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ABSTRACT: We study the stability of extreme Reissner-Nordstrom-AdS black hole under
massless scalar perturbations. We show that the perturbation on the horizon of the ex-
treme Reissner-Nordstrom-AdS black hole experiences a power-law decay, instead of an
exponential decay as observed in the nonextreme AdS black hole. On the horizon of the
extreme Reissner-Nordstrom-AdS black hole, the blow up happens at lower order deriva-
tive of the scalar field compared with that of the extreme Reissner-Nordstrém black hole,
which shows that extreme AdS black holes tend to instability in comparison to black holes
in asymptotic flat space-times.
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1 Introduction

The black hole, an exotic astronomical object predicted in general relativity, is playing
more and more important roles in various fields of modern physics. Showing the existence
of such an object by studying its stability is obviously important. Starting from the influ-
ential study by Regge and Wheeler [1], the stability of black holes has been investigated
over half a century. It has been demonstrated that most black holes are stable under var-
ious types of perturbations (for a recent review see for example [2]), which shows that the
black hole is realizable in practice and is not just a mathematical curiosity.

Recently, Aretakis carefully examined the stability of the extreme black holes in the
asymptotically flat spacetime. They proved analytically that for the extreme Reissner-
Nordstrom (eRN) and Kerr (eKerr) black holes, there exists a classical instability under
massless scalar field perturbations [3-6].

This is an amazing result viewed from two aspects. The first one is that non-extreme
RN and Kerr black holes are stable against massless scalar field perturbations [7, 8], so
it is surprising that the stability of black holes changes radically when the extremal limit
is approached. The second one is that extreme black hole occupies an essential place
in understanding quantum theory of gravity. For example, the Bekenstein-Hawking en-
tropy of extremal supersymmetric black holes can have statistical explanation in string
theory [9, 10], which reflects a quantum aspect of gravity. The study on the stability of
extreme black holes is obviously important. Aretakis’ result suggests that the stability of
extreme black holes has to be reexamined.



Aretakis’ argument can be briefly summarized as follows. We work in the ingoing
Eddington-Finkelstein (EF) coordinates v and r, and suppose that the initial data for the
perturbation ¢ is defined on a spacelike surface intersecting with the future horizon and
further, one can construct a certain conserved quantity on the horizon, i.e., the so-called
Aretakis constant. With this constant, it can be proved analytically that the derivative
0y shall not decay on the horizon. However, the field itself, ¢ does decay on the horizon
as well as outside. Moreover, all radial derivatives of 1 fall off outside the horizon. The
non-decay of 9,4 on the horizon leads to a blow up of 9?1 on the horizon at late times.

Aretakis could demonstrate that the derivative 9% blows up at the horizon as v*~1

or even
faster. This suggests the instability of the extreme black hole. This proof was extended to
other extreme black holes in the asymptotically flat spacetime in various dimensions [11].
Similar instability was also found in the electromagnetic and gravitational perturbations
in the eKerr black hole [11]. This type of gravitational instability was also observed for
higher dimensional extreme black holes [12].

Aretakis’s analytic argument was recently confirmed in [13] by a numerical calculation.
They examined the late time behavior of the scalar field in great detail and found that
in the asymptotically flat spacetime the mode of the massless scalar perturbations with
higher [ (where [ is the spherical harmonic index) decays faster. They also discussed
the case provided that one can not define the non-zero Aretakis constant where Aretakis’
analytical argument breaks down and found that the horizon instability still exists (see also
the recent work [14, 15] where an analytical argument is given for this case). Moreover,
they showed that for a massive scalar field as well as for electromagnetic and gravitational
perturbations, an instability also develops.

