilities [4,10] . 

Two types of ALs are distinguished: Perfectly Matched Layers (PML) and Sponge Layers (SL). In PML, the idea is perfectly

matching the impedance between media involved in the problem with the purpose of generating no reflection at the in- 

terface between them, independent of the angle of incidence and frequency of the waves. Some alternatives based on the 

same concept match the impedance of the absorbing medium with that of vacuum [11,12] . While in SL, dissipative terms

are added to the governing equations to damp the outgoing waves, which requires prior information about their frequency 

and direction of propagation to setup damping parameters [10,13] . SL are simple and easy to implement [14] performing

well for waves at grazing incidence and being less effective at normal incidence [15] . However, large layer sizes are required

for low-frequency reflections. 

The pioneering works in ABCs for transient problems model electromagnetic wave propagation by using the Finite Dif- 

ference Method (FDM), and address the issue as radiating boundaries by using a Sommerfeld BC on the boundary of an

added layer to the original domain [16,17] . Nonetheless, the concept of PML is considered to have been introduced with

the Bérenger’s work [12] in electromagnetic wave simulation. The PML formulation is obtained by extending the wave 

equation in the complex domain and causing the division of a real field into two nonphysical fields [13] . However, this

modification adds new variables so that the computational cost is increased. Recently, Bériot and Modave [18] introduce 

the Automatically Matched Layer (AML) for convex domains with regular or irregular boundaries. The mesh is extruded ac- 

cording to the element geometry and a local curvilinear coordinate system as used by Modave et al . [19] . Despite this, the

thickness and the desired reflection coefficient greater than zero must be provided by the user. 

The sponge layer (or Gaussian taper boundary condition) was proposed by Cerjan et al . [14] in the context of FD mod-

eling of acoustic and elastic wave propagation in the time domain. The method is based on a progressive reduction of the

vibration amplitudes by using a decaying exponential function in the direction perpendicular to the layer boundary. In ad- 

dition, the layer size is increasing at the edge opposite for the case of the presence of a free surface boundary. Larsen and

Dancy [20] perform a similar process by dividing gradually the state variables by a factor governed by an exponential func-

tion that depends on both the SL size and the grid size. Rodrigues and Dimitrovová [21] propose an SL by using the Caughey

AL method comparing with different damping profiles including an exponential one. Recently, Ma et al . [22] use an SL with

mass-proportional damping in elastic waves for peridynamic problems. 
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Traditionally, Dirichlet BCs have been used on the end of AL [23–25] . However, Petropoulos had shown that for PML

layers this BC is not important if the damping profile is linear or quadratic, and the layer is not thin [26] . Nevertheless, in

this same work, it was observed that a layer with tuned NRBC may produce about half the spurious reflections that those

with a traditional BC. Furthermore, the results of Collino and Monk show that by using an NRBC on the layer boundary

together a quadratic loss profile inside the layer reduces the reflection coefficient for waves close to normal incidence [27] .

Lately, Bériot and Modave [18] apply a Neumann BC on the outer layer boundary. 

Regardless of the type of AL, modifying the original domain by adding degrees of freedom to the model has been a

computational cost concern since the beginning [11,28–31] . Besides, considering the various approaches to PML, this can be 

more problematic because of the number of auxiliary variables required according to the formulation [31,32] . Nonetheless, 

thin layers have a rapid variation of damping or loss parameters that can cause numerical instabilities [13] . 

On the other hand, NRBCs are based on approximations of pseudo-differential operators with the aim of generating 

one-wave equations with non-reflective effects on artificial boundaries [33] . Although they are cheaper than AL from the 

computational point of view, these NRBCs are perfectly absorbent only for a range of angles of incidence [34,35] . In addition,

the error introduced into the model by this type of BC is inversely proportional to the distance from the source to the

artificial boundary raised to the order of approximation [2,8] . Thus, NBRCs are exact if the error tends to zero when the

order increases, otherwise it is asymptotic [5] . Nevertheless, increasing the order means implementing high-order derivatives 

that can lead to numerical instabilities. For this reason, in practice, low-order are used [1] . 

In recent times, Modave et al . [36] formulate high-order NRBCs in a DGFE implementation for acoustic waves in 3D

cuboidal domains and compatibility in corners and edges for avoiding numerical instabilities. However, additional 0D, 1D, 

2D, and 3D equations must be solved due to the compatibility. Recently, in the field of fluids, Wellens and Borsboom [9] pre-

sented a Generating Absorbing Boundary Condition (GABC) for simulating free-surfaces by using Volume of Fluid Method 

(VOFM), which has the peculiarity of absorbing the outgoing waves and radiating the incoming waves. Gordin et al . [37] use

a rational approximation for an NRBC for transverse vibrations in rods to minimize the additional calculations at every time 

step in FDM. 

However, despite the vast literature on NRBCs, no good solution to the problem has been found and the proposed solu-

tions work reasonably well. This is because the higher the accuracy, the higher the growth of low-frequency modes. [15] . De-

spite this, NRBCs based on Higdon BC [35,38] are widely used in both FEM [39–41] and FDM [42,43] and, although it requires

auxiliary variables to implement high-order conditions, it has been shown to be stable [44] . 

An essential aspect to obtain the best performance of the ALs is the selection of parameters. Bérenger [12] had already

perceived that regardless of the set of parameters of the AL, reflections always occur in numerical models of unbounded and

semi-infinite media. A portion of these reflections being spurious because of the discretization itself and the imposition of 

boundary conditions [45,46] . However, tuning parameters allows to reduce them and improve the accuracy [36] , especially 

increasing the layer size [12,18,47] . Constant damping or loss factor within AL originates a strong numerical reflection in 

the interface between the truncated domain and the layer [12] . Thus, damping or loss profiles play an important role in

minimizing reflections since the inadequate selection of distribution functions and their parameters may cause discontinu- 

ities or an increase of the field strength [48] . Furthermore, these parameters depend on the frequency and the discretiza-

tion [49] . However, there is no criterion for selecting the maximum damping or loss factor and, by using larger values for

it, discretization errors may be dominant [24] . 

Several damping or loss profiles have been used inside ALs with the purpose of minimizing the reflections. In the pre-

liminary works on PML, Holland, and Williams [11] determined by trial and error that a quadratic profile presents a good

performance in electromagnetic waves while Bérenger [12] used constant, linear and quadratic, obtaining better results with 

the quadratic ones. 

In the case of PML approaches implemented in FEM, in addition to the classic quadratic [23,46] profile, other ones have

been used such as: cubic [18] , quartic [46] , hyperbolic polynomial [18,19,24,50] and shifted hyperbolic polynomial [19] . In

relation to SL, damping or loss profiles are also varied in the literature. Among them, it can be found implemented in

FEM uses constant, linear, quadratic and cubic profiles [21,22,51] . However, special profiles such as half Hanning window 

function [51] (used in signal processing) and exponential with rational arguments [21] can be found. 

The AL size of the layer must be selected properly since large layers increase severely the computational cost. 

Merewether [16] reports that a sufficient size for this layer is half the largest dimension of the original domain. This cri-

terion is also used by Holland [17] . Cohen [4] states that one or two wavelengths for PMLs are sufficient for the reflection

coefficient to be of the order of the dispersion of the numerical method while Shen and Giurgiutiu [51] recommend more

than two wavelengths to ensure effectiveness. Nevertheless, Turkel and Yefet [13] mention that PMLs with lengths of around 

8 grid points are common in practice. Conversely, Cerjan et al . [14] suggest the use of 20 grid points in SL-based FDM. Most

of the criteria found in the literature for sizing ALs are based on reflection coefficient relations at the layer end assuming

normal incidence [12,18,23,27,46,52–54] . Thus, a reflection coefficient and a maximum damping or loss factor are set up to 

find the corresponding layer size. However, the reflection coefficient can never be null since the expressions for sizing layers 

depend on its logarithm; therefore, the size function is asymptotic and, very large sizes can be obtained for reflections very

close to zero. 

Another factor that influences layer size is wave frequency. For electromagnetic waves, source frequencies found in 

the literature can vary between tens of MHz and GHz and layer sizes oscillates between 4 and 10 grid points for

FDM [12,16,27,28,55] . In the case of acoustic waves, the frequencies of the sources found are between tens of Hz and
479 
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Fig. 1. Hybrid absorbing boundary conditions applied to an infinite medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

kHz and layer sizes oscillates between 3 and 30 grid points for FDM [53,56–59] , and between 2 and 10 elements for

FEM [18,19,24] . Finally, for elastic waves, source frequencies between 1 kHz and 10 kHz and sizes between 10 and 20 either

FDM grid points or FE [29,46,60] , and ones of 2 spectral elements of polynomial degree 5 ( i.e ., 11 Gauss–Lobatto–Legendre

grid points) in SEM [23] are used. In addition, for different frequencies in the same problem, the AL Degrees of Freedom

(DoF) can be maintained unchanged if the wavelength to element size ratio is constant [51] . Nonetheless, the layer size

increases inversely as lower reflection coefficients are required due to numerical dispersion [27,46] . 

Some works have tried to optimally parameterize the AL [21,25,27,51] , despite their dependence on material parameters, 

frequency, and incidence angles. Instead, the optimizations in NRBCs have been focused on the FDM coefficients for maxi- 

mizing the boundary absorption [61] or the analytical coefficients of the NRBC for minimizing the reflection [9] . This hinders

the convergence of iterative methods in inverse problems due to the variation of domain properties within the process, es- 

pecially in transient regime. Consequently, the eigenvalues and the eigenvectors can change abruptly in the initial iterations; 

thus, the damping properties. 

Hybrid Absorbing Boundary Conditions (HABCs) can be understood as the combination of the AL and the application of 

NRBCs on the AL boundary with the purpose of increasing their effectiveness [13] . Thus, the damping inside AL attenuates

both the outgoing waves and reflecting ones by the boundary [62] . Furthermore, they can suppressed the low-frequency 

growing modes [15] . Some approaches have combined as a weighted sum the original wave equation with differential oper- 

ators equivalent to one-way wave equations, such as Clayton-Engquist [34] and Higdon [35,38] . The weighting weights can 

be calculated through linear [31,63] and non-linear functions [64] . Other approaches have combined the radiation condition 

with a damping zone ( i.e ., an AL) of quadratic damping profile to deal with nonlinear irregular wave problems [65] . 

In inverse problems, the ALs are not considered adaptive and can negatively influence the final result since the material 

distribution is changing with each iteration (especially in the first iterations). On the other hand, it is difficult to measure the

efficiency of ALs in the transient regime and selecting the appropriate HABC parameters given a wide range of formulations. 

Moreover, pure NRBCs applied on boundaries of the computational domain can result in numerical instabilities and, ABC 

approaches such as PML or high-order Higdon-based BCs can result in an increase in the problem size by adding new

variables due to formulation or implementation. Thus, it is necessary to develop a generic, systematic, efficient, and robust 

methodology for simulating infinite/semi-infinite media by using a hybrid approach (adaptive ALs combined with NRBCs on 

boundaries, see Fig. 1 ) in a transient regime, which can be used in order to solve the inverse problem. 

In this work, a hybrid absorbing scheme is proposed consisting of a hyperelliptical absorbing layer combined with a 

non-reflecting boundary condition on the outer boundary with the purpose of reducing the artificial wave reflection when 

simulating unbounded or semi-infinite media. The AL size for bidimensional domains is determined according to an ana- 

lytical formulation based on a unidimensional free vibration problem and the coefficient reflection for the passage of an 

incident wave from one material medium to another. Hyperelliptical layers with criteria-selected degrees are introduced as 

an alternative to traditional rectangular layers with the purpose of saving computational cost. Concerning to NRBCs, Som- 

merfeld or 1 st -Higdon BCs are imposed on the outer layer boundary in order to increase the AL performance and generating

the HABC scheme. An adaptive quadratic damping profile with a criterion for the minimum damping is proposed and com- 

pared to some profiles proposed and found in the literature. This approach to bound the damping is opposite to the typical

ones found in the literature, in which the maximum damping is usually selected. In addition, two propagation speed exten- 

sion profiles inside the layer are studied: by circular sectors with respect to the source position and by straight continuity

using the original truncated domain boundary as a reference. Transient equilibrium equations are solved by using the Finite 

Element Method (FEM) and an implicit time integration method, implemented in the FEniCS framework [66] . Therefore, a 

semi-infinite medium is simulated to observe the behavior of the dimensioned AL and find the optimized parameters that 

affect as little as possible the original problem. The proposed process can be applied to any phenomenon governed by the

scalar wave equation. 
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Fig. 2. Natural frequencies in bars for different BCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work is organized as follows. In Section 2 , the HABC scheme is presented discussing the proposed adaptive approach,

determining the layer size and damping parameters from a unidimensional model as well as estimating its performance. Be- 

sides, the new layer shape for bidimensional domains is shown along with the strategy for NRBCs on its boundary. In

Section 3 , the numerical implementation is detailed. In Section 4 , numerical examples are displayed including a unidimen-

sional model for the purposes of verification and validation of the methodology and two bi-dimensional models to show 

the potential and performance of the proposed approach. Finally, in Section 5 , concluding remarks are presented. 

2. Hybrid Absorbing Boundary Conditions 

Hybrid Absorbing Boundary Conditions (HABCs) are the combination of ALs with NRBCs on the added layer boundary 

( Fig. 1 ). Traditionally, Dirichlet BCs have been used at the end of the layer [23–25] . However, it is possible to improve the

AL performance by imposing known NRBCs [13] such as Sommerfeld [13,67] or Higdon [35,38] . In this work, an analytical

approach is presented to size the portion added to the original domain and to determine the required damping parameters 

simultaneously. This formulation is derived from unidimensional formulations and can be extrapolated to bidimensional 

ones with certain uncertainty and with some adjustments and corrections as will be seen later. Therefore, rectangular layers 

can be included in the original numerical model. However, it is possible to reduce the computational cost parameterizing the 

rectangular shape through of a hyperelliptical curve [68] and selecting a suitable curve degree. After that, either Sommerfeld 

or 1 st -Higdon BCs are imposed on the outer layer boundary for completing the HABCs approach. It should be highlighted

that the AL is dimensioned assuming free vibration. Nevertheless, the methodology can be applied to any problem governed 

by the scalar wave equation, be it forced or not. 

