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1 Introduction

The black hole, an exotic astronomical object predicted in general relativity, is playing

more and more important roles in various fields of modern physics. Showing the existence

of such an object by studying its stability is obviously important. Starting from the influ-

ential study by Regge and Wheeler [1], the stability of black holes has been investigated

over half a century. It has been demonstrated that most black holes are stable under var-

ious types of perturbations (for a recent review see for example [2]), which shows that the

black hole is realizable in practice and is not just a mathematical curiosity.

Recently, Aretakis carefully examined the stability of the extreme black holes in the

asymptotically flat spacetime. They proved analytically that for the extreme Reissner-

Nordström (eRN) and Kerr (eKerr) black holes, there exists a classical instability under

massless scalar field perturbations [3–6].

This is an amazing result viewed from two aspects. The first one is that non-extreme

RN and Kerr black holes are stable against massless scalar field perturbations [7, 8], so

it is surprising that the stability of black holes changes radically when the extremal limit

is approached. The second one is that extreme black hole occupies an essential place

in understanding quantum theory of gravity. For example, the Bekenstein-Hawking en-

tropy of extremal supersymmetric black holes can have statistical explanation in string

theory [9, 10], which reflects a quantum aspect of gravity. The study on the stability of

extreme black holes is obviously important. Aretakis’ result suggests that the stability of

extreme black holes has to be reexamined.
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Aretakis’ argument can be briefly summarized as follows. We work in the ingoing

Eddington-Finkelstein (EF) coordinates v and r, and suppose that the initial data for the

perturbation ψ is defined on a spacelike surface intersecting with the future horizon and

further, one can construct a certain conserved quantity on the horizon, i.e., the so-called

Aretakis constant. With this constant, it can be proved analytically that the derivative

∂rψ shall not decay on the horizon. However, the field itself, ψ does decay on the horizon

as well as outside. Moreover, all radial derivatives of ψ fall off outside the horizon. The

non-decay of ∂rψ on the horizon leads to a blow up of ∂2rψ on the horizon at late times.

Aretakis could demonstrate that the derivative ∂krψ blows up at the horizon as vk−1 or even

faster. This suggests the instability of the extreme black hole. This proof was extended to

other extreme black holes in the asymptotically flat spacetime in various dimensions [11].

Similar instability was also found in the electromagnetic and gravitational perturbations

in the eKerr black hole [11]. This type of gravitational instability was also observed for

higher dimensional extreme black holes [12].

Aretakis’s analytic argument was recently confirmed in [13] by a numerical calculation.

They examined the late time behavior of the scalar field in great detail and found that

in the asymptotically flat spacetime the mode of the massless scalar perturbations with

higher l (where l is the spherical harmonic index) decays faster. They also discussed

the case provided that one can not define the non-zero Aretakis constant where Aretakis’

analytical argument breaks down and found that the horizon instability still exists (see also

the recent work [14, 15] where an analytical argument is given for this case). Moreover,

they showed that for a massive scalar field as well as for electromagnetic and gravitational

perturbations, an instability also develops.

In this paper, we will extend the study to the extreme Reissner-Nordström (eRN-AdS)

black hole. Motivated by the recent discovery of the AdS/CFT correspondence, the inves-

tigation of the stability of AdS black holes becomes more appealing. The stability of the

nonextreme AdS black holes has been studied extensively, see for example [2] and references

therein. In the nonextreme AdS black hole, it was shown that the behavior of perturbations

differs a lot from those in the asymptotically flat spacetimes. For example, the scalar field

experiences an exponential decay at late time in the AdS black hole background [16–18]

instead of a power-law decay in the asymptotically flat black holes [19–22]. Higher l modes

will experience an increase of the damping time scale and a decrease of the oscillation time

scale compared with the lower l modes in the AdS black hole [18, 23–25], while the situation

is opposite in the asymptotically flat black hole [20]. These differences in the behaviors of

perturbations are caused by the different effective potentials and boundary conditions in the

AdS black hole compared with the asymptotically flat black hole. Here we want to examine

how the presence of the negative cosmological constant affects the stability of extreme black

holes in the AdS space. We will focus on the massless scalar field perturbations. In [25],

it was argued that when the RN-AdS black hole approaches to the extremal limit, the late

time decay of the scalar field outside the black hole changes from exponential to power-law.