In this paper, we will extend the study to the extreme Reissner-Nordstrom (eRN-AdS)
black hole. Motivated by the recent discovery of the AdS/CFT correspondence, the inves-
tigation of the stability of AdS black holes becomes more appealing. The stability of the
nonextreme AdS black holes has been studied extensively, see for example [2] and references
therein. In the nonextreme AdS black hole, it was shown that the behavior of perturbations
differs a lot from those in the asymptotically flat spacetimes. For example, the scalar field
experiences an exponential decay at late time in the AdS black hole background [16-18]
instead of a power-law decay in the asymptotically flat black holes [19-22]. Higher [ modes
will experience an increase of the damping time scale and a decrease of the oscillation time
scale compared with the lower I modes in the AdS black hole [18, 23-25], while the situation
is opposite in the asymptotically flat black hole [20]. These differences in the behaviors of
perturbations are caused by the different effective potentials and boundary conditions in the
AdS black hole compared with the asymptotically flat black hole. Here we want to examine
how the presence of the negative cosmological constant affects the stability of extreme black
holes in the AdS space. We will focus on the massless scalar field perturbations. In [25],
it was argued that when the RN-AdS black hole approaches to the extremal limit, the late
time decay of the scalar field outside the black hole changes from exponential to power-law.
It is interesting to check this result in the exactly extreme RN-AdS black hole background
both outside the horizon and on the horizon. We will examine the stability of the extreme
RN-AdS black hole and compare the result with that in the asymptotically flat black holes.



This paper is organized as follows. In section II, we will follow Aretakis argument
to study the horizon stability of eRN-AdS black hole analytically. In section III, we will
use numerical method to study the behavior of the massless scalar field perturbations for
different angular index [ = 0, 1 and 2, respectively. Section IV is devoted to conclusion and
discussion. In order to compare with the eRN case, we will set all parameters to be the
same as in [13].

2 Horizon instability: analytical results

In this section, we will follow Aretakis’ argument [3—6] to study the stability of extremal
RN-AdS black hole under massless scalar perturbations analytically. The metric of the
extremal RN-AdS black hole takes the form

ds® = —f(r)dt* + [~ (r)dr® + 1r°dQ?,

1
f(r) = 73,2 (7"2 +2ryr+ R? + 37"3_) (r— T+)2 , (2.1)

where 74 denotes the degenerate horizon, and R is the AdS radius related to the cosmo-
logical constant A by A = —3/R2. The tortoise coordinate is

dr
= ) 5
R (e
+ +
+2r (R2—|—4ri) log (r—r4)—ryt (R2—|—47'_2F) log (7“2+2r7"++3r%r+R2) (2.2)
With the ingoing Eddington-Finkelstein (EF) coordinates, the metric becomes
ds? = — f(r)dv® + 2dvdr + r*dQ?, (2.3)

where v =t + r,.
The dynamics of the massless scalar perturbation is governed by the Klein-Gordon
equation

V) = 0. (2.4)

Working in the EF coordinate (2.3), we begin by expanding v as
Gv,r, Q) =D (v, 1)Yi(Q), (2.5)
1=0

where the index m has been dropped. Substituting it into the equation of motion, we
obtain

2781;&"(”%) + 8T(A6T¢l) - l(l + 1)% =0, (2'6)



where A = # (7“2 +2ryr + R? + 37“3_) (r —r4)% We work with zero angular momentum
(I =0) and compute the expression at r = .. We can thus show that

Holu] = - (0o, (27)
+
is independent of v.
The constant Hy does not vanish for general initial data, thus remaining non-zero.
As a consequence the field and its radial derivative do not simultaneously tend to zero at
the horizon. Later, we show how ) decays at late times using a numerical computation.
Therefore, 0,1 at the horizon does not decay,

(ar¢0)rzr+ — Hy as UV — 0. (28)

Now, acting on (2.6) with 0, for [ = 0 and r = 4, we obtain

6 1
[81,83(7"1/;0) + <R2 + 74+) amo] . =0. (2.9)
Hence,
0,0200)] . = (2 v L) H e v oo (2.10)
vYp 0 r=ri R2 7"+ 0 . .

This result leads to the fact that the second radial derivative of the field diverges for large
v at the horizon, (similar conclusion being true for higher derivatives, as one can easily see
deriving (2.6))

6 1
(83wo)rzr+ ~ = (7”+RQ + 7“2> Hyv as v — 00. (2.11)
+

Such instability is typical for [ = 0 perturbations. For [ > 0 perturbations, because of
the complexity of A in (2.6), we can not define a conserved Aretakis constant by taking 9.
on the equation of motion (2.6) and evaluating it at the horizon as did in the eRN case [13].
So different from the eRN case [13], the above analytic analysis cannot be extended to ar-
bitrary [ > 0.

