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ABSTRACT

Large anabranching rivers form channels in sediments of varying strength, resulting

from erosional and depositional processes that act over geological time scales. Although bank
strength variability is known to affect channel morphodynamics, its impact on the migration
of large sand-bed rivers remains poorly understood. We report the first in situ measurements
of bank strength from an ~100-km-long reach of the Solimées River, the Brazilian Amazon
River upstream of Manaus. These show that cohesive muds in Pleistocene terraces along
the river’s right margin have bank strengths as much as three times greater than Holocene
floodplain deposits composing the left bank. Image analysis suggests these resistant outcrops
determine channel-bar dynamics: channel widening and bar deposition are inhibited, which
lowers planform curvature and reduces erosion of the opposing bank. Planform analysis
of the 1600-km-long Solimdes River between 1984 and 2021 shows that where the channel
is associated with Pleistocene terraces, lower rates of bank erosion and bar deposition are
evident. Heterogeneity in bank strength is thus a first-order control on the large-scale mor-

phodynamics of the world’s largest lowland river.

INTRODUCTION

Large lowland sand-bed rivers develop
anabranching channel patterns through the lat-
eral migration of sinuous channels (Latrubesse,
2008). Migration is driven by morphodynamic
feedbacks, whereby lateral erosion facilitates
bar formation when channels widen (bank pull),
which encourages steering of the flow toward the
outer bank, promoting bank erosion (bar push)
(Ashworth et al., 2000; Parker et al., 2011).
These feedbacks depend on morphological and
associated hydraulic characteristics (planform
curvature, flow direction, bed topography) and
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local bank strength, the latter controlling sedi-
ment resuspension and bank failure (Ashworth
and Lewin, 2012; Zhao et al., 2022). River bank
strength may be highly variable and is a function
of local stratigraphy and sediment composition,
grain size, diagenesis, and vegetation (Darby
and Thorne, 1996; Motta et al., 2012). Although
such variability controls local and reach-scale
migration dynamics (Giineralp and Rhoads,
2011; Schwendel et al., 2015), studies have
been limited to smaller single-threaded rivers,
despite longstanding evidence that topographic
and lithological variability are controls on many
large rivers (Potter, 1978).

The Amazon River occupies a 100,000
km? wide Holocene floodplain incised into
late Tertiary and Quaternary deposits (Mertes
and Dunne, 2022). In central Amazonia, the
interfluves between major rivers comprise flu-
vial deposits formed at a higher base level than

the modern alluvial plain, originally mapped
as the I¢cd Formation (Maia et al., 1977) and
later revealed as Late Pleistocene in age (Ros-
setti et al., 2015; Pupim et al., 2019). Such
Pleistocene cohesive and cemented sediments
(PCCSs) form terraces tens of meters in eleva-
tion that comprise weakly consolidated fine-
to coarse-grained sand-, silt-, and mudstones
(Rossetti et al., 2015; Mertes and Dunne, 2022).
Due to Holocene river incision, the active chan-
nel now frequently flows against, and along,
these terraces. The Solimodes River, the Brazil-
ian Amazon River upstream of Manaus, has an
anabranching channel belt that transitions from
high sinuosity (1.6) to low sinuosity (1.1) near
the confluence with the Japurd River (Mertes
et al., 1996), accompanied by varying migra-
tion rates along both banks (Fig. 1A). This
transition has been linked to changes in slope,
underlying geology, and floodplain narrowing
caused by older terraces (Mertes et al., 1996;
Mertes and Dunne, 2022). However, these
previous studies provided neither measure-
ments nor detailed planform analyses. Herein,
we hypothesize that PCCSs possess a higher
bank strength than Holocene alluvium and that
this difference controls large-scale river mor-
phology and dynamics. We provide the first in
situ measurements of bank strength along the
Solimdes River and compare these to reach-
scale morphodynamics from remotely sensed
data. We quantify bank erosion and deposition
rates along the entire Solimdes River, dem-
onstrate their dependence on the proximity
of the river to PCCSs, and provide a mecha-
nistic explanation for how variability in bank