2.1. Adaptive HABCs Approach 

The adaptive approach is based on the calculus of the AL size by analyzing and extrapolating to 2D models the behavior

of a unidimensional bar in free vibration starting from the rest. The parameters of the AL are computed considering a free-

free bar ( Fig. 2 a) to facilitate the calculations, especially the one related to the natural frequency. 

Natural frequencies in bars for different BCs are shown in Fig. 2 . It should be noted that for the free-free condition,

the vibration modes start at m = 0 , which corresponds to the rigid body motion due to the absence of constraints. For

the case “constrained”-free, natural frequencies are calculated by solving a transcendental equation [69] (see Fig. 2 d). The 

unidimensional problem for the proposal on HABCs could be approximated by the “constrained”-free bar. However, seeking 

the natural frequencies is not trivial because of the transcendental equation for their calculation. Considering the state 

variable u as the wave vibration amplitude and k as the wave number and, according to ratio between the initial BCs

R bc = 

∇u 0 
ku 0 

in left end in Fig. 2 d, “constrained”-free bar could be approximated to a clamped-free bar ( R bc → ∞ ) or a free-

free bar ( R bc → 0 ). 

Now, considering the AL far enough from the source of disturbance, it can be modeled as a free-free bar for the ap-

proximate determination of its natural frequencies. Comparisons of the natural frequencies between a free-free bar and a 

free-Sommerfeld BC one show differences less than 0.02% (see Appendix A ), so it can be concluded that the frequencies can

be estimated without computational effort through the behavior of the free-free bar. 

If an initial vibration amplitude is known, the approximate time response of the damping layer is estimated since con- 

stants depending on boundary conditions are determined. However, in a numerical model, it is necessary a boundary condi- 

tion to avoid instabilities in the solution due to ill-conditioning systems. For this reason, a Sommerfeld or radiation boundary 

condition [13,67] for generating semi-reflecting boundaries on unbounded domains [4] is used on the outer layer boundary. 
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Fig. 3. Unidimensional model for the numerical study of HABCs. 

Fig. 4. Reflections due to material transitions. 

 

 

 

 

 

 

 

 

 

 

This boundary condition is expressed by [1,9] : 

c∇u · ˆ n + 

˙ u = 0 on �L × ( 0 , T ) (1) 

with c as the propagation speed and �L as the domain boundary where the Sommerfeld BC is applied. Therefore, the model 

in Fig. 3 for the numerical study of HABCs with an optimized length of ALs is considered in this research. 

Another important topic is the imposing of material properties inside the AL. Consider the original domain and adjacent 

AL with a BC in the right end of Fig. 4 . The incident wave will be reflected in a fraction of itself when it reaches the

boundary between the original domain and the AL, and the reflection coefficient for the passage from a material medium 

to another can be calculated as [70] ( Fig. 4 ): 

C R = 

k 1 − k 2 
k 1 + k 2 

= 

c 2 − c 1 
c 2 + c 1 

(2) 

with k = 

ω n 
c . Later, the refracted or transmitted wave will reach the end where the BC is imposed, generating a new re-

flected wave causing constructive or destructive interference in the next incident waves. Remembering that the hypothesis 

of modeling is based on the scalar wave equation. That is, ∇u ≪ 1 [71] , and so the density does not appear in the governing

equations. 

Thus, the reflections can be avoided at the interface between the original domain and the AL, imposing the same material

properties in adjacent regions. That is, C R = 0 if c 1 = c 2 (implying that the densities of the two mediums are also the same).

For the attenuation of waves reflected because of the boundary conditions applied on the end of the domain, the damping

properties should be appropriate according to the size of the AL. Moreover, the adoption of NRBCs on the boundaries of ALs

also allows minimization of the reflections. The combination of these strategies originates the HABCs. 

2.2. Size of AL 

Considering the damped free vibration problem for the unidimensional bar with length L a in Fig. 3 and without consid-

ering the Sommerfeld BC in the right end: 

ü − c 2 ∇ 

2 u + η ˙ u = 0 , η = ξ ηcr 

ICs: u (0 , 0) = u 0 , ˙ u (0 , x ) = 0 

BCs: ∇u (t, 0) = ∇ u (t, L a ) = 0 

(3) 

with η as the damping coefficient, ηcr = 2 ω n as the critical damping and ξ = 

η
ηcr 

as the damping ratio. The general solution

for this differential equation is: 

u (t, x ) = u 0 τ (t) ν(x ) 
Characteristic Eq.: λ2 + ηλ + ω 

2 
n = 0 (Time Function) 

Solution Ch. Eq.: λ = −η

2 

±
√ 

�, � = 

(
η

2 

)2 

− ω 

2 
n 

(4) 

being τ (t) and ν(x ) functions depending on time and position, respectively and, λ the root of the characteristic equation for

the time function τ (t) . The value of the discriminant � generates three types of solutions: 

u (t, x ) = 

{ 

underdamped � < 0 ⇒ 0 < ξ < 1 

critically damped � = 0 ⇒ ξ = 1 

overdamped � > 0 ⇒ ξ > 1 

(5) 
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For the calculation of the speed propagation of the wave inside the bar, the dispersion relation is taken into account. This

relation is expressed as [72] : 

ω 

2 − j ω η = c 2 γ 2 , γ = k − j l (6) 

with γ as the complex wave number, l as the loss factor, and j as the imaginary unit. Therefore, the approximated speed

propagation modified by the dispersion relation is (see Appendix B ): 

v p = 

ω 

k 
≈ c 

1 + 

1 

8 

(
η

ω 

)2 
= 

c 

1 + 

1 

2 

(
ξ f m 

f 

)2 
(7) 

where f m 

is the m -th natural frequency of the bar and f is the frequency at which the wave travels. As mentioned in the

Section 2.1 , m = 0 corresponds to the rigid body motion that will not be considered here. Thus, m ≥ 1 for the determining

of the size of the AL is considered. On the other hand, the time spent for a wavefront to travel the entire bar with length

L a taking into account the dispersion relation is t a = 

L a 
v p and, the wave number is k a = 

ω 
v p . The idea is to investigate in Eq. 4 ,

the amplitude of the solution in x = L a at t = t a under the initial amplitude u o assuming f = f m 

and, verify the possibility

of attenuating the response by means of the introduction of an amplitude attenuation factor 0 < R ≤ 1 defined by: 

R = 

| u (t a , L a ) | 
| u 0 | = 

| u 0 τ (t a ) ν(L a ) | 
| u 0 | (8) 

If R > 0 means that the reflected vibrations will be attenuated for the same factor again when they reach the point where

the initial excitation was applied (for a total approximate attenuation of R 2 in relation to u 0 ). However, these reflected waves

may originate from constructive interference as commented in Section 2.1 . 

Considering Eq. 4 with m = 1 since the fundamental mode to be attenuated requires the highest ξ in relation to the re-

maining modes, the underdamped solution enables the wave attenuation by a factor of 0 ≤ R ≤ 1 when completely crossing

the AL (the phase shift depending on the damping ratio ξ and the vibration mode m , see Eq. B.4 , Appendix B ). Remembering

that, 0 < ξ < 1 always for avoiding the critically damped solution. The overdamped case allows complete wave attenuation 

for specific values for ξ > 1 . However, for other values, the amplitudes are not attenuated completely when crossing the AL.

That is, excessive damping makes the system very slow, requiring too much space for the wave to be dissipated. Hence, the

overdamped solution is not the appropriate solution for attenuation in ALs. Finally, for the critically damped regime and any 

m ≥ 1 , then R = 0 . However, the behavior of the wave changes for a special case that represents a singularity for both cases

underdamped and overdamped. This is a closed solution for all vibration modes and any length L a and it is also not either

the proper solution for calculating the layer size. 

Therefore, R depends on the adequate selection of the damping ratio in order to avoid undesirable reflections at the end

of the layer. The underdamped vibration regime is selected for seeking the size of the AL since it is possible to impose

functions along the layer for a progressive attenuation. 

When determining the vibration regime for the wave attenuation, it is necessary to define the size of the AL. Here, a size

parameter F L , related to the size of the original domain, is introduced in the underdamped solution for this purpose. This

parameter is discussed in the next section. 

2.3. Methodology for Calculation of F L 

The length of the AL is parameterized in relation to a portion F L of the original domain with dimension L . Thus, F L = 

L a 
L 

represents the domain fraction that must be added as an AL. The amplitude attenuation factor R ( Eq. 8 ) as a function of F L ,

the m -th vibration mode and the damping ratio ξ is (see Appendix B ): 

R = 

∣∣∣∣u (t a , L a ) 

u 0 

∣∣∣∣ = 

∣∣∣∣ exp ( −ξmπA ) 

( 

cos 

(
mπA 

√ 

1 − ξ 2 

)
+ 

ξ√ 

1 − ξ 2 
sin 

(
mπA 

√ 

1 − ξ 2 

)) 

cos 

(
2 πF L 

a ∗
A 

)∣∣∣∣
with A = 1 + 

1 

2 

(
ξma ∗

2 F L 

)2 

and a ∗ = 

c 

f L 

(9) 

The analysis of Eq. 9 shows that the fundamental mode ( m = 1 ), to be attenuated in a factor R in an AL of length L a ,

requires the highest ξ < 1 in relation to the remaining modes. Likewise, the fundamental mode to be attenuated requires

the longest AL concerning the other modes considering the largest ξ → 1 . Therefore, the fundamental mode and ξ = 0 . 999

will be considered as a reference for calculating the size of the AL. 

Fig. 5 presents two examples (solid lines) for L = 1 . 2 km and c = 1 . 5 km / s at two different frequencies f = 2 . 25 Hz and

f = 5 Hz. It can be noted that, by requiring R = 0 , the portion F L (zeros of the function R ) of the original domain increases

with decreasing frequency. That is, the wavelength is longer, so more space is required to dissipate the wave considering 

the same damping ratio ξ = 0 . 999 . On the other hand, the magnitude of the reflection coefficient | C Rmin | at the interface

between the original domain where no damping is imposed and the AL with ξ = 0 . 999 is determined by (see Appendix B ):
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Fig. 5. Amplitude attenuation factor R (solid lines) and Minimum reflection coefficient | C Rmin | (dotted lines). 

Fig. 6. Graph of the function | C Rmin | − R . The zeros of the function represent the possible size F L of the AL. 

 

 

 

 

 

 

 

| C Rmin | = 

∣∣∣∣ ξ 2 

ξ 2 + ( 4 F L / ma ∗) 
2 

∣∣∣∣ (10) 

However, it is observed that when F L is calculated with Eq. 10 may originate F L ≥ 1 (dashed lines in Fig. 5 ) when | C Rmin |
tends to zero. That is, the portion F L added to the domain is greater than the original domain. For instance, for the two

frequencies considered before, if | C Rmin | = 0 . 001 then F L = 1 . 974 at f = 5 Hz and F L = 4 . 394 at f = 2 . 25 Hz. These calculated

sizes make the implementation of an AL unfeasible. For this reason, the criterion proposed for selecting the proper AL size

is based on finding the first root of the difference in the expression: 

| C Rmin | − R = 0 (11) 

Thus, F L can reach values less than the original domain, although the higher F L , the lower both R and | C Rmin | . Fig. 6

shows the possible F L for the frequencies considered in the previous examples. Coincidentally, R = | C Rmin | are the same for

the frequencies considered previously and the first root found. Therefore, for f = 5 Hz, F = 0 . 1917 , and f = 2 . 25 Hz, F =
L L 
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Fig. 7. Damping parameters for damping function νξ . The applied NRBC (Sommerfeld in this case) on the layer boundary does not affect νξ . 

 

 

 

 

 

 

 

 

 

 

 

0 . 4267 , the result obtained is R = | C Rmin | = 0 . 0960 . However, for bidimensional problems (see Sections 2.6 and 4.3 ), given

that the reference length L is usually less than any original domain dimension and the medium can be heterogeneous, the

appropriate size for the problem may be an n -th root of Eq. 11 , always trying to select the smallest possible. 

2.4. Damping Function for AL 

The proposed function for the damping coefficient η inside AL is adaptive according to the number of finite elements N el 

along it. The function is of the quadratic type depending on position and defined by: 

η = ηcr νξ = 2 ω 1 νξ

νξ (x REF 
i 

) = a ξ
(
x REF 

i 

)2 + b ξ x REF 
i 

a ξ = 

ξmin − dξmax 

d 2 − d 
, b ξ = ξmax − a ξ

(12) 

where d = 

1 
N el 

≤ 1 
2 to avoid division by zero (at least two elements must compose the layer), a ξ and b ξ are the coefficients

of the function νξ and, x REF 
i = 

‖ x ξ
i 
−x 

�D 
i 

‖ 
F L L 

with ‖ x ξ
i 

− x 
�D 
i 

‖ as the distance between a point inside the AL and the nearest point

that belongs to the boundary of the original domain ( Fig. 7 ). Remembering that, the AL is dimensioned for the fundamental

mode, then ηcr = 2 ω 1 . 