However, for [ > 0 modes, we can still get some important information by analyzing
the asymptotical property of the equation of motion (2.6) at large v by supposing that
the late-time behavior of ¢ = r; on the horizon is about v? with ag a negative non-
integer constant. We will prove this assumption and get ag later using numerical method.
Then from (2.6), at large v, we get that d,¢|,—,, ~ v®Tl. By taking further r-derivatives
of (2.6), and analyzing the behavior at large v, we can obtain

N blyer, ~ 0™ as v — oo (2.12)

This implies that there is always horizon instability for large enough n.



3 Numerical results for massless scalar perturbations

In this section, we use a numerical method to analyze the behavior of the massless scalar
perturbations along the horizon in the background of the eRN-AdS black hole. In the
analytic analysis, we required the general initial condition to be of the form of nonzero
Aretakis constant Hy[¢]. This is equivalent to consider an initial outgoing wavepacket in
the perturbation [13]. Besides the outgoing wavepacket, we can also have an initial ingoing
wavepacket, which corresponds to zero Aretakis constant where the analytical argument
above does not work. In this section, we will examine the behavior of massless scalar
perturbations in the eRN-AdS background carefully by imposing both the outgoing and
ingoing initial wavepackets.

3.1 Double null coordinates

With (u, v)-coordinates defined as
du=dt —dr,, dv=dt+dr,, (3.1)
the metric (2.3) becomes

ds* = — f(r(u,v))dudv + r*dSQQ. (3.2)

The areal radius r(u,v) can be determined by solving the tortoise coordinate r,(r) = *5*.

We wish a nonsingular metric at the horizon, leading us to define new coordinates as
in [13], that is,

u
S = —r(rs =)

2 2 (R*+6r2 RY+ TR?r% + 1474 2r, —
_ R i ( +7’+)+ + ry + % Jretan ry —U

2
(R2 + 6r%) v R2 4 2r2 R? 4 212

+2ry (R*+4r3) log (—U)—ry (R*+4r3) log (U? —4r, U +6r3 + R?)

. (33)

In (U, v)-coordinates, the position of the horizon is at U = 0 and in the region U < 0
one is outside the black hole. The metric becomes

2
ds? — —— 20 g, + r2d0?, (3.4)

flre =U)

where r is a function of U and v. We can expand r for small U as

1/1 6 1 4 9 1 3
T:T+—U+§ <743_+]%2> U2+ |:<T‘§_+fi27“+>v_ <.R4+47’3_+,R27“3_>1)2:| U3+ 5
(3.5)
from which it can be shown that 7 L(T_)U) =14 O(U) for small U. We obtain a regular
analytic metric that can be defined for U > 0.




3.2 Wave equation and initial data

Defining ¢ = r1;, where [ is the angular index, we obtain a wave equation for ¢ in (U, v)-
coordinates from the Klein-Gordon equation (2.4)

40y 0,6 + V(U,v)p =0, (3.6)
where the effective potential
- _2f(r) ([ fr) W41
V(U,v) = Fire —0) < " + 2 > (3.7)

We consider a null “initial” surface as in [13]
20:{UZU(),UZ’U()}U{UZU(),UZU()}, (3.8)
and impose the following two types of initial data:

e outgoing wavepacket

(U — p)?
202

H(U, v0) = exp (— ) . $(Uo,0) =0, (3.9)

e ingoing wavepacket

v — 2
&(U,v0) =0, ¢(Up,v) = exp <—(“)) . (3.10)

2 0/2

We will solve the perturbation equation numerically by using the above initial condi-
tions. In order to do the comparison with the eRN results [13], we also set 4 =1, R =1,
Uy = —0.5 and vg = 0 in the numerical computation.

3.3 Algorithm of numerical method
We apply the finite difference method suggested in [20, 26] to solve the wave equation (3.6),

which can be discretized into

+0(,  (3.11)

¢N:¢E+¢W_¢S—(5U(5’UV<UN+UW_UN_UE> ow + ¢E

4 8

where points N, S, E and W form a null rectangle with relative positions as: N : (U +
U, v+ ov),W : (U +6U,v),E : (Uv+ dv) and S : (U,v). The parameter € is an overall
grid scalar factor, so that §U ~ dv ~ e.

