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Abstract

Objective: We consider a network topology according to the cortico-cortical connection network of
the human brain, where each cortical area is composed of a random network of adaptive exponential
integrate-and-fire neurons. Approach: Depending on the parameters, this neuron model can

exhibit spike or burst patterns. As a diagnostic tool to identify spike and burst patterns we utilise the
coefficient of variation of the neuronal inter-spike interval. Main results: In our neuronal network,
we verify the existence of spike and burst synchronisation in different cortical areas. Significance: Our
simulations show that the network arrangement, i.e. its rich-club organisation, plays an important
role in the transition of the areas from desynchronous to synchronous behaviours.

1. Introduction

The brain is the most complex organ in the human body (Bullmore and Sporns 2009). The cerebral cortex is
the brain region with the biggest superficial area and plays a key role in consciousness, memory, perception,
thought, and cognition (Shaw et al 2008). It is interconnected by a network of cortico-cortical axonal pathways
(Hagmann et al 2008). In the cortico-cortical connections, axons transmit excitatory stimulii from one cortical
area to another (Ottersen and Storm-Mathisen 1986).

Brain network interactions can be analysed by means of a framework from the new interdisciplinary field of
network physiology (Bashan etal2012). Network physiology allows one to identify the relations between physio-
logical function and network topology (Ivanov and Bartsch 2014). The brain has communication channels with
other organs, such as the channel of communication for brain—heart interactions (Ivanov et al 2016). Bartsch
etal (2015) showed networked interactions within and across brain hemispheres. Liu et al (2015) found interac-
tions between physiologic states and network structure. They reported new aspects of functional plasticity as a
consequence of brainwave interactions across the brain during different physiologic states.

In the brain, there is much experimental evidence of neuronal synchronisation, where the synchronous
behaviour is related to the execution of several tasks (Tallon-Baudry 2009). When there are interactions among
oscillatory activities of action potentials they adjust their phases and frequencies and can exhibit neuronal syn-

© 2018 Institute of Physics and Engineering in Medicine


publisher-id
doi
https://orcid.org/0000-0001-7298-9370
https://orcid.org/0000-0003-2534-5593
mailto:kiarosz@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6579/aace91&domain=pdf&date_stamp=2018-07-27
https://doi.org/10.1088/1361-6579/aace91

I0P Publishing

Physiol. Meas. 39 (2018) 074006 (9pp) P R Protachevicz et al

chronisation (Erra et al 2017). According to Pikovsky et al (2001), synchronisation manifests itself via frequency
and phase locking. Synchronisation of neuronal activity is involved in brain mechanisms such as perception
(Rodriguez et al 1999) and memory processes (Fell and Axmacher 2011). However, certain brain disorders are
associated with neuronal synchronisation (Uhlhass and Singer 2006). Parkinson’s disease is associated with syn-
chronised oscillatory activity (Brown 2003, Andres et al 2014). Epilepsy is characterised by an increase of syn-
chronous neuronal activity that happens in the majority of neurons in alocal area (Traub and Wong 1982).

There are many ways in which one can build neuronal networks to study synchronisation. In the literature,
mathematical models of various kinds of networks have been considered to simulate synchronous behaviours,
for instance coupled Kuramoto-like phase oscillators (Zhang et al 2014, 2015). Different network topology
and model parameters can lead different paths to synchronisation on network systems (Gémez-Garderies et al
2007). In this work, we study synchronisation in a network with neurons connected according to the cortico-
cortical connection network constructed by Lo et al (2010). They used diffusion tensor image tractography to
build human brain networks of healthy patients. The structural network was separated into 78 cortical areas. We
consider a subnetwork in each cortical area, where the subnetwork connections are randomly distributed. Each
neuron is described by the adaptive exponential integrate-and-fire model (aEIF) (Brette and Gerstner 2005). The
aEIF model reproduces electrophysiological characteristics of neurons and its parameters have a physiological
interpretation (Touboul and Brette 2008). Depending on the parameter values, it is possible to observe multiple
firing patterns and transition from one firing type to another (Naud et al 2008). Borges et al (2017) studied fir-
ing patterns in a random network of aEIF. They analysed how spike or burst synchronous behaviour appears as a
function of the coupling strength and the probability of connections.