The extreme values for the damping ratio for m = 1 are: 

ξmin = 

4 F L 
ma ∗√ 

1 
| C Rmin | − 1 

, ξmax = 0 . 999 (13) 

being ξmin deducted from Eq. 10 . Nevertheless, the function νξ may be concave or convex with a maximum value νξ >

ξmax inside the layer. Therefore, for ensuring that the vertex of νξ is outside the layer ( i.e ., − b ξ
2 a ξ

≤ 0 ∧ − b ξ
2 a ξ

≥ 1 ) and, νξ ≥
0 ∀ x REF 

i ∈ [ 0 , 1 ] , the minimal damping ratio ξmin must be satisfy the condition: 

ξmax d 
2 ≤ ξmin ≤ ξmax 

(
2 d − d 2 

)
(14) 

The magnitude of the reflection coefficient | C R | at any point inside the AL can be computed by (see Appendix B ): 

| C R | = 

∣∣∣∣∣ ν2 
ξ
(x REF 

i 
) − ν2 

ξ
(x REF 

i 
− d) (

4 F L 
ma ∗

)2 + ν2 
ξ
(x REF 

i 
) + ν2 

ξ
(x REF 

i 
− d) 

∣∣∣∣∣ (15) 

The value for ξmin ( Fig. 7 ) that seeks to improve the performance of the HABCs can be estimated by: 

ξmin = X C R d ⇒ | C R ( ξmin ) | = 

∣∣∣∣∣ ( X C R d ) 
2 (

4 F L 
ma ∗

)2 + ( X C R d ) 
2 

∣∣∣∣∣ (16) 

where the term X C R ≥ 0 is a heuristic factor determined by the user and remembering that d = 

1 
N el 

( Eq. 12 ). Adjusting itera-

tively the parameter X C R (following the process shown in Section 3.4 ), it can be possible to obtain better performance against

the layers traditionally considered (as seen in the results of Section 4 ). Numerical experiments in unidimensional models 

( Fig. 7 ) show that there is a value for X C R that maximizes the AL performance (see Section 2.5 for error measure definition).

Nevertheless, a mathematical relationship could not be found to determine this value. Although X C R is unknown a priori and

depends on the problem, extreme values can be determined to reduce the search space for the proper value in the iterative

process. A minimum value X min 
C R 

can be obtained from the left side of Eq. 14 as: 

ξmin = ξmax d 
2 ⇒ X 

min 
C d = ξmax d 

2 ∴ X 

min 
C = ξmax d (17) 
R R 
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Besides, the same numerical experiments show that a critical point of Eq. 15 is reached when a ξ = b ξ in the proposed

quadratic damping function (see Eq. 12 ). However, because of the circular dependency with d, it cannot be identified in

advance as minimum or maximum of | C R | . Despite this, an initial reference value X ini 
C R 

is determined as: 

a ξ = b ξ ⇒ 

X 

ini 
C R 

− ξmax 

d − 1 

= 

ξmax 

2 

∴ X 

ini 
C R 

= 

ξmax ( 1 + d ) 

2 

(18) 

On the other hand, a maximum value X max 
C R 

is given by the right side of Eq. 14 in the equality condition so that: 

ξmin = ξmax 

(
2 d − d 2 

)
⇒ X 

max 
C R 

d = ξmax 

(
2 d − d 2 

)
∴ X 

max 
C R 

= ξmax ( 2 − d ) (19) 

Another point of reference can be computed from the spurious reflection coefficient due to discretization. Recently, a 

spurious reflection coefficient for unidimensional FE that depends on the discretization is formulated as [73] : 

∣∣∣C FEM 

Rmin 

∣∣∣ = 

∣∣∣∣∣∣
( 1 − Z 1 ) sin ( p 1 ) + 

αZ 2 − 1 

α
sin ( αp 2 ) 

( 1 − Z 1 ) sin ( p 1 ) − αZ 2 − 1 

α
sin ( αp 2 ) 

∣∣∣∣∣∣ (20) 

with p i = k i �x i as the dimensionless wave number for i -th element with the wave number k i = 

ω 
v pi 

and �x i as the length of

the finite element, α as the length ratio between the elements involved in the calculation and, the terms Z i defined by [73] :

Z 1 = 

1 
6 [ cos p 1 − 1 ] 
1 
3 [ cos p 1 + 1 ] 

and Z 2 = 

1 
6 [ cos ( αp 2 ) − 1 ] 
1 
3 [ cos ( αp 2 ) + 1 ] 

(21) 

In this work, p 1 ( ξ1 = 0 ) and p 2 ( ξ2 = ξmin ) are the dimensionless wave numbers for first and second elements of the AL

( Fig. 7 ), �x = l min is the minimal dimension of the finite element ( Eq. 39 ), α = 1 since the elements have the same size and

v pi is calculated as indicated in Eq. B.3 for m = 1 ( Appendix B ). Therefore, the dimensionless wave numbers for the first and

second elements of the AL are expressed by: 

p 1 = 

ω 

c 
l min and p 2 = 

ω 

c 
l min 

( 

1 + 

1 

8 

(
ξmin a ∗

F L 

)2 
) 

(22) 

However, to determine p 2 is necessary an initial guess for ξmin ceases to be a circular dependency. This value can be

computed from spurious reflection coefficient proposed for an open boundary condition in FDM [52] : ∣∣∣C FDM 

Rmin 

∣∣∣ = tan 

2 

(
k 1 l min 

4 

)
(23) 

and the value for ξ2 to determine p 2 is obtained from Eq. 10 . The reflection coefficient computed with Eq. 23 is quite close

to that calculated by Eq. 20 , so it can be considered a good approximation. Then, another reference value is obtained from

Eq. 16 by: 

X 

FEM 

C R 
= 

4 F L 
ma ∗

d 
√ 

1 

| C FEM 

Rmin 
| 
− 1 

(24) 

Therefore, three points are obtained from the previous analysis 
(
X ini 

C R 
, 
∣∣C ini 

Rmin 

∣∣), (X max 
C R 

, 
∣∣C max 

Rmin 

∣∣) and 

(
X FEM 

C R 
, 

∣∣∣C FEM 

Rmin 

∣∣∣) and 

since there is a minimum value for | C Rmin | , these three points could be approximated by a quadratic function representing a

convex parabola, so that its vertex indicates the desired value for X C R . Remembering that, reflection coefficients other than∣∣∣C FEM 

Rmin 

∣∣∣ are given by Eq. 16 . The point 
(
X min 

C R 
, 
∣∣C min 

Rmin 

∣∣) is not used in the regression because 
∣∣C min 

Rmin 

∣∣→ 0 causing bad numerical

conditioning in it. The proposed parabola and the desired X ∗C R are: 

| C Rmin | = a C R X 

2 
C R 

+ b C R X C R + c C R and X 

∗
C R 

= − b C R 
2 a C R 

(25) 

and the details for the regression are shown in Appendix C . In practice, rounding errors due to the floating-point arithmetic

and discretization errors when considering bidimensional elements lead to different values of X ∗C R . Accordingly, an interval 

can be defined to limit its search based on the spurious reflection rates due to the imposition of discretized boundary

conditions. These rates are defined as [45] : 

ε 1 = | −1 + cos p | and ε 2 = 

∣∣∣sin 

p 

2 

∣∣∣ (26) 

where ε 1 corresponds to a Dirichlet BC while ε 2 resembles a Neumann BC and p is the dimensionless wave number. Here,

p = p with the purpose of calculating the spurious reflection rate assuming that the passage of medium with p to one 
1 1 

486 



R.A. Salas, A.L.F. da Silva, L.F.N. de Sá et al. Applied Mathematical Modelling 113 (2023) 475–513 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with p 2 is between a Dirichlet BC and a Neumann BC. Thus, considering that ε i is the percentage error in the computation

of 
∣∣C ∗Rmin 

∣∣ = 

∣∣C Rmin (X ∗C R ) 
∣∣ given by Eq. 25 , the bounds of the interval for X C R by using Eq. 16 are: 

X 

min 
C R 

= max 

⎛ 

⎝ ξmax d , 

4 F L 
ma ∗

d 
√ 

1 
( 1 −min ( ε i ) ) | C ∗Rmin 

| − 1 

⎞ 

⎠ 

X 

max 
C R 

= min 

⎛ 

⎝ 

4 F L 
ma ∗

d 
√ 

1 
( 1+ max ( ε i ) ) | C ∗Rmin 

| − 1 

, ξmax ( 2 − d ) 

⎞ 

⎠ 

(27) 

where 
∣∣C ∗Rmin 

∣∣ = 

∣∣C ini 
Rmin 

∣∣ when X ∗C R < ξmax d. In the same situation, the minimum positive root of Eq. 25 is assumed as X min 
C R 

if

it exists, otherwise X min 
C R 

= ξmax d since X C R ≥ ξmax d must be satisfied, that is: 

if X 

∗
C R 

< ξmax d ⇒ X 

min 
C R 

= max 

( 

ξmax d, min 

( 

X 

min 
C R 

: 
−b C R ±

√ 

�C R 

2 a C R 
> ξmax d 

) ) 

(28) 

with �C R 
= b 2 C R 

− 4 a C R c C R . Summarizing, the initial guess is X C R = X ∗C R if X ∗C R ≥ ξmax d, otherwise X C R = X ini 
C R 

and X min 
C R 

must be

modified. Nevertheless, in bidimensional domains (see Section 2.6 ), taking into account that η < ηcr depends on 0 < ξ < 1

and ω n ( Eq. 3 ), and that the latter depends only on the geometry in homogeneous media [74] , it could be expected that ξmin 

would be affected by the aspect ratio of the domain R A and the hyperellipse area factor F A H ( Eq. E.3 , Appendix E ). Therefore,

the proposed limits can be changed to modify the initially proposed interval so that: 

X 

min 
C R 

≤ X C R ≤ X 

max 
C R 

⇒ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

X 

min 
C R 

= max 

⎛ 

⎝ ξmax d, 
F A H 
4 

min 

(
1 √ 

1+ R 2 
A 

, 
R A √ 

1+ R 2 
A 

) 4 F L 
ma ∗

d 

√ 

1 
( 1 −min ( ε i ) ) | C ∗Rmin 

| −1 

⎞ 

⎠ 

X 

max 
C R 

= min 

⎛ 

⎝ 

4 
F A H 

max 

(√ 

1 + R 

2 
A 
, 

√ 

1+ R 2 
A 

R A 

) 4 F L 
ma ∗

d 

√ 

1 
( 1+ min ( ε i ) ) | C ∗Rmin 

| −1 

, ξmax ( 2 − d ) 

⎞ 

⎠ 

(29) 

where the terms 
F A H 

4 and 

4 
F A H 

are the area ratio between a hyperellipse and a rectangle with the same semi-axes and its

inverse ratio, respectively. The terms as arguments in operators min ( ·) and max ( ·) are obtained from Eq. E.1 ( Appendix E )

considering the aspect ratio R A and its inverse and retaining only the factors depending on itself and, likewise computing 

their inverses. That is, the arguments in min ( ·) are the inverses ones in max ( ·) . Moreover, the same modifications for ∣∣C ∗Rmin 

∣∣, X min 
C R 

and X ∗C R in the unidimensional case are applicable if X ∗C R < ξmax d. 

Besides, reference values can be calculated by equaling the expressions for | C Rmin | of the proposed quadratic damping 

distribution and a known damping distribution acting as a reference. That is 

∣∣∣C QUA 

Rmin 

∣∣∣ = 

∣∣∣C RDF 
Rmin 

∣∣∣, where the superscript RDF 

represents a given Reference Damping Function , 
∣∣C RDF 

Rmin 

∣∣ is obtained from Eq. B.6 ( Appendix B ) when the damping ratio ξ is

expressed as a function of the position according to RDF , and 

∣∣∣C QUA 

Rmin 

∣∣∣ comes from Eq. 16 . Thus, solving the above equality, a

factor X RDF 
C R 

is found, i.e ., the equivalent factor based on the RDF . The functions used as a reference and the corresponding

expressions for X RDF 
C R 

can be found in Appendix D . Remember that an allowable value to be used in Eq. 16 must satisfy

X min 
C R 

≤ X RDF 
C R 

≤ X max 
C R 

. 

2.5. Layer Performance Estimation 

The performance of the layer sized with the methodology proposed is estimated through the calculation of the errors. The 

error is computed at critical points according to a criterion based on the shortest arrival time at the original boundary

named in this work as φmin . The point on the boundary that suffers the first contact with the wavefront (at t = φmin ) is

critical to estimate the model error, since is most likely to receive reflections when an AL is added. Therefore, this will be

where the error estimation will be computed. One way to determine this point is to use the Eikonal equation [75] with

the purpose of finding the shortest time needed to travel from the sources to the boundary. The Eikonal is a nonlinear

equation traditionally used to evolve interfaces [75] but it has also been used to find the distance to walls [76] . In this

work, a hyperbolic Eikonal equation is used [77] : 

|∇ φ| = 

1 

c 
+ μeik ∇ 

2 φ (30) 

where φ is the elapsed time to the wavefront, c is propagation speed in the medium, and μeik is a pseudo-viscosity to 

smooth the solution. However, a small conceptual change to the meaning of φ is needed. By setting φ = 0 at the sources
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Fig. 8. Eikonal example: Domain and time taken to reach boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the calculated value of φ becomes the elapsed time for the wavefront to reach each point of the domain. Thus, the critical

point with coordinates x crit 
i is determined by the minimum arrival time φmin in the original model without any layer. Several

points can be determined with this criterion if φmin is measured on each boundary independently. 

Figure 8 shows a small example of this feature. The source located in the centroid of the left region is set with a fixed

φ = 0 and two region with different propagation speeds are defined ( Fig. 8 a) and the time taken to reach the boundaries are

shown in Fig. 8 b. In this example, the critical point for the left side boundary would be the one that presents φmin = 85 μs

and the distance from the source to this point is defined as L s (see Fig. 8 b). L s is the base distance for the AL size calculation

in bidimensional domains (see Section 2.6 ). After choosing the critical points, the AL efficiency is evaluated by means of an

integral error e I defined as [21] : 

e I = 

∫ t f 
0 

(u MOD 

− u INF ) 
2 d t ∫ t f 

0 
u 

2 

INF 
d t 

(31) 

and by a peak error e P defined as: 

e P = 

∣∣∣∣∣
u 

Pk max 

MOD 

u 

Pk max 

INF 

− 1 

∣∣∣∣∣ (32) 

with u as the wave vibration amplitude at the critical point, u Pk max 
i as the maximum peak observed in the response in

the time interval t ∈ [0 , t f ] at the same point. Subscripts MOD and INF refer to the model with AL and the reference one,

respectively. The reference model is understood as a model with sufficient extension without any type of damping so that 

the effects of its boundaries do not influence the transient response of the original truncated model. It should be noted that

it is desirable that the errors are as small as possible, i.e ., e I → 0 and e P → 0 . The integral error e I is the dominant efficiency

factor because it takes into account the response in all time steps. However, in the case of a tie, the peak error e P can define

which size of AL is more adequate for the problem. 