There is one essential point we should note: the effective potential V s positive and
vanishes at the horizon, but it diverges at r — 0o, which requires that ¢ vanishes at the
infinity. This is the boundary condition to be satisfied by the wave equation for the scalar
field in the AdS space, which is completely different from that in the asymptotically flat
space. In the perturbations of the nonextreme AdS black hole, it is this difference that
makes the perturbation behave differently from that in the asymptotically flat spacetime.
In the following, we will examine the effective potential effect in the perturbation in the
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Figure 1. Sketch graph of our interested region in (U, v)-coordinates filled with light-green mesh.
Values of the scalar field on the three red lines, v — w(U) = 2r?*,U = Uy and v = 0, are known
according to the given initial data. In this paper, we are most interested in values of the scalar field
on the horizon, which is the line U = 0 we show with light-green color.

eRN-AdS black hole and compare with that in the asymptotically flat spacetimes. In terms
of the tortoise coordinate r,, it is seen that when r tends to infinity, r, tends to a finite
constant, which is denoted as r¢®. It means that our region of interest in the (U — v)
diagram is below the curve v — u(U) = 2r?°, as shown in figure 1. On this line we set
¢ = 0, since there r — oo and the effective potential diverges.

The inversion of the relation 7, (r) needed in the evaluation of the potential V (U, v) is
the most tedious part in the computation. We overcome this difficulty by employing the
method suggested in [20, 27].

3.4 Numerical results

3.4.1 Thel = 0 mode

Heret we report on the numerical result of solving the wave equation (3.6) with [ = 0. We
define Aretakis’ conserved quantity as in eq. (2.7). The outgoing wave initial data (3.9)
has nonzero Hy[¢)] unless p = 0, while the ingoing wave initial data (3.10) and outgoing
wave initial data (3.9) with g = 0 have zero Hy[¢)]. We present the results of numerical
computations by using different initial conditions in the following. To make a comparison
with results in eRN case [13], we choose the same parameters for the perturbations.

Non-zero Aretakis constant. Firstly, we consider the solution with Hy[¢] # 0, where
we use the initial outgoing wavepacket (3.9) with p # 0. We have shown the instability of
this type of perturbation analytically in the last section, where we assumed that ) decays on
the horizon. Here we will show that this assumption holds through numerical computation.
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Figure 2. Functions ¢(v,r) and 9,¢(v,r) for I = 0 on fixed v slices. Seeking comparison with
other results, the outgoing wave initial data is given by (3.9) with (o, ) = (0.1, —0.1). As we can
see, ¢ decays on and outside the horizon. And 0,¢ also decays outside the horizon, while keeping
constant on the horizon. It is steeper near the horizon when v increases. Therefore, the second
derivative of ¢ diverges at the horizon.

As in ref. [13], although we do our numerical calculations in (U,v) coordinates, we
would like to display the results using (v,r) coordinates, since they correspond to the
preferred coordinates, related to the symmetries of the background.

In figure 2, the time evolution of ¢ and 0,¢ in (v, r)-coordinate is plotted with (o, 1) =
(0.1,-0.1). The figure shares some similar features in the eRN case in [13]: (1) as v
increases, ¢ decays; (2) 0,¢ also decays outside the horizon, but does not decay on the
horizon; (3) Moreover, the first derivative of ¢ becomes steeper next to the horizon as v
increases, indicating that 92¢ must blow up along the horizon. Besides the similarity, we
also observe the differences compared with eRN case. ¢ and 9,¢ outside the horizon decay
faster in eRN-AdS case. 9,¢ becomes steeper more quickly near the horizon as v increases
in the eRN-AdS black hole, which shows that 92¢ on the horizon blows up more violently
in the AdS background.