In our neuronal network, we observe the coexistence of different firing patterns, namely some cortical areas
exhibiting spike and others burst behaviours at the same time (Connors and Gutnick 1990). We also observe
spike and burst synchronous behaviours in the network. We verify that there are areas with synchronous behav-
iour embedded in the desynchronised network. It is shown that the transition of the areas from desynchronous
to synchronous patterns is related to the rich-club organisation of our neuronal network. There is experimental
evidence that some brain regions form a rich-club (van den Heuvel and Sporns 2011). A rich-club is a group of
neurons with more connections than others.

This paper is organised as follows. In section 2, we present the adaptive exponential integrate-and-fire model
and introduce the neuronal network. In section 3, we study the spike and burst synchronisation. In the last sec-
tion, we draw our conclusions.

2. Neuronal network of aFIF

In this section we introduce the considered model for a neuron, namely the adaptive exponential integrate-and-
fire (aEIF), given by Brette and Gerstner (2005):

v V-V

C—- = —g(V = E) + g1Arexp ( A T> +1—p, (1)
dp

T’“E = a(V — EL) — U (2)

where C is the membrane capacitance, V is the membrane potential, I is the injected current, g; is the leak
conductance, E| is the resting potential, A is the slope factor, V7 is the threshold potential, 1 is the adaptation
variable, 7, is the time constant, and a is the level of subthreshold adaptation. A reset condition is applied when
V arrives at a threshold Vpeq: V = Vyand o = p, = p + b. We use in our simulations C = 200 pE, g, = 12 nS,
Ep = —70mV,Ar = 2mV,Vr = —50mV,] = 509.7pA,7,, = 300ms,a = 2nS,V, = —60mVand Ve = 20mV
(Naud etal 2008).

We utilise the coefficient of variation (CV) of the neuronal inter-spike interval (ISI) as a diagnostic tool to
identify spike and burst patterns, that is given by

I1s1

CV = Mg’ (3)
where oyg; corresponds to the standard deviation of the ISI normalised by the mean Mg (Gabbiani and Koch
1998). Spike and burst patterns have CV < 0.5 and CV > 0.5, respectively. In our simulations, we verify that
the threshold value of CV equal to 0.5 is enough to separate the patterns into spike and burst. Figure 1 shows the
temporal evolution of the membrane potential of the aEIF neuron. Figures 1(a) and (b) show spikes (CV ~ 0.05)

and bursts (CV = 0.8), respectively.
We built a neuronal network according to the cortico-cortical connection network of the human brain
obtained by Lo et al (2010). These authors determined the nodes of brain networks by means of an automated
anatomical labeling template, and the edges were determined using diffusion magnetic resonance imaging trac-
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Figure 1. Membrane potential as a function of time for one aEIF. (a) Spikes and (b) bursts.
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Figure2. Connectivity matrix in accordance with Lo et al (2010), where the colour bar represents the number of fibers.

tography methods. The fibers tracking was performed though fiber assignment by a continuous tracking algo-
rithm. Figure 2 displays the 78 cortical areas and the number of detected fibers (connections) between them in
the human brain. The colours represent the number of fibers. In our simulations, we consider that one fiber cor-
responds to one connection.

