
www.oikosjournal.org

OIKOS

Oikos

1

© 2021 The Authors. Oikos published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos.
This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in 
any medium, provided the original work is properly cited.

Subject Editor: Werner Ulrich 
Editor-in-Chief: Dries Bonte 
Accepted 22 October 2021

2022: e08462
doi: 10.1111/oik.08462

2022 e08462

What is the prevalent topology among interaction networks? How do consumers bal-
ance between generalism and performance when exploiting different resources? These 
two long-standing, still open questions have been unified under a common framework 
by the integrative hypothesis of specialization (IHS). According to the IHS, ecological 
specialization is structured by different processes at small and large network hierarchi-
cal levels, from an entire network to its modules and nodes. From those hierarchical 
processes, two patterns are expected. First, a modular network with internally nested 
modules, i.e. a compound topology. Second, different relationships between consumer 
performance and generalism on different network hierarchical levels. We confirmed 
those predictions using an extensive data set of host–parasite interactions, compiled 
from several studies, and spanning decades of fieldwork in the Palearctic Region. We 
used a set of topological analyses combined in a novel protocol based on the IHS to 
disentangle the complexity of this data set at different geographic scales, from local to 
regional. As predicted, the studied network indeed has a compound topology at both 
local and regional geographic scales. In addition, the relationship between parasite 
generalism and performance changes from negative in an entire network to positive 
within its modules. But, as expected, this shift in the signal of the generalism versus 
performance relationship happens only in local networks with a compound structure. 
Our results shed light on two central debates about topology and performance and 
provide insight into their solution.

Keywords: ecological networks, ecological specialization, modularity, nestedness, 
resource breadth, tradeoffs

Introduction

Darwin’s ‘tangled bank’ of species interactions is one of the most complex phenomena 
in nature (Lewinsohn and Cagnolo 2012). To unveil the processes behind the patterns 
observed in this ‘bank’ is a major quest in ecology (Bascompte and Jordano 2007, 
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Guimarães 2020). This quest has been largely facilitated by 
tools from network science in the past decades (Dáttilo and 
Rico-Gray 2018).

In the terminology of network science, patterns in interac-
tion matrices translate to topologies in interaction networks. 
Inspired by insights from biogeography and metacommunity 
(Atmar and Patterson 1993, Leibold and Mikkelson 2002, 
Presley  et  al. 2010), four archetypical topologies were con-
ceived for interaction networks (Lewinsohn  et  al. 2006). 
Recently, Ulrich et al. (2017b) reformulated these archetypes 
as a triangular space, with the vertices representing segre-
gation, nestedness and modularity (i.e. compartmented). 
However, contrary to occurrence matrices (Ulrich and Gotelli 
2013), segregation is rarely reported for interaction networks, 
in which nestedness (Bascompte et al. 2003) and modularity 
(Olesen et al. 2007) predominate. Therefore, in the present 
study we focus on nestedness and modularity.

In a nested network, the interactions of the least connected 
species represent subsets of the interactions of the most con-
nected species. First described in plant–animal networks 
(Bascompte et al. 2003), nestedness was later found in sev-
eral other mutualistic (e.g. anemofish: Ollerton et al. 2007) 
and antagonistic systems (e.g. ectoparasites: Graham  et  al. 
2009). In turn, a modular network is composed of cohesive 
subgroups of species (modules) that interact more frequently 
with one another than with other species of the same net-
work (Gauzens et al. 2015). Modularity has also been widely 
reported (Olesen  et  al. 2007, Dupont and Olesen 2009, 
Mello et al. 2011, Krasnov et al. 2012). Interestingly, some 
ecological networks score high in both nestedness and modu-
larity (Olesen et al. 2007, Fortuna et al. 2010, Bellay et al. 
2011, Flores et al. 2013), showing that these two topologies 
can coexist within the same network.