In figure 3, we have the time evolution of the field and its second derivative at the
horizon. We take the constants (o, 1) as being (0.1,—0.1), (0.05,—0.1), (0.1, —0.05) for the
sake of comparison. We can see that ¢|,—,, can quickly get rid of the influence of different
initial parameters and exhibit the consistent late time behavior earlier in the eRN-AdS
black hole if we compare with figure 4 of the eRN black hole case in [13]. By fitting the
absolute value of ¢|,—, . in the range 80 < v < 100 to v, we obtain the following exponents:
a = —0.999, —1.039, —0.980 for (o, ) = (0.1,-0.1),(0.05,—0.1), (0.1, —0.05), respectively.
These results suggest that the scalar field on the horizon decays as v~! at late time, which
is the same as that in the eRN case [13]. The power-law decay in the late-time behavior
of the massless scalar perturbation in eRN-AdS black hole is very different from results in
non-extremal AdS black holes [16-18], where the late time tail exhibit exponential decay.
Our result supports the argument in [25], where it was argued that when AdS black holes
approach extremal limit, there is a transition from exponential decay to power-law decay.
The difference in the late time perturbation indicates the dynamical difference between the
extreme black hole and nonextreme black hole in AdS spacetimes. The coefficient of the
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Figure 3. Time evolution of ¢|,—,, and quS\T:” for I = 0 mode. We consider outgoing wave
initial data (3.9) with various parameters: (o, ) = (0.1,—0.1), (0.05,—0.1), (0.1, —0.05). From the
top-right Log-Log plot, we can see that ¢[,—,, has a power-law decay. While 82¢|,—,, blows up as
v increases, which can be seen from the bottom plot.

power law decay can be fitted to be a ~ —0.28 for all initial data we used instead of @ ~ —2
in the eRN case. Hence, the late time behavior of ¢[,—,, for the eRN-AdS black hole is

0.28H,
v

Plr=ry ~ v —00. (3.12)

02| p—r . blows up linearly as expected in the analytical study. We fit the curves of
8,?g[>|r:r+ to a function cHgv + d in the range 80 < v < 100, and find the fitting parameter
¢ = —7.070,-7.022,-7.021 for (o, ) = (0.1,—0.1), (0.05, —0.1), (0.1, —0.05), respectively.
This suggests that 02¢|,—, . ~ —THyv at late time, which is consistent with the analytical
result (2.11). For the eRN case [13], we can do the same fitting and find ¢ ~ —1 for all the
initial data. So we can see that 92¢|.—, . blows up faster in AdS case, which means that
the horizon is more unstable in the AdS case.

Zero Aretakis constant. Now we consider perturbations with Hy[¢)] = 0. The case
1 = 0 for an ingoing or an outgoing wavepacket is here contained. The analytic proof of the
instability in the last section does not work now; instead we will use a numerical calculation
to study this case. To compare with the eRN case [13], we choose the same parameter spaces
(o', 1) = (3.0,10.0) for the ingoing wavepacket (3.10), and o = 0.05,0.1,0.15 and p = 0
for the outgoing wavepacket (3.9).
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Figure 4. Log-Log plots of time evolution of ¢|,—,, ,82¢|,—,, and 82¢|,—,, for | =0 and Hy = 0.
The initial data are: o = 0.05,0.1,0.15 with x = 0 and for outgoing wavepacket, while (¢’, ') =
(3.0,10.0) for an ingoing wavepacket. As in previous results, for large values of v the field at the
horizon decays as v~2, its second derivative at the horizon approaches a non-vanishing constant,
while the third derivative diverges.

In figure 4, we plot the time evolutions of qb\r:u,afgb\m“ and 8§¢]rzr+. We see that
@lr=r, decays, 92¢|,—,, approaches to a non-zero constant and 92¢|,—,, blows up as v
increases. These behaviors are similar to that observed in the eRN case in [13]. We see that
there exists the instability even for initial data with Hp[¢)] = 0 in the eRN-AdS black hole.

Using the fitting method, we find that ¢|,—,, has a power-law decay for the extreme
AdS black hole as argued in [25], rather than an exponential decay as we observed in the
nonextreme AdS hole. Fitting to the decay law v® at late time, we find the exponent
a = —1.983 for the ingoing wave, and a = —1.989, —1.986, —1.984 for the outgoing wave
with o = 0.05,0.1,0.15. This implies that, for Ho[t)] = 0, the late time behavior of ¢|,—, is

C
Plr=r, ~ 2 v — 00. (3.13)

This result is the same as in the eRN case [13].