Rich-club organisation is characterised by a tendency of highly connected neurons of the network to be very
well-connected to each other. In order to examine the connectivity profile of the network we use the weighted
rich-club parameter (Colizza et al 2006, Opsahl et al 2008)

W>r

¢ (r) = S (4)
where ris the richness index obtained from the sum of the weights attached to the connections originating froma
neuron, wfank > wff‘;‘lk (I=1,2, ..., E) arethe ranked weights on the connections of the network, and E is the total
number of connections. For each r value is selected a set (club) of nodes with a richness index larger than r. E-,
is the number of connections between the rich club members, and W-, is the sum of the weights associated with
these connections. Therefore, ¥ (r)is the ratio between W-,, and the sum of the weights attached to the strongest
connections E-., within the whole network. However, ¢*(r) is not sufficient to characterise the rich-club due to
the fact that networks with random connections can have a non-zero ¢*(r) value. Then, to identify the rich-club

we calculate the ratio




I0P Publishing

Physiol. Meas. 39 (2018) 074006 (9pp) P R Protachevicz et al

Figure 3. (a) Strength S (number of fibers) for each area k. (b) Weighted rich-club parameter p*(S)as a function of S. (c) Local
weighted rich-club parameter p}’ , for each area k.

¢ (r)
V(r) = .
p"(r) NG (5)
When p¥(r) > 1 overarange of r, there is a rich-club organisation in the network.

Figure 3(a) shows the number of fibers S for each area k. The areas 25, 64, 76,37, and 39 have the largest num-
ber of fibers (descending order). In figure 3(b), we calculate the weighted rich-club parameter p* (S)as a function
of S. We find p" > 1 for S > 100; as a result, our neuronal network is organised as a rich-club. In addition, the
areas 25,29, 30, 37,64,and 76 (red squares) are the most interconnected and have the higher values of pf*, , (local
rich-club), as shown in figure 3(c).

For each area we consider a subnetwork with Ny = 100 neurons randomly connected with probability
p = 0.4. This way, the network has a total of N = 7800 neurons, and the neuronal dynamics are given by

avi Vi—V
C = —g1(Vi— Ep) + gArexp ™)+ L — i
dt AT

Nex Nin
+ gex(Vex = Vi) D Ajisj + gin(Vin — Vi) Y _ Bysy ®)
=1 j=1
d .
TM% = a;(Vi — EL) — ti» (7)
dS,‘
s — S 8
a7 ®)

where V; is the membrane potential of the neuron 7, g, (gin) is the excitatory (inhibitory) synaptic conductance,
Nex (Niy) is the number of excitatory (inhibitory) neurons, Vex = 0(V;, = —80ms) is the excitatory (inhibitory)
synaptic reversal potential, 7, = 2.728 ms is the synaptic time constant, s; is the synaptic weight, and a; is
randomly distributed in the interval [1.9,2.1] to simulate a network with different neurons. The solution to
equation (8) is an exponential decay, where we consider the initial value of the solution 5;(0) = O ands; = s; + 1
when the neuron 7 spikes. A;;and Bj; are the excitatory and inhibitory adjacency matrices, respectively. Inside the
subnetworks, we randomly distribute 80% of excitatory and 20% of inhibitory connections (Noback et al 2005),
while the connections among the subnetworks are excitatory.
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Figure4. Ry (blackcircles)and CV (red triangles) for (a) ¢ = 0.05, (b) € = 0.2, (c) € = 0.55, where e = gex = gin. We consider that
the area is synchronised when the average order parameter value is larger than Ry = 0.9 (green line). In all cases spike dynamics are
observed (CV < 0.5).

3. Synchronousbehaviour

Synchronous behaviour has been found throughout the brain in task and rest conditions (Deco et al 2011). We
use the complex phase order parameter as a diagnostic tool to identify neuronal synchronisation (Kuramoto
1984) in each area,

Ni
i ® 1 o
Zi(t) = R(t)e? 0 = N D, (9)
=1
where
®) (o L= tbim
9] (t) =27 tj’erl — tj)m (10)

is the phase of the neuron jin the area k,1 < k < 78, with ¢;,,, <t < £;,,41,and Ny is the number of neurons of
the area k. The time t;,,, denotes the mth spike of the neuron j, and 1)¥) () is the average phase of all neurons in
each subnetwork. The order parameter averaged over the time interval from tyital tO #hng iS given by

Ffinal 1

2 il (k)
R Z 0. (1)
L step el i ( 1 1)
tfinal Linitial " N k

initial j=1
where finital = 80 S, tinal = 100 s, and tyep = 0.5 ms. The Ry value is equal to 1 in complete synchronised
behaviour. For Ry > 0.9 the network exhibits an intensely synchronised regime.