It is interesting to check this result in the exactly extreme RN-AdS black hole background

both outside the horizon and on the horizon. We will examine the stability of the extreme

RN-AdS black hole and compare the result with that in the asymptotically flat black holes.
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This paper is organized as follows. In section II, we will follow Aretakis argument

to study the horizon stability of eRN-AdS black hole analytically. In section III, we will

use numerical method to study the behavior of the massless scalar field perturbations for

different angular index l = 0, 1 and 2, respectively. Section IV is devoted to conclusion and

discussion. In order to compare with the eRN case, we will set all parameters to be the

same as in [13].

2 Horizon instability: analytical results

In this section, we will follow Aretakis’ argument [3–6] to study the stability of extremal

RN-AdS black hole under massless scalar perturbations analytically. The metric of the

extremal RN-AdS black hole takes the form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2 ,

f(r) =
1

R2r2
(

r2 + 2r+r +R2 + 3r2+
)

(r − r+)
2 , (2.1)

where r+ denotes the degenerate horizon, and R is the AdS radius related to the cosmo-

logical constant Λ by Λ = −3/R2. The tortoise coordinate is

r∗(r) =

∫

dr

f(r)

=
R2

(

R2 + 6r2+
)2

[

−
r2+

(

R2 + 6r2+
)

r − r+
+
R4 + 7R2r2+ + 14r4+

√

R2 + 2r2+

arctan





r + r+
√

R2 + 2r2+





+2r+
(

R2+4r2+
)

log (r−r+)−r+
(

R2+4r2+
)

log
(

r2+2rr++3r2++R
2
)

]

. (2.2)

With the ingoing Eddington-Finkelstein (EF) coordinates, the metric becomes

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2, (2.3)

where v = t+ r∗.

The dynamics of the massless scalar perturbation is governed by the Klein-Gordon

equation

∇2ψ = 0. (2.4)

Working in the EF coordinate (2.3), we begin by expanding ψ as

ψ(v, r,Ω) =
∞
∑

l=0

ψl(v, r)Yl(Ω), (2.5)

where the index m has been dropped. Substituting it into the equation of motion, we

obtain

2r∂v∂r(rψl) + ∂r(∆∂rψl)− l(l + 1)ψl = 0, (2.6)

– 3 –
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where ∆ = 1
R2

(

r2 + 2r+r +R2 + 3r2+
)

(r − r+)
2. We work with zero angular momentum

(l = 0) and compute the expression at r = r+. We can thus show that

H0[ψ] ≡
1

r+
[∂r(rψ0)]r=r+

, (2.7)

is independent of v.

The constant H0 does not vanish for general initial data, thus remaining non-zero.

As a consequence the field and its radial derivative do not simultaneously tend to zero at

the horizon. Later, we show how ψ decays at late times using a numerical computation.

Therefore, ∂rψ at the horizon does not decay,

(∂rψ0)r=r+ → H0 as v → ∞ . (2.8)

Now, acting on (2.6) with ∂r for l = 0 and r = r+, we obtain

[

∂v∂
2
r (rψ0) +

(

6

R2
+

1

r+

)

∂rψ0

]

r=r+

= 0 . (2.9)

Hence,
[

∂v∂
2
r (rψ0)

]

r=r+
→ −

(

6

R2
+

1

r+

)

H0 as v → ∞ . (2.10)

This result leads to the fact that the second radial derivative of the field diverges for large

v at the horizon, (similar conclusion being true for higher derivatives, as one can easily see

deriving (2.6))

(

∂2rψ0

)

r=r+
∼ −

(

6

r+R2
+

1

r2+

)

H0v as v → ∞ . (2.11)

Such instability is typical for l = 0 perturbations. For l > 0 perturbations, because of

the complexity of ∆ in (2.6), we can not define a conserved Aretakis constant by taking ∂lr
on the equation of motion (2.6) and evaluating it at the horizon as did in the eRN case [13].

So different from the eRN case [13], the above analytic analysis cannot be extended to ar-

bitrary l > 0.

However, for l > 0 modes, we can still get some important information by analyzing

the asymptotical property of the equation of motion (2.6) at large v by supposing that

the late-time behavior of φ ≡ rψl on the horizon is about va0 with a0 a negative non-

integer constant. We will prove this assumption and get a0 later using numerical method.

Then from (2.6), at large v, we get that ∂rφ|r=r+ ∼ va0+1. By taking further r-derivatives

of (2.6), and analyzing the behavior at large v, we can obtain

∂nr φ|r=r+ ∼ va0+n as v → ∞. (2.12)

This implies that there is always horizon instability for large enough n.