CITATION: Briickner, M.Z.M., et al., 2024, Bank strength variability and its impact on the system-scale morphodynamics of the upper Amazon River in Brazil:
Geology, v. 52, p. 533-538, https://doi.org/10.1130/G51862.1

Geological Society of America | GEOLOGY | Volume 52 | Number 7 | www.gsapubs.org

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/52/7/533/6508698/g51862.1.pdf
bv LISP lniversidade de Sao Paulo user

533


http://www.geosociety.org
mailto:editing@geosociety.org
https://pubs.geoscienceworld.org/geology
http://www.geosociety.org
https://doi.org/10.1130/G51862.1
https://orcid.org/0000-0002-7954-9586
mailto:mbruckner@lsu.edu

el LN

Tefé

" (64°42'30"W/3°21°S)

* 65.02°W

50-100 kPa
> 100 kPa
River km
1967

685 rkm
g

65.01°W

Figure 1. (A) Study area on the Solimoes River, Brazil, with bank and bar lines from 1967 Corona satellite imagery (yellow lines) superimposed
on 2021 PlanetScope imagery, showing varying migration rates between left and right bank. Colored points denote measurement locations
along the 100 km reach of the Solimées River of three bank classes obtained with a shear vane. Inset map shows river network (HydroSHEDS
database; Lehner and Grill, 2013) and study site location in the Amazon River basin (red rectangle). (B) Photograph of Holocene deposits on
left bank, marked with red X. (C) Photograph of Pleistocene mud- and sandstones on right bank, marked with a red X. (D) Multibeam echo
sounder and side-scan (<3 m; marked by X) data showing Pleistocene cohesive and cemented sediments (PCCSs; purple) outcrop along
right bank and extending across channel, with margins of large sand dunes (green colors) in channel center. Depth is water depth based on
the (low) stage during the field campaign. rkm—river kilometers.

strength exerts a first-order control on the
migration behavior of one of the world’s larg-
est anabranching rivers.

METHODS

We briefly describe the methodology below,
with more details provided in the Supplemental
Material'.

Field Data from the Solimoes River

We collected 210 measurements of bank
strength (Fig. 2) using a hand-held Pilcon shear
vane and a cohesive strength meter (Mark III)
at 30 locations along a 100 km reach of the
Solimdes River that has experienced contrasting

!Supplemental Material. Detailed description
of the methodology. Please visit https://doi.org/10
.1130/GEOL.S.25439140 to access the supplemental
material; contact editing@geosociety.org with any
questions.

534

erosion between its south (right, looking down-
stream) and north (left, looking downstream)
banks since 1967 (Fig. 1A). The shear vane
(SV) records the axial strength of the top layer
(He et al., 2018), whereas the cohesive strength
meter (CSM) provides a critical shear stress for
erosion based on a jet-pressure test (Tolhurst
et al., 1999). To determine the morphology of
submerged PCCSs, we collected multibeam
echo sounder (MBES) and side-scan sonar data
for the near-bank channel bed in October 2022
(low-flow stage). Side-scan return intensity data
were overlain onto the processed MBES data,
which were gridded at 0.25 m (see Supplemen-
tal Material).

Image and GIS Analyses

We digitized Corona satellite imagery from
11 December 1967 (U.S. Geological Survey,
earthexplorer.usgs.gov; ~2 m resolution)
and extracted bank and bar lines to compare

with Planet CubeSat data from October 2021
(~3 m resolution; https://www.planet.com/).
To quantify channel migration, we produced
four-year composite images (1984—-1988 and
2019-2023; Boothroyd et al., 2021) to classify
water and land masks from Landsat imagery
(see Supplemental Material) in three reaches
along the Solimdes River (Fig. 3A). These were
classified as: (1) freely meandering (reach I),
(2) partially constrained by PCCSs (reach II),
and (3) partially constrained at the confluence
with a secondary channel (reach III) based on
digital elevation model data (FABDEM,; https://
data.bris.ac.uk/data/dataset/25wfyOf9uko-
ge2gs7a5mqpq2j7) (Hawker et al., 2022; see
Supplemental Material). In addition, we com-
puted channel centerlines based on bank lines
(RivMAP toolbox; Schwenk et al., 2017) to
calculate channel sinuosity and mean annual
erosion and deposition rates along each bank
in 20 km or 10 km segments based on the river
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For the 1600 km of the Solimdes River, the
proximity of the bank line to PCCS terraces
was measured at the scale of 10 km segments
using FABDEM data (Hawker et al., 2022) by
measuring the width of the adjacent Holocene
floodplain (see Supplemental Material). Reaches
were defined as “associated” with PCCSs when
the distance from the nearest bank was less than
the mean channel width. For banks in each reach,
we measured changes in water and land areas
from 1984 to 2021 using the Global Surface
Water Explorer (https://global-surface-water
.appspot.com; Pekel et al., 2016) to compute
mean annual rates of erosion and deposition (see
Supplemental Material).