Figure 4 exhibits the Ry (black circles) and CV (red triangles) for a network with excitatory and inhibitory
synapses. For € = 0.05 (¢ = gex = &in), we see all areas with Ry < 0.9 and CV < 0.5 due to the fact that the neu-
rons inside the subnetwork display desynchronised spikes (figure 4(a)). The areas change from desynchronous
to synchronous behaviours when € values are increased to 0.2 (figure 4(b)). As CV < 0.5 for all areas, the subnet-
works have a spike pattern. As shown in figure 4(c), considering € = 0.55 the network changes its behaviour from
synchronised to desynchronised spikes (Borges et al 2017).

After the transition of all areas to desynchronised spikes, increasing ¢, the areas 25, 29, 30, 37, 64, and 76 not
only synchronise but also they change from spike to burst patterns before other areas (figure 5(a)). These areas
correspond to areas with higher values of p{* ., as shown in figure 3(c). For £ = 0.7 we observe that all areas
change to burst synchronisation (figure 5(b)).
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Figure5. Ry (blackcircles) and CV (red triangles) for (a) e = 0.63 and (b) e = 0.7.
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Figure6. (a) Ek,k/ and (b) Wk,k/ fore = 0.63 and eight different initial conditions. The most interconnected areas 25, 29, 30,37, 64,
and 76 have Ry > 0.9 and R*; ;s > 0.85, namely they are synchronised and have a strong phase correlation among themselves.
According to figure 5(a) these areas exhibit a burst pattern.

In order to identify the synchronisation between areas k and k’, we consider the time average order parameter

t Ifinal 1 N ® Ny )

ste 0" (t i0. t

Rk,k’ = P E E e‘ J ® + E e' J ) . (12)
Tfinal Linitial P Nk Nk’ =1 =1

The mean of Ry for different initial conditions is given by Ry x. In figure 6(a), we see that almost all Ry - values
are less than 0.9. Nevertheless, the most interconnected areas (25, 29, 30, 37, 64, and 76) exhibit R s > 0.9 and
CV > 0.5 (figure 5(a)), indicating not only synchronised bursts inside the subnetworks but also that these areas
are synchronised among themselves. We also calculate the phase correlation Ry, between the areas k and k’ by
means of the equations

R} Rij,
ok = Nk Nk J;#l i (13)

when k = k/,and

Riw = Nka/ ZZRU’ (14)

ick jek’

when k # k', where Rj;is the local order parameter used to analyse the phase correlation between neurons i and j
(Gémez-Gardenes et al 2007, Zhang et al 2014),

tfinal

tstep
Rij =

el6: () =6;(1)] ‘ , (15)

Tfinal — finitial P
initial

Figure 6(b) shows the mean of Ry, where the average is taken over eight different initial conditions. We verify
that the most interconnected areas have a strong phase correlation among themselves.

Next, we calculate the phase locking value (PLV) to analyse the synchrony level between the areas. The PLV is
given by
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Figure7. PLV, fore = 0.63 and eight different initial conditions. We calculate the PLV - values for the areas with (a) R > 0.5 and
(b) R > 0.9. The most interconnected areas 25,29, 30,37, 64,and 76 have PLV; ;, > 0.8.
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Figure8. (a) Ry fore = 0.7 in the left and right hemispheres (C: central region, F: frontal, T: temporal, P: parietal, O: occipital, L:
limbic,and I: insula). (b) RRegm for the cerebral regions, where the bars represent the standard deviation for eight different initial
conditions.
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Figure9. (a) Number of synchronised areas (colour bar) as a function of g, and g, where I and II denote spike and burst dynamics,
respectively. (b) Percentage of synchronised areas among themselves in the network (colour bar) as a function of g and g.
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tinal

tSC 1
PLVip = ——2 O (] (16)

tfinal — finitial

Tinitial
where Oy 1 () = ©¢(f) — O (¢)is the phase difference computed between the areas kand k' (Lachaux et al 1999,
Lowet et al 2016). Figure 7 displays the mean of PLV};/ for different initial conditions. We verify that there are
collective modes in the neuronal network. In figures 7(a) and (b), we calculate the PLV ;- values for the areas with
R > 0.5and R > 0.9, respectively. We observe that the areas with burst synchronisation have the larger values of
mk)k/ .