– 4 –
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3 Numerical results for massless scalar perturbations

In this section, we use a numerical method to analyze the behavior of the massless scalar

perturbations along the horizon in the background of the eRN-AdS black hole. In the

analytic analysis, we required the general initial condition to be of the form of nonzero

Aretakis constant H0[ψ]. This is equivalent to consider an initial outgoing wavepacket in

the perturbation [13]. Besides the outgoing wavepacket, we can also have an initial ingoing

wavepacket, which corresponds to zero Aretakis constant where the analytical argument

above does not work. In this section, we will examine the behavior of massless scalar

perturbations in the eRN-AdS background carefully by imposing both the outgoing and

ingoing initial wavepackets.

3.1 Double null coordinates

With (u, v)-coordinates defined as

du = dt− dr∗, dv = dt+ dr∗ , (3.1)

the metric (2.3) becomes

ds2 = −f(r(u, v))dudv + r2dΩ . (3.2)

The areal radius r(u, v) can be determined by solving the tortoise coordinate r∗(r) =
v−u
2 .

We wish a nonsingular metric at the horizon, leading us to define new coordinates as

in [13], that is,

u

2
= −r∗(r+ − U)

= −
R2

(

R2 + 6r2+
)2

[

r2+
(

R2 + 6r2+
)

U
+
R4 + 7R2r2+ + 14r4+

√

R2 + 2r2+

arctan





2r+ − U
√

R2 + 2r2+





+2r+
(

R2+4r2+
)

log (−U)−r+
(

R2+4r2+
)

log
(

U2−4r+U+6r2++R
2
)

]

. (3.3)

In (U, v)-coordinates, the position of the horizon is at U = 0 and in the region U < 0

one is outside the black hole. The metric becomes

ds2 = −
2f(r)

f(r+ − U)
dUdv + r2dΩ2, (3.4)

where r is a function of U and v. We can expand r for small U as

r = r+−U +
1

2

(

1

r2+
+

6

R2

)

U2+

[(

1

r3+
+

4

R2r+

)

v −

(

9

R4
+

1

4r4+
+

3

R2r2+

)

v2
]

U3+ · · · ,

(3.5)

from which it can be shown that f(r)
f(r+−U) = 1 + O(U) for small U . We obtain a regular

analytic metric that can be defined for U > 0.

– 5 –
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3.2 Wave equation and initial data

Defining φ ≡ rψl, where l is the angular index, we obtain a wave equation for φ in (U, v)-

coordinates from the Klein-Gordon equation (2.4)

4∂U∂vφ+ V̂ (U, v)φ = 0 , (3.6)

where the effective potential

V̂ (U, v) =
2f(r)

f(r+ − U)

(

f ′(r)

r
+
l(l + 1)

r2

)

. (3.7)

We consider a null “initial” surface as in [13]

Σ0 = {U = U0, v ≥ v0} ∪ {U ≥ U0, v = v0} , (3.8)

and impose the following two types of initial data:

• outgoing wavepacket

φ(U, v0) = exp

(

−
(U − µ)2

2σ2

)

, φ(U0, v) = 0. (3.9)

• ingoing wavepacket

φ(U, v0) = 0, φ(U0, v) = exp

(

−
(v − µ′)2

2σ′2

)

. (3.10)

We will solve the perturbation equation numerically by using the above initial condi-

tions. In order to do the comparison with the eRN results [13], we also set r+ = 1, R = 1,

U0 = −0.5 and v0 = 0 in the numerical computation.

3.3 Algorithm of numerical method

We apply the finite difference method suggested in [20, 26] to solve the wave equation (3.6),

which can be discretized into

φN = φE + φW − φS − δUδvV̂

(

vN + vW − uN − uE
4

)

φW + φE
8

+O(ǫ4) , (3.11)

where points N,S,E and W form a null rectangle with relative positions as: N : (U +

δU, v + δv),W : (U + δU, v), E : (U, v + δv) and S : (U, v). The parameter ǫ is an overall

grid scalar factor, so that δU ∼ δv ∼ ǫ.

There is one essential point we should note: the effective potential V̂ is positive and

vanishes at the horizon, but it diverges at r → ∞, which requires that φ vanishes at the

infinity. This is the boundary condition to be satisfied by the wave equation for the scalar

field in the AdS space, which is completely different from that in the asymptotically flat

space. In the perturbations of the nonextreme AdS black hole, it is this difference that

makes the perturbation behave differently from that in the asymptotically flat spacetime.