RESULTS AND DISCUSSION
Bank Sediments and Strength

We find notable differences in composi-
tion between the left-bank Holocene flood-
plain deposits and the right-bank PCCSs. Left
banks and islands are characterized by sandy
bar-top sediments (Fig. 1B) often overlain by
mud drapes, whereas the right banks are a het-
erogeneous succession with frequent outcrops
of elevated PCCSs (Fig. 1C). The fine-grained
PCCS materials are commonly lithified by fer-
ruginous cements, iron and manganese crusts,
and ferruginous coatings along vertical fractures
(Rossetti et al., 2015; Pupim et al., 2019). CIiff
collapses, marked by slump blocks comprising
claystones interpreted as Pleistocene lacustrine
sediments, expose large clay outcrops (Fig. 1C).

These differences in deposits are reflected in
our bank strength measurements: PCCS bank
strength is variable but on average as much as
three times greater than that of the Holocene
deposits (SV in Fig. 2). PCCSs containing sandy
lenses exhibit values closer to those of the left
bank. The cohesive strength meter results reveal

no significant difference between the resistant
PCCSs along the right bank and the Holocene
deposits (Fig. 2; see the Supplemental Mate-
rial). Differences between these two data sets
reflect that the cohesive strength meter measures
surface resuspension, related to hydraulic ero-
sion processes, while the shear vane measures
strength within a deeper surface layer, linked to
mechanical bank failure (Tolhurst et al., 1999;
He et al., 2018).

MBES and side-scan sonar images illustrate
the prevalence of PCCSs from bank top to toe
(see also the Supplemental Material), commonly
extending far into the main channel (Fig. 1D).
These outcrops influence channel migration
rates by locally reducing vertical and lateral
erodibility, altering the flow dynamics, con-
trolling the steering of bedload sediment, and
providing local bank and bed protection. Such
mechanisms have been highlighted in previous
studies that have detailed the role of both near-
bank bedrock (Nittrouer et al., 2011; Konsoer
et al., 2016) and slump blocks associated with
intermittent bank failures (Hackney et al., 2015).
However, in those cases, bedrock outcrops were
located either at the outer bank of sinuous chan-
nels or where channel curvature promoted deep
scouring. PCCS outcrops documented herein
are common along large stretches of the right
bank of the Solimdes River and the adjacent bed
where channel curvature is low.

Reach- and System-Scale Dynamics

To assess the role of bank strength variabil-
ity on erosion and deposition, we investigated
three reaches classified as freely meandering
or partially constrained (Fig. 3A). Figures 3B
and 3C show an increasing asymmetry between
erosion and deposition from reach I to reach III
where PCCSs were present (with the exception
of segment B2). Bank erosion and deposition are
balanced throughout reach I, where PCCSs are
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(see Supplemental Mate-
rial [footnote 1]).

absent and sinuosity is highest (1.33). Dimin-
ishing erosion along the right bank is linked to
the presence of resistant layers in reach II (gray
shades in Fig. 3C), where net bar deposition
also decreases, indicating reduced bar formation
and lower sinuosity (1.24). The main channel of
reach III becomes stable when encountering the
PCCSs, which promotes reduced left-bank ero-
sion through low deposition and channel sinuos-
ity (1.15). The secondary channel, which flows
entirely along the resistant layers (see Fig. 3A),
remains stable along both banks with low ero-
sion and deposition.