Figure 8(a) shows the cortico-cortical connection network, where the cortical areas are located in the left or
right cerebral hemispheres. Each hemisphere is separated into regions: central (C), frontal (F), temporal (T),
parietal (P), occipital (O), limbic (L), and insula (I). Considering € = 0.7, as shown in figure 5(b), all subnet-
works display burst dynamics and there are synchronous behaviours among neurons in the same subnetwork.
We calculate the average order parameter of each region, given by

1

N Region

RRegion = Rk,k/ . ( 17)

kok! € Inegion

RRegion is computed between the areas belonging to a set ], Region With NRegion areas, where Igegion corresponds to one
region. By means of Rregion, we identify that the cortical areas in the occipital regions (O) are synchronised among
themselves (figure 8(b)), due to the fact that these regions have areas with higher inter-connectivity than other
regions and there are areas connected with highly connected neurons.

We plot the synchronisation patterns in the parameter space g X gex, where ¢ = gin/gex- Figure 9(a) displays
the number of synchronised areas in colour scale asa function of gexand g. For 0.2 < gy < 0.4and g < 2allareas
have synchronised spikes (region I), while for gey = 0.6 and g < 2 the areas present synchronised bursts (region
II). There is a transition region (black) between spike and burst synchronisation, where all areas are desyn-
chronised. In addition, synchronous behaviours for g > 5 are not observed, namely for g;, greater than 5g.. In
figure 9(b), we plot the percentage of areas synchronised among themselves in the network. Our simulations
show that the range of g., and gin which this percentage is large is narrow.

4, Conclusions

We have studied synchronisation in a neuronal network built according to the cortico-cortical connection
network of the human brain. The network is composed of coupled random subnetworks with aEIF neurons.
Depending on the control parameter, the aEIF neuron can spike or burst. In our network of networks we identify
spike and burst synchronisation using as diagnostic tools CV and R.

We verify that the connectivity matrix has a rich-club organisation. There are six areas which are the most
interconnected. They correspond to the rich-club elements and have many connections with other brain areas.
Due to the particular properties of the chosen neuronal network model, the transition between desynchronised
and synchronised patterns occurs first in the highly connected neurons. For small € all areas have desynchronised
spikes. Increasing €, we observe that the areas pass through different synchronous behaviours according to the
following sequence: (i) synchronised spikes, (ii) desynchronised spikes, (iii) burst synchronisation among the
rich-club elements, and (iv) synchronised bursts. For large ¢ all areas show synchronised bursts, and the areas in
the occipital region are synchronised among themselves. Liu et al (2015) reported that synchronous and desyn-
chronous cortical activation can be associated with low §-wave frequency during deep sleep and high frequency
a-wave during quiet wake, respectively. They found different network dynamics of brainwave interactions in dif-
ferent brain areas during different sleep stages, as a result of interactions across brain locations.

We also show the influence of the relative inhibitory and excitatory conductance on synchronisation. In the
parameter space g X gex We find regions with spike and burst synchronisation, and a transition region character-
ised by areas with desynchronised spikes. In addition, no strong synchronisation is possible for g, >> gex. Large
percentages of areas synchronised among themselves appear for few values of gj, and gy.

In future works we plan to analyse cluster synchronisation in our neuronal network model. Cluster synchro-
nisation is characterised by different groups of neurons with distinct synchronous behaviours. Studies about
cluster synchronisation have a physiological relevance due to the fact that this phenomenon can be associated not

only with cognitive functions but also with long-range synchronisation.
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