2.6. Adaptive HABCs for Bidimensional Problems 

The methodology explained in this section is applicable to both complete and partial layers, that is, with some of their

boundaries acting as a free surface (a Neumann BC is considered in this case: ∇u · ˆ n = 0 ). 

Rectangular layers are the classical ALs considered in regular domains whose corners are singularities that may originate 

undesirable reflections or numerical instabilities. Nonetheless, other shapes might be considered with the aiming of reducing 

the computational cost. Thus, hyperellipses are proposed as an intermediate solution between the reducing area of the layer 

and the accompanying radial propagation of the excitation. A hyperellipse is a closed curve defined by: ∣∣∣ x 

a 

∣∣∣n + 

∣∣∣y 

b 

∣∣∣n = 1 (33) 

being n , a and b positive numbers. An ellipse is obtained when n = 2 while a rectangle is obtained when n → ∞ . Neverthe-

less, some points on its boundary can be closer to the corners of the original domain, making the AL less effective. On the

other hand, larger ALs may be required for models with high propagation speeds, low wave frequencies, and sources close 

to boundaries. Thus, n could be increased by adding more material to the AL. 

In this work, for bidimensional domains and complete layers, it is considered rectangular ALs with dimensions (L x + 

2 L ξ ) × (L y + 2 L ξ ) and hyperelliptical ones with semi-major axis a = 0 . 5 L x + L ξ and semi-minor axis b = 0 . 5 L y + L ξ . In the
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Fig. 9. Shapes of different ALs analyzed. 

Fig. 10. Distribution of the speed propagation for bidimensional ALs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

case of domains with a top-free surface, it is considered rectangular ALs with dimensions (L x + 2 L ξ ) × (L y + L ξ ) and hyper-

elliptical ones with semi-major axis a = 0 . 5 L x + L ξ and semi-minor axis b = 0 . 5(L y + L ξ ) ( Fig. 9 ). Circular layers are intended

to accompany the radial nature of the propagation of the excitation. However, their area is greater than the hyperelliptical

ones and for this reason, they are not considered in this study. 

The size parameter of AL is given by L ξ = F L L s , where L s is the distance from the source to the point belonging to the

original boundary where φmin is found ( Fig. 8 ). On the other hand, F L is calculated as if the domain were unidimensional

as explained in Section 2.3 and the adimensional propagation speed parameter a ∗ = 

c 
f L 

in Eq. 9 is computed considered

c 
L = 

1 
φmin 

( Eq. E.10 , Appendix E ). 

Another strategy proposed to increase the effectiveness of HABCs is the distribution of the propagation speed c in circular 

sectors with respect to the source inside the AL, as indicated in Fig. 10 b. This strategy is proposed by taking advantage of

the fact the wave propagation from the excitation is radial in nature. Moreover, the propagation speed in the AL is the same

as those in the adjacent region of the original domain ( Fig. 4 ). 

ALs are ABCs with inherent reflections for waves with oblique incidence [9] . Additionally, bidimensional domains have 

vibrations and harmonics in two directions [78] . Thus, with the purpose of increasing their efficiency, two NRBCs are con-

sidered on the layer boundary ( Fig. 9 ) defined as [6] : 

c∇u · ˆ n + cos θ1 ˙ u = 0 on �ξ × ( 0 , T ) , θ1 = 

{
0 Sommerfeld BC 

otherwise 1 

st -Order Higdon BC 

(34) 

and θ1 for 1 st -order Higdon BC is considered the angle between the normal of a straight surface according to the bound-

ary and the imaginary line between the point on it and the source as seen in Fig 11 a. Nevertheless, if cos | θ1 | < 

√ 

2 / 2 (that is,

| θ1 | > 45 ◦), | θ1 | is substituted by 90 ◦ − | θ1 | . The damping distribution is imposed according to presented in Section 2.4 and

the limit values for X C R are given by Eq. 29 . Furthermore, the aspect ratio of the domain (including or not the AL) is defined

as R A = 

a 
b 

. An example of the proposed quadratic damping profile given by Eq. 12 is shown in Fig. 11 b. 

3. Numerical Implementation 

3.1. Time-dependent Wave Equation 

The implemented governing equation is the forced wave equation given by: 

ü − c 2 ∇ 

2 u + η ˙ u = g(x , t) (35) 
i 
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Fig. 11. Approaches considered for HABCs in bidimensional ALs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

highlighting again that, the proposed methodology for sizing ALs can be applied to forced or not problems. However, the AL

is dimensioned assuming free vibration in a unidimensional problem ( i.e ., g(x i , t) = 0 , as seen in Section 2.2 ). The proposed

methodology is implemented in Python [79] aided by the FEniCS (based on FEM) [66] . An implicit time integration method

is used for solving the weak form of Eq. 35 with an NRBC on the boundary ( Figs. 1 and 9 ), starting from the rest, and

discretized with backward FDM in time: ∫ 



(
u 

k − 2 u 

k −1 + u 

k −2 
)

· v d
 + ( �t ) 
2 ∫ 


 c 2 ∇u · ∇v d
 + �t 
∫ 

ξ

η
(
u 

k − u 

k −1 
)

· v d
ξ

+�t cos θ1 

∫ 
�ξ

c 
(
u 

k − u 

k −1 
)

· v d�ξ = ( �t ) 
2 ∫ 


 g · v d

(36) 

where u (x i , t) is the wave vibration amplitude field, c is the wave propagation speed, g(x i , t ) is the excitation, �t is the

time step size and v is an arbitrary test function. The third term in the first line integrated over the domain 
ξ ⊆ 
 is the

contribution of the added AL (being η = 0 in the original domain 
). The first term in the second line integrated on the

surface �ξ is the NRBC on the AL boundary ( Eq. 34 ). Remembering that in unidimensional domains, it is only applied a

Sommerfeld BC (see Fig. 7 ). For bidimensional ones, the NRBCs considered in the layer boundary can be of the Sommerfeld

or 1 st -Higdon type. The system is always considered starting from rest, and when the excitation is required to be applied at

one point in the mesh, a Dirac delta function in space and a time-dependent function q (t) is used, so that: 

g ( x i , t ) = δ
(
x i − x s i 

)
q (t) (37) 

with x s i as the source localization. Here, the source is a Ricker wave which is defined in the time domain as [80] : 

q (t) = 

(
1 − 2 

(
π f s 

(
t − 1 

f s 

))2 
)

exp 

(
−
(
π f s 

(
t − 1 

f s 

))2 
)

(38) 

where f s is the central or peak frequency and with maximum amplitude at t = 

1 
f s 

. On the other hand, the minimal dimen-

sion of the finite element l min and the maximum value for the time step �t max are determined according to the expres-

sions [81,82] : 

l min = 

c min 

F R f s 
and �t max = 

2 l min 

π
√ 

D c max 

(39) 

where F R is the number of points selected by the user for representing the central wavelength of the source λs = 

c 
f s 

and, c min 

and c max are the minimum and maximum propagation speeds, respectively. D is the geometrical dimension of the model 

(unidimensional D = 1 or bidimensional D = 2 ). However, with purpose of conserving the same element size inside the AL,

the size parameter F L (see Sections 2.3 and 2.6 ) is rounded up with the ceiling function �·� , so that: 

F L = 

l min 

L s 

⌈ 
L s 

l min 

F 
R = | C Rmin | 

L 

⌉ 
(40) 

being F 
R = | C Rmin | 

L 
obtained from the methodology presented in Section 2.3 and with L s as the reference distance as explained

in Sections 2.5 and 2.6 . In bidimensional problems, the maximum damping coefficient imposed inside the AL is based on

the approximation of the fundamental frequency ω 1 of the bidimensional domain including the layer. The approximation 

of ω 1 depends on the minimum arrival time φmin (see definitions in Sections 2.5 and 3.2 ) and geometrical considerations

(see Appendix E ). Remembering that, ηmax = 2 ξω 1 and ξ = 0 . 999 . The analytical calculation of the fundamental frequency

ω 1 for the hyperlliptical layers studied here are based on the approximations presented in [78,83,84] and, it is made in

order to save computational effort. Besides, it is defined an area factor F A = 

A al 
A orig 

that quantifies the increase in area when

the layer is added with respect to the area of the original domain. 

3.2. Eikonal Implementation 

The Eikonal equation ( Eq. 30 ) is used to find the point where the highest error should occur (see Section 2.5 for error

measure definition). It is solved by using a finite element approach based on the Galerkin weak formulation with a linear
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Fig. 12. Criterion for the minimum and maximum exponents ( n min and n max ) in hyperelliptical layers. l min is the minimal dimension of the finite element 

(see Eq. 39 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interpolation. The weak form for the residual R eik is given by [77] : 

R eik = 

∫ 



√ 

∇ φ · ∇ φ y e − f e 

c 
y e + μeik ∇φ · ∇y e d
 −

∫ 
�

y e ∇φ · n d� (41) 

where f e = 1 , y e is a test function, and c is the propagation speed in the medium. It is assumed μeik = 

√ 

2 l min , i.e ., the

maximal distance of two points in the FE. By setting a Dirichlet condition of φ = 0 at the wave sources, and ∇φ · n = 0 at

the boundaries, the calculated value of φ becomes the elapsed time for the wavefront to reach each point of the domain.

Thus, the point on the boundary with the lowest value of φ = φmin becomes the point for the error evaluation. Besides, it is

important to notice that the Eikonal is a non-linear equation, so the solution is found by minimizing the residual, so R eik ≈ 0

at the final solution. 

3.3. Extreme Values for Hyperellipse Exponents 

The minimum and maximum integer exponents ( n min and n max ) for hyperelliptical layers to be considered in the bidi-

mensional analysis are defined from Eq. 33 , so that they satisfy ( Fig. 12 ): 

n min : 

∣∣∣∣0 . 5 L x + l min 

a 

∣∣∣∣
n min 

+ 

∣∣∣∣0 . 5 L y + l min 

b 

∣∣∣∣
n min 

≤ 1 

n max : 

∣∣∣∣0 . 5 L x + L ξ cos θ

a 

∣∣∣∣
n max 

+ 

∣∣∣∣0 . 5 L y + L ξ sin θ

b 

∣∣∣∣
n max 

≤ 1 

(42) 

with the angle θ = tan 

−1 ( 
L y 
L x 

) and the remain terms defined in Section 2.6 . That is, n min is the minimum exponent for the

hyperellipse that passes through or contains the point P min = ( 0 . 5 L x + l min , 0 . 5 L y + l min ) considering the curve centered at

the origin, i.e ., the projections on the semi-axes of the hyperellipse of the domain diagonal plus the diagonal of a finite

element to avoid interference with the original domain. While n max is the maximum exponent when assumed that the 

hyperellipse with the same center passes through or contains the point P max = ( 0 . 5 L x + L ξ cos θ , 0 . 5 L y + L ξ sin θ ) where

L ξ cos θ and L ξ sin θ are the projections of the parameter size L ξ in the direction of the domain diagonal on the semi-axes

of the hyperellipse, since θ = tan 

−1 ( 
L y 
L x 

) . 

n min and n max can be determined iteratively by evaluating the left side in both criteria of Eq. 42 , so that the point that

satisfies the equality is exactly on the boundary. On the other hand, as the exponents are considered integers if the value

obtained on the left side is less than 1 the point is inside the hyperellipse and the exponent is accepted. Conversely, if it

is greater than 1 the point is outside the curve and the exponent is rejected. However, n max can be very large ( e.g . a value

of 6 or greater) with the proposed criteria, resulting in models that take a long time to evaluate and may be unnecessary,

since as the exponent of the hyperellipse increases the system tends to have fewer differences with the rectangular layer 

model. Thus, an upper limit for n max can be set up based on the superness concept. The superness s is a parameter that

defines the extremal points (“corners”) of a hyperellipse of degree n centered at the origin, so that [85,86] : 

s = 2 

− ( 1 / n ) ⇒ | x max | = sa ∧ | y max | = sb (43) 
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then the extremal points are given by the coordinates ( ±sa, ±sb ) . Now, if it is considered that P max = ( 0 . 5 L x + L ξ cos θ ,

0 . 5 L y + L ξ sin θ ) is a extremal point of the hyperellipse, n max is bounded by (for more details see Appendix F ): 

n max = max 
(
min 

(
n 

ari 
max , n 

geo 
max , n 

har 
max 

)
, n min + 1 

)
(44) 

Likewise, if P min = ( 0 . 5 L x + l min , 0 . 5 L y + l min ), n min can be lower bounded by (see Appendix F ): 

n min = max 
(
n 

ari 
min , n 

geo 
min 

, n 

har 
min , 2 

)
(45) 

where the minimum value of 2 is considered because the admissible curve must not be a hypoellipse ( n < 2 ) and remem-

bering that the exponents considered in this work are integers. Moreover, the limits calculated by Eqs. 44 and 45 must still

satisfy Eq. 42 so the left side in this equation must be less than or equal to 1. The terms n ari 
∗ , n 

geo 
∗ , n har 

∗ are integer exponents

based on arithmetic, geometric and harmonic means, respectively (see Appendix F for details), and they are defined as: 

n 

ari 
∗ = 

⌈ 

ln 

(
1 
2 

)
ln 

(
x ∗+ y ∗
a + b 
)
⌉ 

, n 

geo 
∗ = 

⌈ 

ln 

(
1 
4 

)
ln 

(
x ∗y ∗
ab 

)
⌉ 

, n 

har 
∗ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 

ln 

(
1 
2 

)
ln 

(
1 
a 

+ 

1 
b 

1 
x ∗

+ 

1 
y ∗

)
⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 

(46) 

with �·� as the ceiling function, x ∗ and y ∗ as the point coordinates of P min or P max according to the case ( Fig. 12 ), and a

and b as the semi-axes of the hyperellipse (see Section 2.6 for their definitions). On the other hand, when the exponent n

is selected the hyperelliptical layer is added to the original model and a remeshing process is necessary. Here, this process

starts from a rectangular mesh with dimensions 2 a × 2 b (its left bottom corner at the origin) with element size l min and

then elements crossed by the hyperelliptical border are deformed. The remaining elements outside it are discarded. Nodes 

belonging to crossed elements outside the curve will now be boundary nodes and they require to be relocated by using the

parametric description of a hyperellipse 1 (see Fig. 13 ): 

x = a | cos r | 2 n sgn ( cos r ) and y = b | sin r | 2 n sgn ( sin r ) ∴ 0 ≤ r ≤ 2 π (47) 

where sgn (·) is the sign function. Therefore, the new absolute coordinates P new 

= ( x new 

, y new 

) for a point with original

coordinates P ori = ( x ori , y ori ) and relative coordinates P rel = ( x rel , y rel ) = ( x ori − a , y ori − b) outside the curve is: 

x new 

= a 

(
1 + | cos r | 2 n sgn ( cos r ) 

)
and y new 

= b 

(
1 + | sin r | 2 n sgn ( sin r ) 

)
and r = tan 

−1 

⎛ 

⎝ 

sgn ( y rel ) 
∣∣ y rel 

b 

∣∣ n 
2 

sgn ( x rel ) 
∣∣ x rel 

a 

∣∣ n 
2 

⎞ 

⎠ (48) 

This mapping must be done carefully, as it can lead to distorted elements in coarse meshes as n increases or in refined

meshes as n decreases. 