These trends illustrate that channel sinuos-
ity and migration are strongly controlled by
bank strength variability as recorded with the
shear vane (Fig. 3): high bank strength along
one bank inhibits lateral erosion, which reduces
local and downstream sediment availability,
point bar deposition, and steering of the flow.
In the Amazon River, a substantial proportion
of locally transported sediment originates from
the floodplain, sourced through bank erosion
and collapse (Dunne et al., 1998), which drives
meandering through positive feedbacks between
sediment flux and bar formation (Constantine
etal., 2014). Such feedbacks are interrupted by
the presence of PCCSs, which resist erosion and
affect supply of bedload-sized material, evi-
denced by the absence of dunes near the PCCS
banks (Fig. 1D). The lack of bedforms implies
that transport capacities exceed sediment sup-
ply for hundreds of meters from the bank, thus
inhibiting bar deposition and maintaining chan-
nel position adjacent to the PCCS outcrops. The
absence of flow steering due to lower channel
curvature also stabilizes the left bank, despite
the latter comprising more erodible alluvium.
Resistance of the top sediment layer to failure
(representative of the shear vane results) is likely
to be the main control here compared to surface
erosion processes. Although demanding future
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Figure 3. (A) Digital elevation model (FABDEM) of the Solim6es River with locations of a freely meandering reach (1) (river km 1040-1120),
a partially constrained reach (ll) (river km 670-750), and a partially constrained reach at the confluence with a secondary channel (lll)
(river km 590-630). Fieldwork site is indicated (dashed rectangle). (B) Overlays of channel and bar area averaged between 1984-1988
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measurements of flow to test such reasoning, our
observations provide a mechanistic link between
the presence of PCCSs and channel migration.
Previous studies have suggested that changes in
sinuosity and channel migration rates along the
Solimdes River are related to changes in slope
and underlying geology (Dunne et al., 1998;
Birkett et al., 2002; Dunne and Aalto, 2013). Our
data show that bank strength is a primary control
on differences in channel pattern in the Solimdes
River, with the stable right bank suppressing
bank erosion and limiting creation of sinuous
channels (Kleinhans et al., 2024), which thereby
stabilizes both banks of the active channel.
Our GIS analysis over 1600 km shows that
the main channel frequently flows close to the
higher terraces (Fig. 4A; Supplemental Mate-
rial), which are likely similar to the PCCSs docu-
mented herein (Rossetti et al., 2015; Pupim et al.,
2019). Reaches with the highest rates of erosion
and deposition are disassociated from PCCSs,
whereas reaches associated with PCCSs exhibit
reduced erosion and deposition rates. PCCSs
therefore may influence larger-scale dynamics
in the Solimdes River through the morphody-
namic mechanisms proposed above, with pos-
sible implications for the controls on other large
sand-bed rivers where PCCS deposits have been
reported, such as the Orinoco River (Venezuela
and Colombia; Warne et al., 2002), Late Holo-
cene Willamette River (Oregon, USA; Wallick
etal., 2022), Mekong River (East and Southeast
Asia; Carling, 2009), and lower Mississippi River
(central United States; Nittrouer et al., 2011).

CONCLUSIONS

A 100-km-long reach of the Solimdes
River studied herein is characterized by Holo-
cene floodplain deposits along its left bank and
Pleistocene cohesive and cemented sediments
(PCCSs) along its right bank. Shear vane mea-
surements show bank strength to be as much

as three times greater along the right bank as
compared to the left bank. In reaches where
PCCSs are present, erosion and deposition
rates are reduced, influencing channel sinuos-
ity and migration. We argue that bar formation
is suppressed along the right bank due to limited
channel widening and associated low sediment
supply from the resistant PCCSs. This reduced
bar formation impedes steering of the flow and
development of channel curvature, thereby
lessening erosion of the weaker left bank in the
downstream direction. Migration analysis for
the 1600-km-long river reveals that erosion and
deposition decrease in reaches associated with
PCCSs, suggesting that these feedbacks affect
sinuosity and lateral dynamics in the Solimdes
River and potentially other large lowland rivers
that possess significant PCCSs.
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