In the following, we will examine the effective potential effect in the perturbation in the

– 6 –
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U

v

U0 0

v − u(U) = 2ras
∗

Figure 1. Sketch graph of our interested region in (U, v)-coordinates filled with light-green mesh.

Values of the scalar field on the three red lines, v − u(U) = 2ras
∗
, U = U0 and v = 0, are known

according to the given initial data. In this paper, we are most interested in values of the scalar field

on the horizon, which is the line U = 0 we show with light-green color.

eRN-AdS black hole and compare with that in the asymptotically flat spacetimes. In terms

of the tortoise coordinate r∗, it is seen that when r tends to infinity, r∗ tends to a finite

constant, which is denoted as ras∗ . It means that our region of interest in the (U − v)

diagram is below the curve v − u(U) = 2ras∗ , as shown in figure 1. On this line we set

φ = 0, since there r → ∞ and the effective potential diverges.

The inversion of the relation r∗(r) needed in the evaluation of the potential V̂ (U, v) is

the most tedious part in the computation. We overcome this difficulty by employing the

method suggested in [20, 27].

3.4 Numerical results

3.4.1 The l = 0 mode

Heret we report on the numerical result of solving the wave equation (3.6) with l = 0. We

define Aretakis’ conserved quantity as in eq. (2.7). The outgoing wave initial data (3.9)

has nonzero H0[ψ] unless µ = 0, while the ingoing wave initial data (3.10) and outgoing

wave initial data (3.9) with µ = 0 have zero H0[ψ]. We present the results of numerical

computations by using different initial conditions in the following. To make a comparison

with results in eRN case [13], we choose the same parameters for the perturbations.

Non-zero Aretakis constant. Firstly, we consider the solution with H0[ψ] 6= 0, where

we use the initial outgoing wavepacket (3.9) with µ 6= 0. We have shown the instability of

this type of perturbation analytically in the last section, where we assumed that ψ decays on

the horizon. Here we will show that this assumption holds through numerical computation.

– 7 –
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Figure 2. Functions φ(v, r) and ∂rφ(v, r) for l = 0 on fixed v slices. Seeking comparison with

other results, the outgoing wave initial data is given by (3.9) with (σ, µ) = (0.1,−0.1). As we can

see, φ decays on and outside the horizon. And ∂rφ also decays outside the horizon, while keeping

constant on the horizon. It is steeper near the horizon when v increases. Therefore, the second

derivative of φ diverges at the horizon.

As in ref. [13], although we do our numerical calculations in (U, v) coordinates, we

would like to display the results using (v, r) coordinates, since they correspond to the

preferred coordinates, related to the symmetries of the background.

In figure 2, the time evolution of φ and ∂rφ in (v, r)-coordinate is plotted with (σ, µ) =

(0.1,−0.1). The figure shares some similar features in the eRN case in [13]: (1) as v

increases, φ decays; (2) ∂rφ also decays outside the horizon, but does not decay on the

horizon; (3) Moreover, the first derivative of φ becomes steeper next to the horizon as v

increases, indicating that ∂2rφ must blow up along the horizon. Besides the similarity, we

also observe the differences compared with eRN case. φ and ∂rφ outside the horizon decay

faster in eRN-AdS case. ∂rφ becomes steeper more quickly near the horizon as v increases

in the eRN-AdS black hole, which shows that ∂2rφ on the horizon blows up more violently

in the AdS background.

In figure 3, we have the time evolution of the field and its second derivative at the

horizon. We take the constants (σ, µ) as being (0.1,−0.1), (0.05,−0.1), (0.1,−0.05) for the

sake of comparison. We can see that φ|r=r+ can quickly get rid of the influence of different

initial parameters and exhibit the consistent late time behavior earlier in the eRN-AdS

black hole if we compare with figure 4 of the eRN black hole case in [13]. By fitting the

absolute value of φ|r=r+ in the range 80 ≤ v ≤ 100 to va, we obtain the following exponents:

a = −0.999,−1.039,−0.980 for (σ, µ) = (0.1,−0.1), (0.05,−0.1), (0.1,−0.05), respectively.

These results suggest that the scalar field on the horizon decays as v−1 at late time, which

is the same as that in the eRN case [13]. The power-law decay in the late-time behavior

of the massless scalar perturbation in eRN-AdS black hole is very different from results in

non-extremal AdS black holes [16–18], where the late time tail exhibit exponential decay.