3.4. Implementation Flowchart 

This work is done considering the wave vibration amplitude as the state variable. However, in areas such as Acoustics 

or Geology, the state variable may be pressure or density, being the pressure fluctuations easier to measure in reality than

density, velocity, or displacement oscillations [87] . Therefore, the proposal here shown is applicable for any phenomenon 

governed by the scalar wave equation ( Eq. 35 ) regardless of the type of state variable. 

Figure 14 shows the flowchart for modeling with the proposed methodology for HABCs. First, a reference model and the 

required data for solving the problem are specified. The discretization parameters are defined by Eq. 39 . In the reference

model, the Eikonal equation in Eq. 41 is solved and the critical points are determined following the criterion explained in

Section 2.5 . At these points, the frequency response of the transient response in the reference model is computed via the

Fast Fourier Transform (FFT), and the reference frequency f REF (see Fig. 15 ), the propagation speed on the original boundary

c � and the distance L s from the source are sought. Thus, the parameter a ∗ = 

c �
f REF L s 

≈ 1 
f REF φmin 

in Eq. 9 can be determined

(see Section 2.6 ). 

Therefore, f REF (φmin ) = f min is the dominant frequency of the response at the point where φmin is found (see

Sections 2.5 and 3.2 for its calculation). However, the frequency of the response is unknown a priori and it can be assumed

as the frequency of the excitation source, then initially f REF = f s . In a second step, f REF = f min can be estimated via FFT and

to correct the size of the AL (see Fig. 15 ). Nonetheless, in the inverse problem, this is not required since f REF is updated

according to FFT applied to response in the previous iteration. The candidate critical points are determined on the vertical 

and horizontal boundaries of bidimensional domains independently to evaluate the errors. Nevertheless, when the model 

have multiple sources (see Section 4.3 ), the point with minimum φmin and the closest source (named as critical source) to

this point determine the distance L s for sizing the AL. 
1 Weisstein, E. W. “Superellipse”. From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/Superellipse.html 
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Fig. 13. Relocation of mesh nodes using the parametric description of a hyperellipse. 

Fig. 14. Flowchart for modeling with proposed HABCs. 

Fig. 15. Example of frequency response indicating f s and f min . 
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Fig. 16. Model for tests of AL in 1D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size parameter F L is figured out by finding the first root of the Eq. 11 as explained in Section 2.3 . Nevertheless, for

bidimensional problems, since the reference distance L s is usually less than any original domain dimension and the medium 

studied can be heterogeneous, the appropriate size for the problem may be an n -th root of this expression so that, the

smallest possible size that meets the requirements is chosen. Besides, in bidimensional ones, the shape layer is selected 

between rectangular or hyperelliptical. It should be noted that the allowable integer exponents for the hyperelliptical layers 

are bounded by n min and n max (see Section 3.3 for their definitions). 

The layer is added to the original model and the resulting one is remeshed as shown in Section 3.3 . The velocity profile

is extended for unidimensional models while for bidimensional ones, two strategies may be adopted: extension by straight 

continuity or by circular sectors ( Fig. 10 ). Then, NRBCs are applied on the layer boundary ( Eq. 34 ) and | C Rmin | is initially set

to X CR = X ∗CR (see Eq. 25 ) or X CR = X ini 
C R 

( Eq. 18 ) when X ∗C R < ξmax d. Next, the damping function is defined by calculating the

parameters shown in Eq. 12 and the damping profile is applied within the AL. Remembering that damping is not considered

neither in the original domain nor in the reference model. 

The transient FEM problem governed by Eq. 36 is solved and the response is acquired at the critical points. After this

simulation, the error measures are computed at these points, and the trapezoidal rule is used to calculate the integral terms

of the integral error e I with N �t time steps ( Eq. 31 ). The peak error e P is determined by the maximum peaks observed in

the response in the time interval t ∈ [0 , t f ] ( Eq. 32 ). If the result is satisfactory, that is, the error measures tend to zero, the

process is ended. Otherwise, the parameter X min 
C R 

≤ X C R ≤ X max 
C R 

(see definitions and limits from Eq. 27 to Eq. 29 ) is readjusted

and the damping profile is modified for a new simulation until a minimum error value is reached. This fit follows a numer-

ical line search process assuming that e I is a unimodal function and taking a new search interval with half the length of the

previous one when the error value starts to increase, as described by Arora [88] . 

Finally, in order to calculate the computational resources used, the execution time t exe and the memory used M em 

are

measured. These parameters have been estimated for all the numerical results by using a PC architecture with an Intel Core

i9-9900K Processor at 3.6GHz-16MB Cache 8 Cores-16 Threads, 64GB HyperX DDR4-2400MHz Kingston RAM, an SSD Drive 

Kingston SATA A400-480Gb SATA III for the operating system, an HD Drive Seagate BarraCuda SATA III-1Tb at 7200RPM for 

data storage and a PNY NVidia Quadro graphic card P50 0 0 PCI Express-16GB 2560 CUDA Cores. 

4. Numerical Results 

Numerical examples presented here include a unidimensional model for the purposes of verification and validation of 

the methodology and two bidimensional models to show the potential and performance of the proposed approach. Besides, 

the results are compared with other strategies used traditionally. 

4.1. Unidimensional Problem 

Consider the problem in Fig. 16 whose objective is to calculate the AL size and damping parameters by using the method-

ology exposed in Sections 2.3 and 2.4 . The source frequency is f s = 5 Hz and the length of the original domain is a function

of the central wavelength of the source λs , then L = N w 

c 
f s 

. Positions of sources S i and receivers R i (points of evaluation of

the response for this case) are shown in Fig 16 . 

The sources are unitary Ricker wave type and the receiver R 1 is located at the beginning of the AL (boundary of the

original domain). The receiver R 2 is located at the position of the source S 1 . The length of the homogeneous bar is L = 4 λs 

( N w 

= 4 ) and c = 1 . 5 km 

s . The reference model (named INF ) for error evaluation has a length of L = 24 λs and no damping

or AL is considered. The final time considered in the simulation is t f = 4 s . Therefore, a comparative study is carried out

considering two cases for the number of points (5 and 20) for representing the central wavelength of the source F R ( Eq. 39 ).

The number of time steps N �t used for solving the transient FEM ( Eq. 36 ) and the factor X C R used in QUA damping

distributions ( Eq. 16 ) are shown in Table 1 . For unidimensional problems, X C R can be easily determined iteratively because

of the computational cost is not an issue. However, for bidimensional ones (see numerical results in Sections 4.2 and 4.3 ),

estimations for X CR are extremely useful to aid in the selection of X CR since the execution times of several models of this

type can be prohibitive. 
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Table 1 

Additional data for unidimensional models analyzed. 

F R N �t 

X CR for QUA Damping 

I Model F Model 

5 180 0.64 0.54 

20 679 0.53 0.52 

Table 2 

Comparison of the results for F R = 5 . 

Obs: Model(M), Damping(D). 

Table 3 

Comparison of the results for F R = 20 . 

Obs: Model(M), Damping(D). 

 

 

 

 

 

The results for the comparative study in unidimensional models are presented in Tables 2 and 3 where a QUA damping

( Eq. 16 ) presents the best results for all cases considered. The time response in receivers for F R = 20 is exhibited in Fig 17 .

The models are identified in the tables in column M according to: 

• SOM : Model with Sommerfeld BC on right boundary without AL. 
• ISM : Initial model considering AL based on the dominant frequency at the source point (at R 2 ). 
• FSM : Final model considering AL based on dominant frequency at R 1 with f REF = f min as the reference frequency (see

Section 3.4 ). 

All frequency responses are calculated from the reference model INF via FFT. The suffix SM for models I and F represents

a Sommerfeld BC applied on the right end. Several damping distribution functions (see Appendix D ) are considered in

column D: 

• QUA : Quadratic function proposed in Section 2.4 . 
• OPN : Polynomial function of degree N considering linear (OP1), quadratic (OP2), and cubic (OP3) functions. 
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Fig. 17. Time response in receivers for F R = 20 and QUA damping distribution. INF in the legend is the reference signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• LSI : A combination between the OP1 distribution and a sinusoidal function 

2 given by ηcr ξ
∣∣∣x REF 

i − sin 2 πx REF 
i 

2 π

∣∣∣. 
The error measures are registered in the columns e I and e P Eqs. 31 and (32) . The ratio 

L ξ
λs 

is the relation between the

size of the AL L ξ = LF L ( Fig. 16 ) and the wavelength of the source. ηmax is the maximum damping imposed inside the layer

while N el is the number of elements within the layer. The columns t exe and M em 

contain the execution time in seconds and

the memory used in MB. The FSM-QUA models are highlighted in red color while the ISM-QUA ones are distinguished by

blue color. 

The results show that the dimensioned AL for the FSM models with QUA damping distribution is effective. Its errors are

less than 1% for e I and less than 4% for e P . For the ISM models and the same damping function, the errors are less than

11% for e I and less than 8% for e P . The polynomial functions show errors less than 2% for e I and less than 5% for e P for

the FSM models. While for the analogous ISM ones, the errors are less than 12% for both error measures. FSM-LSI models

reach errors less than 3% for e I and less than 4% for e P . Nevertheless, the ISM-LSI one’s present errors lower than 14% for

e I and less than 12% for e P . However, the best results for all cases are presented by the FSM models with the proposed 

QUA damping distribution and the shortest execution times compared to the other FSM models. The used memory remains 

almost constant for all models considered. 

On the other hand, the model SOM shows errors less than 1% for both error measures. Nevertheless, the use of an AL is

justified to the detriment of computational cost for bidimensional models (see Sections 4.2 and 4.3 ). Here, the intention is

to validate and verify the proposed methodology. 

4.2. Bidimensional Problem 

A bidimensional model is analysed to show the potential of the proposed HABCs. The original domain is a rectangle of

dimensions L x = 2 L y being L x = N w 

c min 
f s 

, with N w 

= 16 , c min = 1 . 5 km 

s and the source frequency f s = 5 Hz. 

The source is the type Ricker with maximum amplitude 0 . 4 kN 
kg 

and it is located at (0 . 35 L x , 0 . 75 L y ) from the lower left

corner of the original domain. Six receivers are distributed on its boundary and an additional receiver is located in the

position of the source for a total of seven receivers ( Fig. 18 ). The final time considered for the simulation is t f = 4 s . The

tested layer shapes ( Fig. 9 ) are rectangular (referred as REC ) and hyperelliptical (referred as EXX where XX is the curve

degree n , Eq. 33 ), satisfying the criteria presented in Section 3.3 . 

A comparative study is carried out on several types of models considering a small group of cases ( Table 4 ) for the number

of points representing the central wavelength of the source F R ( Eq. 39 ): 

• SOM : Model with Sommerfeld BC on the original boundary without AL. 
• HIG : Model with 1 st -Higdon BC on the original boundary without AL. 
• I|NRBC : Initial model considering AL based on the dominant frequency at the source point (located at receiver R 7 ) with

either Sommerfeld BC ( ISM ) or 1 st -Higdon BC ( IHG ). 
2 As implemented in Devito: Symbolic Finite Difference Com putation, https://github.com/devitocodes/devito/blob/master/examples/seismic/abc _ methods/ 

02 _ damping.ipynb 

496 

https://github.com/devitocodes/devito/blob/master/examples/seismic/abc_methods/02_damping.ipynb


R.A. Salas, A.L.F. da Silva, L.F.N. de Sá et al. Applied Mathematical Modelling 113 (2023) 475–513 

Fig. 18. Model for tests of HABCs in 2D. 

Table 4 

Additional data for bidimensional models analyzed. 

F R 

l min 

(m) N �t 

X CR I Models F Models 

L Extension C Extension n min n max n min n max 

8 37.50 1000 0.53 0.80 3 6 3 5 

13 23.08 1640 0.23 0.45 5 

14 21.43 1760 0.39 6 

16 18.75 2000 0.27 0.51 

 

 

 

 

 

 

 

 

 

 

• F|NRBC : Final model considering AL based on dominant frequency at the critical point (receiver R 1 ) with f REF = f min as

the reference frequency. The NRBCs on the AL boundary may be either Sommerfeld ( FSM ) or 1 st -Higdon ( FHG ). 

It should be remembered that the increase in the area due to the AL is quantified by the area factor F A (see definition in

Section 3 ). The damping distribution functions considered here are (see expressions in Appendix D ): 

• QUA : Quadratic function proposed in Section 2.4 . 
• OPN : Polynomial function of degree N with the original domain boundary as a reference. Linear (OP1), quadratic (OP2), 

and cubic (OP3) functions are considered. 

• LSI : Function combining the OP1 distribution and a sinusoidal function 

3 expressed as ηcr ξ
∣∣∣x REF 

i − sin 2 πx REF 
i 

2 π

∣∣∣. 
• RAD : Radial with center at the original domain centroid. 
• ELL : Elliptical with center at the original domain centroid. 