Now let us take a closer look at the instability, which is shown in the late time behavior
of 03¢|,—,, . By fitting values of |92¢|,—,, | to function v® at late time, we find the fitting
parameter a = 0.979 for the ingoing wave, and a = 0.982,0.980,0.978 for the outgoing
wave with o = 0.05,0.1,0.15 respectively. This confirms that 92¢|,—, . indeed blows up

,10,



as v increases. To determine the coefficient of the linear blow up, we fit [02¢|,—,, | to the
function bv + ¢ for 50 < v < 100, where we find b = 0.483 for the ingoing wave and b =
7322.14,1593.8, 608.642 for the outgoing wave with ¢ = 0.05,0.1,0.15 respectively. We can
also do the same fitting for the results in eRN case [13], which gives b = 3.198 for the ingoing
wave, and b = 921.548,190.923, 65.965 for the outgoing wave with o = 0.05,0.1,0.15 respec-
tively. Comparing with the eRN case, we observe that the instability is moderate for the
ingoing perturbation and more violent for the outgoing perturbation in the eRN-AdS case.

3.4.2 For !l =1 mode

For [ = 1 mode, we can no longer define an Aretakis constant H; as did in the eRN
case [13]. So we can not classify perturbations according to whether H; is zero or not. But
for convenience to do the comparison with the eRN case, we will still classify perturbations
into two classes, Type I and Type II perturbations, according to the outgoing and ingoing
initial wavepackets we choose.

Type 1 perturbations. In this part, we consider type I perturbations, an out-
going wavepacket (3.9) with the same parameters as chosen in [13]: (o,pu) =
(0.1,0), (0.1,—-0.05), (0.05,0). These correspond to perturbations with non-zero Aretakis
constant in eRN case.

In figure 5, we plot the time evolution of qb|r:7«+,8r¢|r:r+,6r2¢|r:r+ and 83(;5\,«:T+.
¢lr=r, and 0,¢|,—,, are shown in the first two plots in figure 5. They both exhibit
power-law decays, but 0,¢|,—, . has a slower decay. Fitting the absolute value of O|r=r N
to the function v® at late time, we find the fitting exponent a = —1.191,—1.230, —1.127
for (o,n) = (0.1,0), (0.1, —0.05), (0.05,0) respectively. This suggests that the late time
behavior of ¢|,—,, is

Glr=r, ~ Cv%/° v — 00, (3.14)

which is very different from the result in eRN case [13], where ¢|,—,, ~ v™2 as v — co. Fit-

ting the absolute value of 0,¢[,—,, to v* at late time, we find a = —0.218, -0.229, —0.206
for (o, ) = (0.1,0), (0.1, —0.05), (0.05, 0) respectively.

Now we investigate the instability. We can see that the instability starts to appear in
the second derivative of ¢ on the horizon. While in eRN case, the horizon instability starts
to appear in the third derivative. By fitting the value of |92¢|,—, .| to v® at late time, we
find the fitting parameter a = 0.740,0.757,0.713 for (o, ) = (0.1,0), (0.1, —0.05), (0.05,0)
respectively. Fitting the value of ]8§¢]T:T+| to v® for 80 < v < 100, we find a =
1.703,1.746, 1.645 for (o, u) = (0.1,0), (0.1, —0.05), (0.05, 0) respectively.

For clarity, we list all the fitting results above in table 1.

Type Il pertubations. Now we consider type II perturbations, where we take an ingoing
wavepacket (3.10) with (o, /) = (3.0,10.0) or an outgoing wavepacket (3.9) with o =
0.05,0.1 and o = o (O’ — /0?2 +4ri) /(2ry). These initial wavepackets correspond to

perturbations with zero Aretakis constant cases in eRN case [13].
From figure 6, we can see that ¢|,—,, and 0,¢|,—,, exhibit a power-law decay, while
2P| r=r . and 3P| r=r . take a power law blow-up. This implies that, for all cases we have

— 11 —
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Figure 5. Time evolution of ¢|,—,, , 0, ¢|r=r, ,02¢|,—r, and 87 ¢|,—,, for I =1. We use the initial
data as (o,pu) = (0.1,0),(0.1,-0.05), (0.05,0). We can see that: ¢|,—., and 0,¢|,—,, exhibit a
power-law decay, while 026|,—, . and 2P| =y . take a power-law blow-up. This implies that, for
[ = 1 mode, horizon instability starts to appear from the second derivative of ¢.