Our result supports the argument in [25], where it was argued that when AdS black holes

approach extremal limit, there is a transition from exponential decay to power-law decay.

The difference in the late time perturbation indicates the dynamical difference between the

extreme black hole and nonextreme black hole in AdS spacetimes. The coefficient of the

– 8 –
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1

Υ

ÈΦ r=r+È

HΣ,ΜL=H0.1,-0.05L

HΣ,ΜL=H0.05,-0.1L

HΣ,ΜL=H0.1,-0.1L
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0

1000

Υ

¶r
2Φ r=r+

HΣ,ΜL=H0.05,-0.1L

HΣ,ΜL=H0.1,-0.05L

HΣ,ΜL=H0.1,-0.1L

Figure 3. Time evolution of φ|r=r+
and ∂2

r
φ|r=r+

for l = 0 mode. We consider outgoing wave

initial data (3.9) with various parameters: (σ, µ) = (0.1,−0.1), (0.05,−0.1), (0.1,−0.05). From the

top-right Log-Log plot, we can see that φ|r=r+
has a power-law decay. While ∂2

r
φ|r=r+

blows up as

v increases, which can be seen from the bottom plot.

power law decay can be fitted to be a ∼ −0.28 for all initial data we used instead of a ∼ −2

in the eRN case. Hence, the late time behavior of φ|r=r+ for the eRN-AdS black hole is

φ|r=r+ ∼ −
0.28H0

v
v → ∞ . (3.12)

∂2rφ|r=r+ blows up linearly as expected in the analytical study. We fit the curves of

∂2rφ|r=r+ to a function cH0v + d in the range 80 ≤ v ≤ 100, and find the fitting parameter

c = −7.070,−7.022,−7.021 for (σ, µ) = (0.1,−0.1), (0.05,−0.1), (0.1,−0.05), respectively.

This suggests that ∂2rφ|r=r+ ∼ −7H0v at late time, which is consistent with the analytical

result (2.11). For the eRN case [13], we can do the same fitting and find c ∼ −1 for all the

initial data. So we can see that ∂2rφ|r=r+ blows up faster in AdS case, which means that

the horizon is more unstable in the AdS case.

Zero Aretakis constant. Now we consider perturbations with H0[ψ] = 0. The case

µ = 0 for an ingoing or an outgoing wavepacket is here contained. The analytic proof of the

instability in the last section does not work now; instead we will use a numerical calculation

to study this case. To compare with the eRN case [13], we choose the same parameter spaces

(σ′, µ′) = (3.0, 10.0) for the ingoing wavepacket (3.10), and σ = 0.05, 0.1, 0.15 and µ = 0

for the outgoing wavepacket (3.9).
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Figure 4. Log-Log plots of time evolution of φ|r=r+
, ∂2

r
φ|r=r+

and ∂3
r
φ|r=r+

for l = 0 and H0 = 0.

The initial data are: σ = 0.05, 0.1, 0.15 with µ = 0 and for outgoing wavepacket, while (σ′, µ′) =

(3.0, 10.0) for an ingoing wavepacket. As in previous results, for large values of v the field at the

horizon decays as v−2, its second derivative at the horizon approaches a non-vanishing constant,

while the third derivative diverges.

In figure 4, we plot the time evolutions of φ|r=r+ , ∂
2
rφ|r=r+ and ∂3rφ|r=r+ . We see that

φ|r=r+ decays, ∂2rφ|r=r+ approaches to a non-zero constant and ∂3rφ|r=r+ blows up as v

increases. These behaviors are similar to that observed in the eRN case in [13]. We see that

there exists the instability even for initial data with H0[ψ] = 0 in the eRN-AdS black hole.

Using the fitting method, we find that φ|r=r+ has a power-law decay for the extreme

AdS black hole as argued in [25], rather than an exponential decay as we observed in the

nonextreme AdS hole. Fitting to the decay law va at late time, we find the exponent

a = −1.983 for the ingoing wave, and a = −1.989,−1.986,−1.984 for the outgoing wave

with σ = 0.05, 0.1, 0.15. This implies that, for H0[ψ] = 0, the late time behavior of φ|r=r+ is

φ|r=r+ ∼
C

v2
v → ∞ . (3.13)

This result is the same as in the eRN case [13].