The velocity profile extension can alternate between the two options shown in Section 2.6 , either extension by straight

continuity (suffix L ) or by circular sectors (suffix C ). The factor X C R used in QUA damping distributions and the minimum and

maximum exponents ( n min and n max , Eqs. 44 and 45 ) for hyperelliptical layers according to the model are shown in Table 4 .

In addition to the number of time steps N �t used for solving the transient FEM (see Eq. 36 ) and the minimal dimension of

the FE l min (see Eq. 39 ). The numerical results for this comparative study are presented from Table 5 to Table 8 . 

The process for executing the set of models is the following: First, models with AL (I and F models) with only QUA

damping distribution, for all the shapes considered (REC and EXX in Table 4 ) and all remaining options (extension strategies,

NRBCs on the outer boundary), are executed. Second, the shape with the best performance in the previous stage is selected

for a comparative study. This study consists in modeling that layer shape with other damping distributions (OP1, OP2, OP3, 

LSI, RAD, and ELL) for all models with AL (I and F models), extension strategies (L and C) and NRBCs on the outer boundary
3 As implemented in Devito: Symbolic Finite Difference Com putation, https://github.com/devitocodes/devito/blob/master/examples/seismic/abc _ methods/ 

02 _ damping.ipynb 
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Table 5 

Comparison of the results for F R = 8 and extension by straight continuity. 

Obs: Model(M), Shape(S), Damping(D). 

Table 6 

Comparison of the results for F R = 8 and extension by circular sectors. 

Obs: Model(M), Shape(S), Damping(D). 

 

 

 

 

 

 

 

(-SM and -HG). Finally, models without AL (SOM and HIG) are executed in order to complete the process. At most a total of

132 models are executed in this study for each value of F R . Therefore, only the best result for rectangular and hyperellptical

layers with each damping distribution are presented. Besides, the best EXX-QUA model is highlighted in red color while 

the REC-QUA one is distinguished by blue color. Likewise, the columns t exe and M em 

contain the execution time in minutes,

and the memory used in MB, respectively. For the calculation of the ratio 
L ξ
λs 

in bidimensional cases, the size of the AL is

L ξ = F L L s . Due to space restrictions, only results for F R = 8 and F R = 16 are shown. 

The models are identified as MOD-SHP-DMP, where MOD corresponds to the model with the NRBC applied on the cor- 

responding boundary (SOM, HIG for models without layer, and ISM, IHG, FSM, and FHG for models with HABCs) and SHP

for the layer shape (REC and EXX) while DMP represents the damping distribution (QUA, RAD, ELL or OPN). Eventually, if

an E suffix is specified MOD-SHP-DMP-E, the model is identified by the extension strategy of the velocity profile. Then a
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Table 7 

Comparison of the results for F R = 16 and extension by straight continuity. 

Obs: Model(M), Shape(S), Damping(D). 

Table 8 

Comparison of the results for F R = 16 and extension by circular sectors. 

Obs: Model(M), Shape(S), Damping(D). 

 

 

 

 

 

 

model FHG-E03-QUA-C is the identifier for the model considering AL based on the dominant frequency f REF (φmin ) = f min 

and a 1 st -Higdon BC on its boundary with hyperelliptical layer of the degree n = 3 , and quadratic damping distribution as

explained in Section 2.4 . The label C at the end of the identifier represents an extension of the velocity profile by circular

sectors ( Fig. 10 ). 

Best results for all cases are achieved by the hyperelliptical layers with QUA damping distribution inside them combined 

with a 1 st -Higdon BC on the boundary layer. The layer is determined based on the dominant frequency at the corresponding

critical point. Nonetheless, some I models are present in the best results, i.e ., models considering AL based on the dominant

frequency at the source point. In this case, the dominant frequency at this point does not correspond to the central fre-

quency of the source because it is close to the boundaries of other regions with different propagation speed ( Fig. 18 ). Thus,
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Table 9 

Summary of the results for proposed QUA damping distribution. 

Model 

Damping Data Layer Data Error Results Used Resources 

f REF (Hz) X CR ηmax · 10 −3 N el 

L ξ

λsou 
F A e I (%) e P (%) t exe (m) M em (MB) 

Hyperelliptical Layers (EXX) with Extension by Straight Continuity (L) 

FHG-E03- F R 08 3.60 0.53 5.968 16 2.000 1.437 2.53 4.13 2.97 11.50 

FHG-E03- F R 13 0.23 6.071 27 2.077 1.459 3.04 7.50 13.63 13.53 

FHG-E03- F R 14 6.156 29 2.071 1.457 3.22 5.35 18.03 13.97 

FHG-E03- F R 16 0.27 6.112 33 2.063 1.455 2.97 6.27 29.79 14.95 

Hyperelliptical Layers (EXX) with Extension by Circular Sectors (C) 

FHG-E03- F R 08 3.60 0.83 5.968 16 2.000 1.437 3.49 4.30 3.00 11.50 

FHG-E03- F R 13 0.45 6.071 27 2.077 1.459 4.41 9.17 13.63 13.51 

FHG-E03- F R 14 0.39 6.156 29 2.071 1.457 4.59 6.90 18.00 13.98 

FHG-E03- F R 16 0.51 6.112 33 2.063 1.455 4.37 7.75 25.75 14.93 

Rectangular Layers (REC) with Extension by Straight Continuity (L) 

FHG- F R 08 3.60 0.53 6.524 16 2.000 1.562 7.00 8.76 3.11 11.53 

FHG- F R 13 0.23 6.645 27 2.077 1.587 6.14 7.46 15.11 13.65 

FHG- F R 14 6.737 29 2.071 1.585 5.71 7.69 24.28 14.15 

FHG- F R 16 0.27 6.687 33 2.063 1.582 5.68 6.05 34.39 15.16 

Rectangular Layers (REC) with Extension by Circular Sectors (C) 

FHG- F R 08 3.60 0.83 6.524 16 2.000 1.562 8.18 8.74 3.12 11.53 

FHG- F R 13 0.45 6.645 27 2.077 1.587 7.48 5.90 15.14 13.66 

FHG- F R 14 0.39 6.737 29 2.071 1.585 6.95 6.70 24.33 14.15 

FHG- F R 16 0.51 6.687 33 2.063 1.582 6.98 5.93 33.71 15.14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when the excitation wave hits these boundaries originates reflections that produce constructive or destructive interference 

with the source wave and the dominant frequency is different from the source frequency. 

On the other hand, hyperelliptical layers of degree n = 4 for cases such as F R = 14 with extension by circular sectors

and F R = 16 with extension by straight continuity failed due to the mesh modification, as the elements can be distorted by

large variations. Nevertheless, in hyperelliptical layers with higher degrees as n = 5 or n = 6 , the elements can be distorted

despite the little movement of the nodes causing the mode not to run. This situation is presented for n = 5 and F R = 8

for both strategies of extension of the velocity and, for n = 6 and both F R = 14 and F R = 16 with extension by straight

continuity. Other strategies for the meshing of these irregular domains may be implemented in order to circumvent this 

issue. 

The model with only Sommerfeld BC shows errors between 3.7 and 6.1 times for e I and between 3.8 and 9 times for

e P compared to the values for the best result at each case. The errors for the model with only 1 st -Higdon BC are between

2.4 and 4.8 times for e I and between 4 and 9.2 times for e P relative to the same reference values. Therefore, the use of an

AL is justified to the detriment of computational cost. However, there is a trade-off between the magnitude of the error 

and the amount of material added to the original model since a very large F L can entail a high cost of computational

resources. Nevertheless, the area increment factor F A is between 1.437 and 1.459 for hyperelliptical layers, and between 

1.562 and 1.587 for rectangular ones. 

The summary of the results for the proposed QUA damping distribution are shown in Table 9 . The models in column

M are identified according to the explained previously, and it is added a suffix F R XX for the number of points used for

representing the central wavelength of the source λsou . The hyperelliptical layers of n = 3 for models F- F R 16 and the time

response in receivers for model FHG-E03-QUA- F R 16 considering the different extension strategies are exhibited in Fig. 19 

and Fig. 20 , respectively. Observing Tab. 9 , it is noticeable that, for both types of extension of the profile velocity inside the

layer, hyperelliptical layers show errors less than 4.6% and 9.2% for e I and e P , respectively; rectangular ones present errors

less than 8.2% and 8.8% for e I and e P , in that order; keeping in mind that all models use a 1 st -Higdon BC. No relevant results

are reported for models with Sommerfeld BC and hyperlliptical layers of degree greater than 3. 

Still in Tab. 9 , the hyperelliptical layers show a computational cost reduction between 3.8% and 26.1%; and less than 1.4%

memory usage savings. Now, comparing the performance between analogous layers with different extensions, rectangular 

layers with extension by straight continuity show lower error measures in all cases. In turn, the same behavior is observed

in hyperelliptical layers with extension by straight continuity compared to analogous ones with extension by circular sec- 

tors. The differences in error measures for extension strategies are between 37% and 48% for hyperelliptical layers and 16% 

and 23% for rectangular layers, and discrepancies of less than 0.2% in memory usage. Moreover, the factor X C R in the models

with extension by circular sectors is greater than in models with extension by straight continuity in ratios between 56% and

96%. It should be noted that the results are affected by the rounding up of the size of the AL derived from the size of the

finite element (see Eq. 40 ). Thus, the best performance in the analyzed cases is achieved using hyperelliptical layers with
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Fig. 19. Distribution of the speed propagation in models F-E03- F R 16. The dotted line on the plots is the domain of interest. 

Fig. 20. Time response in receivers for model FHG-E03-QUA- F R 16. The solid line on the plots is the reference signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

extension by straight continuity, given that the errors and execution time are the lowest. On the other hand, rectangular 

layers have the highest errors independent of the type of extension. 

4.3. Marmousi Model 

Marmousi Model was created in the Institut Francais du Pétrole (IFP) in 1988 [82] . This data set is considered a benchmark

for geophysical purposes. The model version considered in this work was downloaded to https://sites.google.com/a/kaust. 

edu.sa/tariq/research/anismarmousi whose dimensions are 9 . 2 km x 3 km (see Fig. 21 ) and the mesh consists of 736 x 240

finite elements with l min = 12 . 5 m . The minimum propagation speed is c min = 1 . 5 km 

s while the maximum is c max = 5 . 5 km 

s .

The sources are unitary Ricker with central frequency f s = 6 Hz and located as shown in Fig. 21 (sources depth: 25 m ). 

Nevertheless, the AL size is determined by the closest source to the point on the original boundary with the lowest arrival

time φmin , naming it as the critical source ( Fig. 21 ). Again, six receivers are distributed on its boundary and an additional

receiver is located in the position of the critical source for a total of seven receivers. Thus, R 1 is the point identified by the

lowest arrival time φmin of the entire model, R 2 is the point with the lowest arrival time on vertical boundaries and R 7 is

the point of the critical source. Likewise, the reference distance L s is the distance from R 7 to R 1 . Since the data set has a

fixed mesh size, the number of time steps �t is governed by the number of points representing the central wavelength of

the source F R (see Eq. 39 ). Therefore, F R = 20 is selected for this problem and the final time considered for the simulation is 

t f = 3 . 5 s . Consequently, the number of time steps used for solving the transient FEM ( Eq. 36 ) is N �t = 3422 . 

Model types, layer shapes, damping distribution functions, velocity profile extensions, and, the nomenclature used are 

the same as the problem in Section 4.2 . Data additional for the problem is shown Table 10 , including the heuristic factor

X C R used in QUA damping distributions ( Eq. 16 ). Final models, or F models, are only considered in this study. That is, those

in which AL size is based on the reference frequency f REF = f min at the corresponding critical point. 

This example shows that the appropriate size for the layer may not be the first root of Eq. 11 , different from the model

studied in Section 4.2 . Although the reference distance L s is almost the domain height, the medium has a high heterogeneity
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Fig. 21. Marmousi Model for tests of HABCs in 2D. 

Table 10 

Additional data for Marmousi model analysis. 

F R l min (m) N �t f REF (Hz) 

X CR 

F L 

F Models 

L Extension C Extension n min n max 

20 12.50 3422 3.37 1.99 0.2227 4 5 

0.3067 3 4 

0.3403 

0.4748 2 3 

Fig. 22. Integral error e I vs size parameter F L for models FHG-QUA. 

 

 

 

 

 

 

 

 

in the propagation speed profile. Here, a requirement for finding the proper layer size is to limit the integral error e I ≤ 5%

after obtaining a greater one with the smallest size corresponding to the first root of Eq. 11 . Thus, process for sizing layer is

the following: First, F models with QUA damping distribution, for all the shapes considered (REC and EXX in Table 10 ) and

all remaining options (extension strategies, NRBCs on the outer boundary), are executed for the smallest F L (first root). If

the integral error e I ≤ 5% for both extension strategies (L and C) the process finishes, otherwise the next size parameter F L 
( n + 1 -th root in Eq. 11 ) is tested under the same conditions. It should be highlighted that, the criterion of Eq. 42 establishes

different limits for the exponents ( n min and n max ) for the different cases of F L (see Table 10 ). 

Finally, the shape with the best performance for the last F L tested in the previous stage is selected for a comparative

study as done in Section 4.2 with analogous F models. Due to the large number of models considered in this study, only the

best result for rectangular and hyperellptical layers with each damping distribution are presented. Again, models without 

AL (SOM and HIG) are executed in order to complete the comparison, and in the result tables, the best EXX-QUA model is
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Fig. 23. Distribution of the speed propagation in models FHG-E04 and F L = 0 . 2227 . The dotted line on the plots is the domain of interest. 

Fig. 24. Time response in receivers for model FHG-E04-QUA and F L = 0 . 2227 . The solid line on the plots is the reference signal. 

Fig. 25. Distribution of the speed propagation in models FHG-E03 and F L = 0 . 4748 . The dotted line on the plots is the domain of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

highlighted in red color while the REC-QUA one is distinguished by blue color. In addition, the execution time t exe for the

models is reported in hours. 