considered here, horizon instability appears starting from the second derivative of ¢. This
is different from that in the eRN case [13], in which horizon instability starts to appear
from the fourth derivative of ¢.
Fitting the late time behavior of ¢|,—, , 0r¢|r—r_, 83¢|r:r+, 6§¢|T:r+ and 8f¢|7«:r+ to
v?®, we can find the exponent a for these functions. We list all the fitting results in table 1.
From table 1, we can see that, for type Il perturbations, the late time behavior of
@lr=r, is about

Plr=r, ~ Cv=%/4 V= 00. (3.15)

3 as v — oo. It shows

This is very different from eRN case [13], where ¢[,—,, ~ v~
that in the eRN-AdS black hole background, the massless scalar perturbation decays
much slower compared with the eRN black hole case. Moreover, we can see from the
table that the late time behavior of 9)'¢|,—,, takes a power-law as v**" with ag ~ —6/5
and ag ~ —5/4 for type I and type II perturbations, respectively. This is consistent with
analytical result (2.12). The blow up appears earlier and more violent than that in the
eRN case [13], where 9¢|,—,, approaches to v*"(v*®) in eRN-AdS while v*(v) in eRN

case for type I (II) perturbations.
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Figure 6. Time evolution of ¢|,—y, ,0rd|r=r,,02¢|,—r, and 92¢|,—,, for I = 1. For the ingoing
wavepacket, the initial data takes (¢/, ') = (3.0,10.0), and for the outgoing wavepacket, the initial
data takes 0 = 0.05,0.1 and p = o (0 — /o2 + 47’_%_) /(2r4). We can see that: ¢[,—,. and 0,¢|,—,,
exhibit a power-law decay, while 92¢|,—, . and 2P| =y ., take a power law blow-up. This also implies
that, for [ = 1 mode, horizon instability starts to appear from the second derivative of ¢.

Type I perturbations Type II perturbations
(o, 1) (0.1,0) (0.1,—0.05) (0.05,0) ingoing wave  0.05 0.1
Glp=r, | —1.191 —1.230 —-1.127 —1.246 —1.252 —1.243
Or@lr=r, | —0.218 —0.229 —0.206 —0.230 —-0.233 —0.234
(9T2¢|r:7~+ 0.740 0.757 0.713 0.768 0.772 0.763
8§¢|r:r+ 1.703 1.746 1.645 1.770 1.781 1.762
8§¢\T:r+ 2.668 2.745 2.587 2.772 2.787 2.769

Table 1. Fitting results of the exponent a for the function v* with [ = 1. We fit the absolute
values of ¢ and its derivative up to the fourth level to v for 80 < v < 100. In type I perturbations,
initial data are chosen to be (o,u) = (0.1,0),(0.1,-0.05),(0.05,0). In type II perturbations,
parameters are chosen to be (o/, ') = (3.0,10.0) for the ingoing wave, and ¢ = 0.05,0.1 and
p=o(oc—/o?+4r1)/(2ry) for the outgoing wave. From the table, we can see that, for large v,
the late time behavior of 9/"@|,—,, is about v**" with ag ~ —6/5 and ag ~ —5/4 for type I and
type II perturbations, respectively.
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=0 1I[=1 [ =2 =3 =4 =5
outgoing wave | —1  —1.230 —1.563 —1.865 —2.286 —2.631
ingoing wave -2 —=1.246 —-1.557 —-1.926 —-2.238 —2.605

Table 2. Fitting results of the exponent a for the function v for different modes. We fit the absolute
values of ¢|,—,, to v® for 80 < v < 100. The parameters of the initial perturbations are chosen to
be (o, 1) = (0.1, —0.05) and (o, ') = (3.0,10.0) for the outgoing and ingoing wave, respectively.

0.1

0.001

[lr=r.]

Figure 7. Time evolution of ¢|,—,, for different [ for the ingoing wave. Parameters are chosen to
be (¢/, ') = (3.0,10.0). All these modes at late time are power-law decay. And modes with [ > 4
decay faster than the [ = 0 mode.

Comparing with [ = 0 mode discussed in last section, the late time behavior of ¢|,—,,
with [ = 1 for ingoing wave initial data takes a moderate power-law decay. This is contrary
to the observation in the eRN case [13], but is consistent with results in the nonextreme

RN-AdS black hole [24, 25].