Now let us take a closer look at the instability, which is shown in the late time behavior

of ∂3rφ|r=r+ . By fitting values of |∂3rφ|r=r+ | to function va at late time, we find the fitting

parameter a = 0.979 for the ingoing wave, and a = 0.982, 0.980, 0.978 for the outgoing

wave with σ = 0.05, 0.1, 0.15 respectively. This confirms that ∂3rφ|r=r+ indeed blows up
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as v increases. To determine the coefficient of the linear blow up, we fit |∂3rφ|r=r+ | to the

function bv + c for 50 ≤ v ≤ 100, where we find b = 0.483 for the ingoing wave and b =

7322.14, 1593.8, 608.642 for the outgoing wave with σ = 0.05, 0.1, 0.15 respectively. We can

also do the same fitting for the results in eRN case [13], which gives b = 3.198 for the ingoing

wave, and b = 921.548, 190.923, 65.965 for the outgoing wave with σ = 0.05, 0.1, 0.15 respec-

tively. Comparing with the eRN case, we observe that the instability is moderate for the

ingoing perturbation and more violent for the outgoing perturbation in the eRN-AdS case.

3.4.2 For l = 1 mode

For l = 1 mode, we can no longer define an Aretakis constant H1 as did in the eRN

case [13]. So we can not classify perturbations according to whether H1 is zero or not. But

for convenience to do the comparison with the eRN case, we will still classify perturbations

into two classes, Type I and Type II perturbations, according to the outgoing and ingoing

initial wavepackets we choose.

Type I perturbations. In this part, we consider type I perturbations, an out-

going wavepacket (3.9) with the same parameters as chosen in [13]: (σ, µ) =

(0.1, 0), (0.1,−0.05), (0.05, 0). These correspond to perturbations with non-zero Aretakis

constant in eRN case.

In figure 5, we plot the time evolution of φ|r=r+ , ∂rφ|r=r+ , ∂
2
rφ|r=r+ and ∂3rφ|r=r+ .

φ|r=r+ and ∂rφ|r=r+ are shown in the first two plots in figure 5. They both exhibit

power-law decays, but ∂rφ|r=r+ has a slower decay. Fitting the absolute value of φ|r=r+

to the function va at late time, we find the fitting exponent a = −1.191,−1.230,−1.127

for (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0) respectively. This suggests that the late time

behavior of φ|r=r+ is

φ|r=r+ ∼ Cv−6/5 v → ∞ , (3.14)

which is very different from the result in eRN case [13], where φ|r=r+ ∼ v−2 as v → ∞. Fit-

ting the absolute value of ∂rφ|r=r+ to va at late time, we find a = −0.218,−0.229,−0.206

for (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0) respectively.

Now we investigate the instability. We can see that the instability starts to appear in

the second derivative of φ on the horizon. While in eRN case, the horizon instability starts

to appear in the third derivative. By fitting the value of |∂2rφ|r=r+ | to v
a at late time, we

find the fitting parameter a = 0.740, 0.757, 0.713 for (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0)

respectively. Fitting the value of |∂3rφ|r=r+ | to va for 80 ≤ v ≤ 100, we find a =

1.703, 1.746, 1.645 for (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0) respectively.

For clarity, we list all the fitting results above in table 1.

Type II pertubations. Now we consider type II perturbations, where we take an ingoing

wavepacket (3.10) with (σ′, µ′) = (3.0, 10.0) or an outgoing wavepacket (3.9) with σ =

0.05, 0.1 and µ = σ
(

σ −
√

σ2 + 4r2+

)

/(2r+). These initial wavepackets correspond to

perturbations with zero Aretakis constant cases in eRN case [13].

From figure 6, we can see that φ|r=r+ and ∂rφ|r=r+ exhibit a power-law decay, while

∂2rφ|r=r+ and ∂3rφ|r=r+ take a power law blow-up. This implies that, for all cases we have
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Figure 5. Time evolution of φ|r=r+
, ∂rφ|r=r+

, ∂2
r
φ|r=r+

and ∂3
r
φ|r=r+

for l = 1. We use the initial

data as (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0). We can see that: φ|r=r+
and ∂rφ|r=r+

exhibit a

power-law decay, while ∂2
r
φ|r=r+

and ∂3
r
φ|r=r+

take a power-law blow-up. This implies that, for

l = 1 mode, horizon instability starts to appear from the second derivative of φ.

considered here, horizon instability appears starting from the second derivative of φ. This

is different from that in the eRN case [13], in which horizon instability starts to appear

from the fourth derivative of φ.

Fitting the late time behavior of φ|r=r+ , ∂rφ|r=r+ , ∂
2
rφ|r=r+ , ∂

3
rφ|r=r+ and ∂4rφ|r=r+ to

va, we can find the exponent a for these functions. We list all the fitting results in table 1.