Figure 22 shows the lowest error obtained for rectangular and hyperelliptical layers for each case of F L and the different

extension strategies for the propagation speed within the layer, all models using a 1 st -Higdon BC. It should be noted that,

the lowest errors in hyperelliptical layers are obtained with the exponent n min , except for the case F L = 0 . 4748 , they are

achieved with n max = 3 (see Table 10 ). This can be attributed to the short distance between the domain corners and the

layer border when n = 2 . 

For the first F L = 0 . 2227 , the lowest errors have practically no difference but they are greater than 26% even though the

difference in the areas of the models is 4.8%. For the second F L = 0 . 3067 , rectangular layers outperform the hyperelliptical

ones with 16.2% and 17.6% smaller errors for the L extension and for the C extension, respectively. On the contrary, for

the remaining two cases of F L , the hyperelliptical layers obtain the lowest error compared to the rectangular ones. For

F L = 0 . 3403 , the error in hyperelliptical layers are 6.0% and 0.2% smaller errors for the L extension and for the C extension,

respectively. While for F L = 0 . 4748 , the errors are smaller by 49.2% and 58.4% considering the same sequence. For these three

last F L the area difference is around 8%. However, the saving in computational cost for the hyperelliptical layers is between

12% and 21% while the reduction in memory usage can be up to 8%. The hyperelliptical layers with the lowest error for
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Fig. 26. Time response in receivers for model FHG-E03-QUA and F L = 0 . 4748 . The solid line on the plots is the reference signal. 

Table 11 

Comparison of the results for 1 st -Higdon BC and extension by straight continuity. 

Obs: Model(M), Shape(S), Damping(D). 

 

 

 

 

 

 

 

 

 

F L = 0 . 2227 and F L = 0 . 4748 are displayed Fig. 23 and Fig. 25 , respectively. Likewise, the time response in receivers for the

same cases are exhibited Fig. 24 and Fig. 26 , in that order. 

The numerical results of the comparative study executed are presented in Table 11 and Table 12 . Newly, the best results

for all extension strategies are obtained by the hyperelliptical layers with QUA damping distribution inside them combined 

with a 1 st -Higdon BC on the boundary layer. The errors for the model with only 1 st -Higdon BC are 30.1 (C extension) and

31.4 (L extension) times for e I and 28.8 (L extension) and 39.5 (C extension) times for e P , relative to the values for the

best result at each case. Similarly, the model with only Sommerfeld BC shows errors 54.9 (C extension) and 61 (L extension)

times for e I and 46.2 (L extension) and 59.2 (C extension) times for e P , compared to the same reference values. Consequently,

the computational cost increase between 1.9 and 2 times, and the memory usage of 1.5 times are justified by the use of an

AL. On the other hand, the area increment factor F A is 1.767 for hyperelliptical layers and 1.922 for rectangular ones. 

Hyperelliptical layers obtain the best performances compared to rectangular layers for both cases of extension of the pro- 

file velocity inside the layer. The best results for hyperelliptical layers and 1 st -Higdon BC show performances less than 1.6%

for e I and 1.7% for e P while the rectangular ones present performances less than 3.7% for e I and 1.7% for e P , all models with

the proposed QUA damping distribution. Besides, they show the lowest values in relation to computational cost and memory 

usage. As a consequence, hyperelliptical layers show a computational cost reduction between 19% and 20%, and around 7.8% 

memory usage savings. On the other hand, when contrasting analogous layers with different extension strategies, hyperellip- 
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Table 12 

Comparison of the results for 1 st -Higdon BC and extension by circular sectors. 

Obs: Model(M), Shape(S), Damping(D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

tical layers with extension by straight continuity show e I between 12% and 16% lower than those with extension by circular

sectors. The same fact is observed in rectangular ones whose e I are smaller in a range between 27% and 33%. Likewise, the

discrepancies are less than 0.6% in execution time and less than 1.4% in memory usage. By last, models with Sommerfeld

BC reports errors greater than 11% for e I and 0.5% for e P considering both extension strategies of the propagation speed. In

addition, they present analogous behaviors concerned with execution times and memory use. 

5. Conclusions 

A HABC scheme based on hyperelliptical ALs and an NRBC applied on its outer boundary is proposed. This methodology 

provides a unified criterion between the attenuation of the wave amplitude and the reflection coefficient at the beginning of 

the layer with the aiming of sizing properly an AL according to the problem. The proposed methodology is also applicable to

both complete and partial layers, that is, with some of their boundaries acting as a free surface represented by a Neumann

BC. 

The critical point that controls the layer size is determined by means of the Eikonal analysis. Several sizes can be pro-

vided for this criterion, allowing to test different options and bound the maximum error desired, especially in highly het- 

erogeneous media and models with sources far away from some original boundaries. In addition, an adaptive quadratic 

damping profile is formulated so that the maximum damping is given by an asymptotic limit for underdamped vibration 

and the minimum damping is selected with a criterion based on the reflection coefficient at the interface between the orig-

inal domain and the AL. This approach to bound the damping is opposite to the typical ones found in the literature where

the maximum damping is selected. 

Hyperelliptical layers achieve better results than rectangular ones when the proposed quadratic damping profile is set up 

inside the layer. Moreover, the prescription of NRBCs increases the effectiveness of the layer, obtaining better results with 

the 1 st -Higdon BC. Another important aspect to highlight is the implementation of two strategies for the extension of the

propagation speed profile within the layer. Previous works do not address or recommend any methodology to follow for the 

extension of the profile. Here, two strategies are implemented: extension by straight continuity using the original truncated 

domain boundary as a reference and extension by circular sectors with respect to the source position. The former strategy 

shows lower error measures than the latter in hyperelliptical layers. 

The optimized HABCs strategy proves efficient and promising as the damping parameters are selected by the proposed 

methodology and not by the user’s expertise. This methodology deals with the absorbing phenomenon as a combination 

of the local dissipation (due to the progressive increase of the damping coefficient from an element to another) and global

dispersion (due to the global effect of slowing down of the wave propagation speed and the consequent increase in the

wave number) inside the absorbing layer and an NRBC on the boundary. Besides, the vibration regime inside the absorbing 

layer must be underdamped in order to avoid slowing down the system. The maximum damping parameter can be seen 

as a numerical property of the model since the portion of material added as an AL determines the limit damping for the

underdamped regime. 
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From a computational point of view, hyperelliptical layers can reduce up to more than 20% and save up to 8% in memory

usage related to rectangular ones according to the problem. However, no significant differences are found when comparing 

the ALs using the different strategies of propagation speed profiles. Furthermore, analytical approaches are proposed for 

saving computational effort such as the approximation of the fundamental frequency by using the results of the Eikonal 

analysis and geometric relationships. Nevertheless, the use of an approach with AL is justified due to the poor performance 

of the models with only NRBCs even though the computational cost is increased. The trade-off between the magnitude of 

the error and the amount of material added to the original model can be achieved by the different options provided by the

sizing criterion. 

In future works, an adaptive strategy for HABCs will be integrated into 2D and 3D inverse problems. It is expected that

the HABCs selected for the forward problem are also suitable for the adjoint problem and the spurious signal acquired by

the receivers is reduced with the aim of improving the robustness of the inversion algorithms. 
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Appendix A. Comparison of Natural Frequencies Between Free-Free and Free-Sommerfeld BC Bars 

A comparison of the first 10 natural frequencies between a free-free bar and a free-Sommerfeld BC is performed by using

COMSOL Multiphysics ( Fig A.27 ) in order to estimate the difference in the free vibration regime. 

Here, L = 4 . 8 km and c = 1 . 5 km 

s . These differences are less than 0.02% ( Table A.1 ), so it can be concluded that the fre-

quencies can be estimated without computational effort through the behavior of the free-free bar. 

Fig. A27. Models for comparison of their first 10 natural frequencies. 

Table A.1 

Comparison of natural frequencies (in Hz) for free-free bar and free-Sommerfeld bar. 

Modes 1 2 3 4 5 6 7 8 9 10 

Free-Free 0.1563 
0.3125 

0.4688 0.6250 0.7813 0.9375 
10.938 

12.500 14.063 15.625 

Free-Somm 0.1562 0.4687 0.6249 0.7811 0.9374 12.498 14.061 15.623 

Difference 0.019% 0.016% 0.006% 0.018% 0.018% 0.016% 0.018% 0.016% 0.014% 0.013% 

Appendix B. Formulation Details 

The expressions for the dispersion relation, the wave number k and the loss factor l are [72] : 

Dispersion Relation : ω 

2 − j ω η = c 2 γ 2 , γ = k − j l 

Wave Number : k = 

√ √ √ √ 

1 

2 

(
ω 

c 

)2 

[ 

1 + 

√ 

1 + 

(
η

ω 

)2 

] 

and Loss Factor : l = 

η

c 

√ √ √ √ 2 

[ 

1 + 

√ 

1 + 

(
η

ω 

)2 

] (B.1) 
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remembering that k and l are found solving the system of equations by separating the real and imaginary parts of the

dispersion relation. Thus, the expression for the speed propagation: 

v p = 

ω 

k 
= 

√ 

2 c √ 

1 + 

√ 

1 + 

(
η

ω 

)2 

(B.2) 

By using the approximation ( 1 + x ) 
1 
2 ≈ 1 + 

x 
2 for x small [89] , the approximated speed propagation is: 

v p ≈ c 

1 + 

1 

8 

(
η

ω 

)2 
(B.3) 

then, by substituting η = 2 ξω m 

and ω = 2 π f , the expression in Eq. 7 is obtained. Now, Eq. 8 is the parameterization of the

unidimensional underdamped solution in relation to the amplitude attenuation factor R evaluated in x = L a at t = t a = 

L a 
v p 

under the initial amplitude u o , and depending on F L . Remembering that L a is the AL length, t a is the instant time when the

wave reaches the end of it for the first time and F L = 

L a 
L is the domain fraction that must be added as an AL ( L is the length

of the original domain). The underdamped solution is [90] : 

u (t, x ) = u 0 exp 

(
−ηt 

2 

)(
cos ( ω d t ) + 

η

2 ω d 

sin ( ω d t ) 

)
cos ( k a x ) (B.4) 

with ω d = ω m 

√ 

1 − ξ 2 and k a = 

ω 
v p as the damped frequency and the wave number, respectively. Likewise, ω = 2 π f and

ω m 

= 

mπc 
L a 

are the angular wave frequency and the natural frequency of the AL, in that order. Thus: 

R = 

∣∣∣∣u (t a , L a ) 

u 0 

∣∣∣∣ = 

∣∣∣∣ exp 

(
−ηt a 

2 

)(
cos ( ω d t a ) + 

η

2 ω d 

sin ( ω d t a ) 

)
cos ( k a L a ) 

∣∣∣∣
ηt a 

2 

= ξmπA , ω d t a = mπA 

√ 

1 − ξ 2 and k a L a = 

2 πF L 
a ∗

A with A = 1 + 

1 

2 

(
ξma ∗

2 F L 

)2 

and a ∗ = 

c 

f L 

(B.5) 

The substitution of the terms ηt a 
2 , ω d t a and k a L a in R gives rise to the expression of Eq. 9 . On the other hand, the

magnitude of the reflection coefficient between two media taking into account the dispersion relation is [70] : 

| C R | = 

∣∣∣∣k 1 − k 2 
k 1 + k 2 

∣∣∣∣ = 

∣∣∣∣v p2 − v p1 

v p2 + v p1 

∣∣∣∣ = 

∣∣∣∣ η2 
2 − η2 

1 

(4 ω ) 2 + η2 
2 

+ η2 
1 

∣∣∣∣ = 

∣∣∣∣∣ ξ 2 
2 − ξ 2 

1 (
4 F L 
ma ∗

)2 + ξ 2 
2 

+ ξ 2 
1 

∣∣∣∣∣ (B.6) 

However, ξ1 = 0 at the interface between the original domain and the AL. Therefore, considering the above, the expres- 

sion for the magnitude of the minimum reflection coefficient in Eq. 10 is achieved. 

Appendix C. Regression for Determining the Factor X 

∗
C R 

The minimum damping ratio ξmin in Eq. 16 is parameterized according to the number of elements by ξmin = X C R d, being

the term X min 
C R 

≤ X C R ≤ X max 
C R 

a heuristic factor determined by the user and d = 

1 
N el 

(see Section 2.4 ). However, there is a

value for X C R that maximizes the AL performance (see Section 2.5 for error measure definition). This factor X ∗C R can be

approximated by the vertex of a convex parabola given by the quadratic equation: 

| C Rmin | = a C R X 

2 
C R 

+ b C R X C R + c C R (C.1) 

that can be defined by exactly three points. These points are 
(
X ini 

C R 
, 
∣∣C ini 

Rmin 

∣∣), (X max 
C R 

, 
∣∣| C max 

Rmin 

∣∣) and 

(
X FEM 

C R 
, 

∣∣∣| C FEM 

Rmin 

∣∣∣) and they 

are determined from the analysis performed in Section 2.4 . Therefore, a system of three equations and three unknowns can

be solved in order to compute the coefficients a C R , b C R and c C R , so that: 

a C R = 

m 2 − m 1 

X 

FEM 

C R 
− X 

max 
C R 

b C R = m 2 − a C R 

(
X 

FEM 

C R 
+ X 

ini 
C R 

)
c C R = 

∣∣∣C FEM 

Rmin 

∣∣∣− X 

FEM 

C R 

(
m 2 − a C R X 

ini 
C R 

)
with m 1 = 

∣∣C max 
Rmin 

∣∣− ∣∣C ini 
Rmin 

∣∣
X 

max 
C R 

− X 

ini 
C R 

and m 2 = 

∣∣∣C FEM 

Rmin 

∣∣∣− ∣∣C ini 
Rmin 

∣∣
X 

FEM 

C 
− X 

ini 
C 

(C.2) 
R R 
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then, the vertex of the Eq. C.1 sets up the desired value for X C R and is given by: 

X 

∗
C R 

= − b C R 
2 a C R 

= 

m 2 

(
X 

max 
C R 

+ X 

ini 
C R 

)
− m 1 

(
X 

FEM 

C R 
+ X 

ini 
C R 

)
2 ( m 2 − m 1 ) 

(C.3) 

However, since it must be satisfied X C R ≥ ξmax d, X ∗C R is substituted for X ini 
C R 

when X C R < ξmax d (see Section 2.4 ). 