3.4.3 For Il > 2 modes

We also extend our numerical calculation to the [ = 2,3,4 and 5 modes to see further the
effect of I on the decay law of ¢|,—,, and on the blow-up behavior of 9]'¢[,—, (n > 0).
We comnsider both the outgoing wave initial data and an ingoing wave initial data. We
observe that the late time behavior of ¢|,—, . for these modes are all power-law decay. This
further confirms the argument in [25] that when the nonextreme AdS becomes extreme,
the exponential decay of the perturbation will give way to the power-law decay. Also by
fitting values of ¢|,—,, to v*, we can find the exponent a for all these modes, which we list
in table 2. We plot the results of the late time tails of ingoing wave case in figure 7.
From table 2 and figure 7, we can see that at late time: (1) For the outgoing wave with
non-zero Aretakis constant Hp, mode with higher [ will decay faster; (2) For the ingoing
wave (with zero Aretakis constant Hy), when [ > 0, the first three modes with [ = 1,2,3
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decay slower than the fundamental mode; while when [ > 4 it decays faster than the [ =0
mode. This implies that the decay of the massless scalar field will be dominated by the
first few lower-l modes. This is in some similarity with the situation in de-Sitter black hole,
where the late time behavior of massless scalar ingoing perturbations is [27, 28]

¢ lhet >0
|| ~ ot , (3.16)
|po| + |p1le™=" " I =0

The item k. is the surface gravity on the cosmological horizon and ¢g, ¢1 are some constants.
In the de Sitter case, the decay law of different modes are also divided into two branches,
[ =0 mode and [ > 0 modes, and for [ > 2 it decays faster than the fundamental mode.

From table 1 and 2, we can also see that, for [ > 0 modes, horizon instability starts
to appear from the second (I = 1,2,3) or third (I = 4,5) derivative of ¢, earlier than that
in the eRN case.

4 Conclusions and discussion

Recent studies have proved that a massless scalar field has an instability at the horizon of
an extreme Reissner-Nordstrom black hole. Considering that a scalar field will confront
different boundary conditions when it propagates in the AdS background, we have extended
the stability study to extreme RN-AdS black hole. We have studied the massless scalar
perturbations for different angular index. For [ = 0 mode, we can define the Aretakis
constant Hy, and hence have shown the horizon instability analytically by assuming that
the scalar field ¢|,—,, on the horizon decays at late time.

Furthermore, we have applied numerical calculation and found the supporting evi-
dence of the decay of ¢|,—, . We have extended our numerical computation to the higher
modes and found the consistent power-law decay of the massless scalar field perturbation.
The decay of the scalar field is not exponential as observed in the nonextreme AdS black
hole [16-18]. In [25] it was argued that when the nonextreme AdS black hole approaches to
extreme hole, the exponential decay will give way to the power-law decay. Our numerical
result for the eRN-AdS black hole have supported this argument. This is an important
point, since it may lead to a departure from stability already at the nonextreme level.
While we expect some kind of instability in the extreme limit, already from the very fact
that the extreme limit corresponds to a zero temperature thermodynamics, it is worthwhile
checking whether the stability has stronger roots. At this point, a nonlinear approximation,
or at least a backreaction calculation should be important for the clarification of the stabil-
ity or instability determination. Indeed, in case the backreaction pulls the black hole out
of the extreme limit, there are two choices, namely either the nonextreme limit is stable,
thus backreaction stabilizes the problem, or the quasiextreme case is also unstable, and the
whole black hole is unstable. Very recently, there appears a work in this direction for the
eRN case [29]. It was found that generically the endpoint will be a stationary nonextreme
black hole, but if there exists non-generic initial perturbations, the instability will never
end. We hope that it can be extended to eRN-AdS case in near future.
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The dependence of the late time tail on the angular index shown in the eRN-AdS
black hole here is different from that in the eRN black hole, which reflects the influence
of the spacetime on the perturbation at late time.

In the eRN-AdS black hole, we have found that when [ = 0 the horizon instability
starts to appear from the second or third derivative of the scalar field when the Aretakis
constant is nonzero or zero. When [ > 0, the horizon instability starts from the second
(I =1,2,3) or third (I = 4,5) derivative of the scalar field. This is different from that in
the eRN case, where the blow-up appears at higher derivative of the scalar field, especially
for higher angular index case [13]. This shows that the instability in the extreme AdS black
hole can happen more easily than that in the extreme asymptotically flat black hole.
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