From table 1, we can see that, for type II perturbations, the late time behavior of

φ|r=r+ is about

φ|r=r+ ∼ Cv−5/4 v → ∞ . (3.15)

This is very different from eRN case [13], where φ|r=r+ ∼ v−3 as v → ∞. It shows

that in the eRN-AdS black hole background, the massless scalar perturbation decays

much slower compared with the eRN black hole case. Moreover, we can see from the

table that the late time behavior of ∂nr φ|r=r+ takes a power-law as va0+n with a0 ∼ −6/5

and a0 ∼ −5/4 for type I and type II perturbations, respectively. This is consistent with

analytical result (2.12). The blow up appears earlier and more violent than that in the

eRN case [13], where ∂4rφ|r=r+ approaches to v2.7(v2.8) in eRN-AdS while v2(v) in eRN

case for type I (II) perturbations.
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Figure 6. Time evolution of φ|r=r+
, ∂rφ|r=r+

, ∂2
r
φ|r=r+

and ∂3
r
φ|r=r+

for l = 1. For the ingoing

wavepacket, the initial data takes (σ′, µ′) = (3.0, 10.0), and for the outgoing wavepacket, the initial

data takes σ = 0.05, 0.1 and µ = σ
(

σ −
√

σ2 + 4r2+

)

/(2r+). We can see that: φ|r=r+
and ∂rφ|r=r+

exhibit a power-law decay, while ∂2
r
φ|r=r+

and ∂3
r
φ|r=r+

take a power law blow-up. This also implies

that, for l = 1 mode, horizon instability starts to appear from the second derivative of φ.

Type I perturbations Type II perturbations

(σ, µ) (0.1, 0) (0.1,−0.05) (0.05, 0) ingoing wave 0.05 0.1

φ|r=r+ −1.191 −1.230 −1.127 −1.246 −1.252 −1.243

∂rφ|r=r+ −0.218 −0.229 −0.206 −0.230 −0.233 −0.234

∂2rφ|r=r+ 0.740 0.757 0.713 0.768 0.772 0.763

∂3rφ|r=r+ 1.703 1.746 1.645 1.770 1.781 1.762

∂4rφ|r=r+ 2.668 2.745 2.587 2.772 2.787 2.769

Table 1. Fitting results of the exponent a for the function va with l = 1. We fit the absolute

values of φ and its derivative up to the fourth level to va for 80 ≤ v ≤ 100. In type I perturbations,

initial data are chosen to be (σ, µ) = (0.1, 0), (0.1,−0.05), (0.05, 0). In type II perturbations,

parameters are chosen to be (σ′, µ′) = (3.0, 10.0) for the ingoing wave, and σ = 0.05, 0.1 and

µ = σ(σ −
√

σ2 + 4r2+)/(2r+) for the outgoing wave. From the table, we can see that, for large v,

the late time behavior of ∂n
r
φ|r=r+

is about va0+n with a0 ∼ −6/5 and a0 ∼ −5/4 for type I and

type II perturbations, respectively.
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l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

outgoing wave −1 −1.230 −1.563 −1.865 −2.286 −2.631

ingoing wave −2 −1.246 −1.557 −1.926 −2.238 −2.605

Table 2. Fitting results of the exponent a for the function va for different modes. We fit the absolute

values of φ|r=r+
to va for 80 ≤ v ≤ 100. The parameters of the initial perturbations are chosen to

be (σ, µ) = (0.1,−0.05) and (σ′, µ′) = (3.0, 10.0) for the outgoing and ingoing wave, respectively.

1 2 5 10 20 50 100
10-11

10-9

10-7

10-5

0.001

0.1

Υ

ÈΦ r=r+È

l=5

l=4

l=3

l=2

l=1

l=0

Figure 7. Time evolution of φ|r=r+
for different l for the ingoing wave. Parameters are chosen to

be (σ′, µ′) = (3.0, 10.0). All these modes at late time are power-law decay. And modes with l ≥ 4

decay faster than the l = 0 mode.

Comparing with l = 0 mode discussed in last section, the late time behavior of φ|r=r+

with l = 1 for ingoing wave initial data takes a moderate power-law decay. This is contrary

to the observation in the eRN case [13], but is consistent with results in the nonextreme

RN-AdS black hole [24, 25].