Appendix D. Equivalent Factor X 

RDF 
C R 

for Different Damping Distribution Functions 

Since the value X C R is unknown a priori (only its extremal values are known), reference values to start its search can be

determined by equaling the expressions for | C Rmin | of the proposed quadratic damping distribution ( Eq. 16 ) and a known

function RDF acting as a reference (see Section 2.4 ). The reference damping functions depending on the position used in

this work are: 

• Polynomial Function of Degree N (OPN) : 

νOPN 
ξ

(
x REF 

i 

)
= ξmax 

(
x REF 

i 

)N 
(D.1) 

• Linear Combined with Sine Function (LSI) 4 : 

νLSI 
ξ

(
x REF 

i 

)
= ξmax 

∣∣∣∣x REF 
i − sin 2 πx REF 

i 

2 π

∣∣∣∣ (D.2) 

• Radial Function (RAD) : 

νRAD 
ξ ( x i ) = ξmax 

∑ 

i 

(
x i 

0 . 5 L max + L ξ

)2 

∴ L max = max (L x , L y ) (D.3) 

• Elliptical Function (ELL) : 

νELL 
ξ ( x i ) = ξmax 

∑ 

i 

(
x i 

0 . 5 L i + L ξ

)2 

∴ L i = L x , L y (D.4) 

with x REF 
i as the reference distance based on the original domain boundary ( Fig. 7 ), x i as the reference distance based on the

original domain centroid and remembering that ξmax = 0 . 999 . The equivalent factor X RDF 
C R 

is obtained solving the equality∣∣∣C QUA 

Rmin 

∣∣∣ = 

∣∣∣C RDF 
Rmin 

∣∣∣, that is: 

∣∣∣∣∣ ( X C R d ) 
2 (

4 F L 
ma ∗

)2 + ( X C R d ) 
2 

∣∣∣∣∣ = 

∣∣∣∣∣∣∣
(
νRDF 

ξ

(
x ∗

i 

))2 

(
4 F L 
ma ∗

)2 + 

(
νRDF 

ξ

(
x ∗

i 

))2 

∣∣∣∣∣∣∣ (D.5) 

where the reference damping function is evaluated at the node closest to the border of the original domain with relative

coordinates x ∗i (see from Eq. D.1 to Eq. D.4 ). Thus, solving Eq. D.5 for X C R is obtained: 

• Polynomial Function of Degree N (OPN) : 

X 

OPN 
C R 

= ξmax d 
N−1 ∴ x ∗i = d (D.6) 

• Linear Combined with Sine Function (LSI) : 

X 

LSI 
C R 

= ξmax 

∣∣∣∣1 − sin 2 πd 

2 πd 

∣∣∣∣ ∴ x ∗i = d (D.7) 

• Radial Function (RAD) : 

X 

RAD 
C R 

= 

ξmax 

d 

(
0 . 5 L min + l min 

0 . 5 L max + L ξ

)2 

∴ x ∗i = 0 . 5 L min + l min ∧ L min = min (L x , L y ) ∧ L max = max (L x , L y ) (D.8)
4 As implemented in Devito: Symbolic Finite Difference Com putation, https://github.com/devitocodes/devito/blob/master/examples/seismic/abc _ methods/ 

02 _ damping.ipynb 
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• Elliptical Function (ELL) : 

X 

ELL 
C R 

= 

ξmax 

d 
min 

( [
0 . 5 L i + l min 

0 . 5 L i + L ξ

]2 
) 

∴ x ∗i = 0 . 5 L i + l min ∧ L i = L x , L y (D.9) 

being l min defined in Eq. 39 . Here, RAD and ELL functions are only used in bidimensional problems. 

Appendix E. Analytical Calculation of the Fundamental Frequency 

The fundamental frequency of a rectangular domain ( 2 a × 2 b) with homogeneous speed propagation c is 5 : 

ω 1 R = 

πc 

2 

√ 

1 

a 2 
+ 

1 

b 2 
= cF ω R ∴ F ω R = 

π

2 

√ 

1 

a 2 
+ 

1 

b 2 
(E.1) 

while that of an elliptical domain (hyperellipse of degree n = 2 ) with semi-axes a and b is [78,83] : 

ω 1 E = 

2 

f E 
c 
√ 

M 01 = cF ω E f E = 

√ 

a 2 − b 2 ∴ F ω E = 

2 

f E 

√ 

M 01 (E.2) 

where M 01 is the first root of the zero-order modified Mathieu’s function evaluated at special input paremeter ξ0 = 

arccosh 

(
a 
f E 

)
. Here, it is determined iteratively in Python. 6 

The fundamental frequency of a hyperelliptical domain increases in relation to the decrease in area. Thus, it is reasonable 

that the fundamental frequency can be estimated by a function depending on the area and bounded by elliptical ( n = 2 ) and

rectangular ( n = ∞ ) frequency factors F ω E and F ω R . The area of a hyperellipse of degree n with semi-axes a and b is given by

the expression 

7 : 

A H = 4 ab 

(
�
(
1 + 

1 
2 

))2 

�
(
1 + 

2 
n 

) = abF A H ∴ F A H = 4 

(
�
(
1 + 

1 
2 

))2 

�
(
1 + 

2 
n 

) (E.3) 

with �(·) as the Gamma function and, F A H as a hyperelliptical area factor depending on the degree n . Therefore, F A H = π ,

A H = πab for an ellipse ( n = 2 ), and F A H = 4 , A H = A R = 4 ab for a rectangle ( n = ∞ ) with dimensions 2 a × 2 b. The area of a

partial hyperelliptical geometry as considered in Section 2.6 can be determined as 8 : 

A Hp = 

abF A H 
2 

+ 2 a 

∞ ∑ 

r=0 

(
1 
n 

r 

)
( −1 ) 

r y nr+1 

b nr ( nr + 1 ) 
(E.4) 

being the term 

1 
n 
r the r-th binomial coefficient. Table E.1 shows the factor F A H for different values of n and a percentage

difference �A R (%) = 1 − A H 
A 

in relation to the area of a rectangle. 

R 

5 García, A. F. “Modos de Vibración de una Membrana Rectangular”. From Curso Interactivo de Física en Internet. http://www.sc.ehu.es/sbweb/fisica3/ 

ondas/membrana _ 1/membrana _ 1.html 
6 Scipy implementation in Python: mathieu _ modcem1 (m = 0 , q = M 01 , x = ξ0 ) . https://docs.scipy.org/doc/scipy/reference/generated/scipy.special. 

mathieu \ _ modcem1.html \ #scipy.special.mathieu \ _ modcem1 . 
7 Weisstein, E. W. “Superellipse”. From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/Superellipse.html . 
8 “Superellipse (Lame curve)”. From Alien’s Mathematics. https://fractional-calculus.com/super _ ellipse.pdf . 

Table E1 

Area factor F A H for different de- 

grees n . 

n F A H �A R (%) 

2 π 21.46 

3 3.533278 11.67 

4 3.708149 7.30 

5 3.800601 4.99 

6 3.855243 3.62 

7 3.890175 2.75 

8 3.913843 2.15 

9 3.930614 1.74 

10 3.942928 1.43 

20 3.984695 0.38 

50 3.997444 0.06 

∞ 4 0 
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By observing Eqs. E.1 and E.2 , the fundamental frequency ω 1 H of a hyperellipse of degree n > 2 can be calculated analo-

gously, considering a frequency factor depending on semi-axes and the curve degree: 

ω 1 H = cF ω H ( a, b, n ) (E.5) 

In addition, approximations of the fundamental frequencies of hyperellipses can be made with a certain degree of uncer- 

tainty by restricting their search to frequencies of similar known geometries of equal or comparable area [84] . 

Thus, it is acceptable consider ω 1 H between ω 1 R and ω 1 E and consequently F ω R ≤ F ω H ≤ F ω E . When a complete hyperel-

liptical layer of degree n ≥ 3 or a partial one with n ≥ 2 are added to the original model, the limits for F ω H are defined by:

π

2 

√ 

1 

a 2 
+ 

1 

b 2 
= F ω R ≤ F ω H ≤ F ω E = 2 

√ 

M 01 

a 2 − b 2 
(E.6) 

Therefore, the proposed function for frequency factor F ω H is: 

F ω H = F ω R 

(
1 − ( 1 − R F ) 

(
2 
n 

)p 
)

with p = 1 . 694535 and R F = 

F ω E 
F ω R 

(E.7) 

where the term R F ensures that the computed frequency is between ω R and ω E and p is obtained making a regression

of F A H vs n considering the proposed model F A H = 4 

(
1 −

(
1 − π

4 

)(
n 
2 

)p 
)

( Table E.1 ). That is, the factor F A H in Eq. E.3 can be

approximated by this expression without using the Gamma function. 

Finally, the fundamental frequency of a hyperellipse with homogeneous material properties can be approximately calcu- 

lated as: 

ω 1 H = cF ω H (E.8) 

On the other hand, ω 1 can be estimated in heterogeneous media based on the minimum arrival time φmin in the refer-

ence model. If Eq. 30 is applied to a unidimensional domain ( Fig. 3 ) without considering the pseudo-viscosity μeik , it can

be seen as: 

|∇φ| = 

∣∣∣∣d φ

d x 

∣∣∣∣ ≈ �φ

�x 
≈ φ − φs 

x − x s 
= 

1 

c 
(E.9) 

where the subscript s refers to the values evaluated at wave source position. As seen in Sections 2.5 and 3.2 , for the evalu-

ation of φ as the arrival time at each point of the domain, φs = 0 . Now, if the wave source is located at a tip and φ = φ� is

evaluated at the other end (on the boundary) then L = x − x s . Thus, taking into account that ω 1 = 

πc 
L (see Appendix B ): 

ω 1 = 

1 

k ω φ
∴ 

c 

L 
= 

1 

φ
(E.10) 

then k ω = 

1 
π for the unidimensional case with homogeneous propagation speed c. Likewise, for heterogeneous media, a 

factor k ω is proposed according to the domain dimensions, so that: 

k ω = F 
ω REF L s = 

πL s 

2 a 

√ 

1 + R 

2 
A 

(E.11) 

with F ω REF obtained from Eq. E.1 considering the dimensions and the aspect ratio R A = 

a 
b 

of the original rectangular do-

main. Remembering that, L s is the distance from the source to the point belonging to the original boundary where φmin is

found. Hence, the approximated fundamental frequency in the reference model ω 

1 REF (original model without AL) is: 

ω 

1 REF = 

1 

k ω φmin 

(E.12) 

with k ω computed from Eq. E.11 and φmin obtained from solution of Eq. 41 . By analysing Eq. E.12 , assuming that 
c eq 

L s 
= 

1 
φmin 

and comparing to Eq. E.1 , the reference frequency can be seen: 

ω 

1 REF = c eq F 
ω REF F GHM 

∴ F 
ω HM 

= 

(
1 

1 + R 

2 
A 

)(
2 a 

πL s 

)2 

(E.13) 

with c eq as an equivalent propagation speed inferred from the eikonal solution and F GHM 

as a fictitious correction factor

by geometry for heterogeneous media. Nonetheless, more accurate values for ω 

1 REF according to the discretization can be 

sought via modal analysis, with a corresponding increase in the computational cost. Consequently, the fundamental fre- 

quency for a model with AL can be approximated as: 

ω 1 = ω 

1 REF 
F ω∗

F 
ω REF 

(E.14) 

being the factor F ω∗ calculated according to the layer shape (see Eqs. E.1 , E.2 or E.7 ). It should be noted, F ω∗ < F ω REF since

the area of the model with AL is smaller. 
510 



R.A. Salas, A.L.F. da Silva, L.F.N. de Sá et al. Applied Mathematical Modelling 113 (2023) 475–513 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix F. Determining the Limits for Hyperelliptical Exponents 

The extremal points (“corners”) in a hyperellipse of degree n centered at the origin and semi-axes a and b are defined

by the parameter named superness represented by s [85,86] . The extremal points are given by the coordinates ( ±sa, ±sb ) .

Therefore, substituting these values in Eq. 33 : 

2 | s | n = 1 ⇒ s = ±2 

− ( 1 / n ) ∴ | x max | = sa ∧ | y max | = sb (F.1) 

and the parameter r in Eq. 47 is r = 

π
4 , remembering that this parameter is not the angle in standard position. If the

coordinates of an extremal point are ( x ∗, y ∗) , the coordinates can be parameterized relative to the superness and the degree 

of the hyperellipse, so that: 

x ∗ = 

a 

2 

( 1 / n ∗) 
, and y ∗ = 

b 

2 

( 1 / n ∗) 
(F.2) 

which constitutes an equation system with more equations than unknowns but that must be satisfied simultaneously. 

The only unknown variable is n , since a, b, x ∗ and y ∗ are defined when the layer size parameters are determined (see

Sections 2.6 and 3.3 ). Thus, a measure of central tendency can help in solving this problem so that the arithmetic, geo-

metric and harmonic mean are considered here. They are defined as [91,92] : 

x̄ ari = 

1 

N 

N ∑ 

i =1 

x i , x̄ geo = 

( 

N ∏ 

i =1 

x i 

) 

1 
N 

, x̄ har = N 

( 

N ∑ 

i =1 

1 

x i 

) −1 

(F.3) 

Therefore, the measures of central tendency are applied, obtaining for each case: 

x ∗ + y ∗ = 2 

( − 1 / n ari ∗ ) ( a + b ) , x ∗y ∗ = 2 

( − 2 / n geo ∗ ) ( ab ) , 
1 

x ∗
+ 

1 

y ∗
= 2 

( 1 / n har ∗ ) 
(

1 

a 
+ 

1 

b 

)
(F.4) 

then solving for n ari 
∗ , n 

geo 
∗ and n har 

∗ and taking into account that these terms are integer numbers, the expressions in

Eq. 46 are found. 
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