3.4.3 For l > 2 modes

We also extend our numerical calculation to the l = 2, 3, 4 and 5 modes to see further the

effect of l on the decay law of φ|r=r+ and on the blow-up behavior of ∂nr φ|r=r+(n > 0).

We consider both the outgoing wave initial data and an ingoing wave initial data. We

observe that the late time behavior of φ|r=r+ for these modes are all power-law decay. This

further confirms the argument in [25] that when the nonextreme AdS becomes extreme,

the exponential decay of the perturbation will give way to the power-law decay. Also by

fitting values of φ|r=r+ to va, we can find the exponent a for all these modes, which we list

in table 2. We plot the results of the late time tails of ingoing wave case in figure 7.

From table 2 and figure 7, we can see that at late time: (1) For the outgoing wave with

non-zero Aretakis constant H0, mode with higher l will decay faster; (2) For the ingoing

wave (with zero Aretakis constant H0), when l > 0, the first three modes with l = 1, 2, 3
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decay slower than the fundamental mode; while when l ≥ 4 it decays faster than the l = 0

mode. This implies that the decay of the massless scalar field will be dominated by the

first few lower-l modes. This is in some similarity with the situation in de-Sitter black hole,

where the late time behavior of massless scalar ingoing perturbations is [27, 28]

|φ| ∼

{

e−lκct l > 0

|φ0|+ |φ1|e
−2κct l = 0

, (3.16)

The item κc is the surface gravity on the cosmological horizon and φ0, φ1 are some constants.

In the de Sitter case, the decay law of different modes are also divided into two branches,

l = 0 mode and l > 0 modes, and for l > 2 it decays faster than the fundamental mode.

From table 1 and 2, we can also see that, for l > 0 modes, horizon instability starts

to appear from the second (l = 1, 2, 3) or third (l = 4, 5) derivative of φ, earlier than that

in the eRN case.

4 Conclusions and discussion

Recent studies have proved that a massless scalar field has an instability at the horizon of

an extreme Reissner-Nordström black hole. Considering that a scalar field will confront

different boundary conditions when it propagates in the AdS background, we have extended

the stability study to extreme RN-AdS black hole. We have studied the massless scalar

perturbations for different angular index. For l = 0 mode, we can define the Aretakis

constant H0, and hence have shown the horizon instability analytically by assuming that

the scalar field φ|r=r+ on the horizon decays at late time.

Furthermore, we have applied numerical calculation and found the supporting evi-

dence of the decay of φ|r=r+ . We have extended our numerical computation to the higher

modes and found the consistent power-law decay of the massless scalar field perturbation.

The decay of the scalar field is not exponential as observed in the nonextreme AdS black

hole [16–18]. In [25] it was argued that when the nonextreme AdS black hole approaches to

extreme hole, the exponential decay will give way to the power-law decay. Our numerical

result for the eRN-AdS black hole have supported this argument. This is an important

point, since it may lead to a departure from stability already at the nonextreme level.

While we expect some kind of instability in the extreme limit, already from the very fact

that the extreme limit corresponds to a zero temperature thermodynamics, it is worthwhile

checking whether the stability has stronger roots. At this point, a nonlinear approximation,

or at least a backreaction calculation should be important for the clarification of the stabil-

ity or instability determination. Indeed, in case the backreaction pulls the black hole out

of the extreme limit, there are two choices, namely either the nonextreme limit is stable,

thus backreaction stabilizes the problem, or the quasiextreme case is also unstable, and the

whole black hole is unstable. Very recently, there appears a work in this direction for the

eRN case [29]. It was found that generically the endpoint will be a stationary nonextreme

black hole, but if there exists non-generic initial perturbations, the instability will never

end. We hope that it can be extended to eRN-AdS case in near future.

– 15 –



J
H
E
P
0
9
(
2
0
1
3
)
1
0
1

The dependence of the late time tail on the angular index shown in the eRN-AdS

black hole here is different from that in the eRN black hole, which reflects the influence

of the spacetime on the perturbation at late time.

In the eRN-AdS black hole, we have found that when l = 0 the horizon instability

starts to appear from the second or third derivative of the scalar field when the Aretakis

constant is nonzero or zero. When l > 0, the horizon instability starts from the second

(l = 1, 2, 3) or third (l = 4, 5) derivative of the scalar field. This is different from that in

the eRN case, where the blow-up appears at higher derivative of the scalar field, especially

for higher angular index case [13]. This shows that the instability in the extreme AdS black

hole can happen more easily than that in the extreme asymptotically flat black hole.
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