A possible explanation for this coexistence is that a dual 
nested-modular topology would arise if each topology pre-
dominated at different network hierarchical levels. Those lev-
els would be represented by the entire network, its modules 
and its nodes. For instance, some plant–animal networks are 
modular at the entire network level but nested within their 
modules. This kind of hierarchical architecture was named 
a compound topology (Lewinsohn et al. 2006). Later, some 
empirical studies found evidence of compound topologies in 
pollination (Bezerra et al. 2009), host–pathogen (Flores et al. 
2013), seed dispersal (Sarmento  et  al. 2014), multilayer 
plant–animal interactions (Genrich et al. 2017, Mello et al. 
2019) and non-ecological networks (Solé-Ribalta  et  al. 
2018). In addition, theoretical studies have confirmed this 
topology in simulated host–parasite (Beckett 2016, Leung 
and Weitz 2016) and consumer–resource networks (Pinheiro  
et al. 2019).

But how does a compound topology emerge? Some stud-
ies claim that network topologies, especially nestedness, 
result from a selection for stability, with stable patterns 
being more often observed (Thebault and Fontaine 2010, 
Borrelli 2015). An alternative view is that network topologies 
emerge from niche and neutral mechanism acting on each 
species individually, and, thus, selection on network stability 

would not be necessary to explain topology (Maynard et al. 
2018, Valverde  et  al. 2018). For instance, the frequently 
observed nested topology could emerge simply as a byprod-
uct of unequal species abundances (Krishna et al. 2008). In 
a similar line of thought, nestedness could emerge from an 
optimization principle that maximizes species abundances 
(Suweis et al. 2013). Or nestedness could be simply an evo-
lutionary spandrel that emerges from heterogenous degree 
distributions (Valverde et al. 2018). Modularity, on the other 
hand, is usually explained as a product of niche processes, 
especially related to tradeoffs in the interactions (Allen 2006).

Recently, those niche and neutral views have been recon-
ciled by an ‘integrative hypothesis of specialization’ (IHS), 
which proposes a mechanism by which compound topologies 
might emerge in interaction networks (Pinheiro et al. 2016, 
2019). In a few words (see Box 1 for a more detailed expla-
nation), the IHS assumes that adaptations that enhance the 
performance of a consumer in exploiting a given resource will 
also tend to help it exploit similar resources, but they will 
represent maladaptations to exploit dissimilar resources. If 
this assumption holds, the threshold of dissimilarity between 
resources above which consumer adaptations turn to malad-
aptations must coincide with the hierarchical level in which 
modules emerge in the resulting network. Consequently, one 
should expect to find a positive relationship between the aver-
age performance and generalism of a consumer when exploit-
ing resources only within its module, from which results the 
nested interaction pattern within a module (Box 1), but a 
negative relationship between the performance and general-
ism between modules, from which results the modular inter-
action pattern.

The IHS has been recently corroborated in silico 
(Pinheiro et al. 2019), and some of its predictions were tested 
and confirmed using a continent-wide data set of mutualistic 
interactions (Mello et al. 2019), a local data set of pollination 
interactions (Queiroz et al. 2021), and also in a frugivory net-
work at the individual level (Crestani et al. 2019). However, 
the cited studies found evidence in support of the IHS, 
mostly concerning network topology, but did not address 
the prediction that the relationship between performance 
and generalism would be positive for within-module gen-
eralism, but negative for between-modules generalism in a  
compound network.

Here, we make and empirical test of this central predic-
tion of the IHS using an extensive host–parasite data set 
composed of flea–mammal interactions on 15 sites all over 
the Palearctic Region. We considered fleas as consumers and 
mammals as resources. First, we developed a protocol to test 
for a compound topology and applied it to the flea–mammal 
networks. This protocol has been successfully used in other 
studies (Mello et al. 2019, Pinheiro et al. 2019) since we first 
introduced it in a preprint (Felix et al. 2017). Here, we used 
this protocol, which we explain below, to test for compound 
topologies especially in the local networks (formed by inter-
actions reported for each site), but also in the regional net-
work (formed by pooling together interactions reported on 
all sites). Once the topologies of the networks were analyzed, 
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Box 1. The integrative hypothesis of specialization

Let us imagine a group of resources that differ from one another in several eco-evolutionary dimensions affecting their 
exploitability by different consumers. For instance, morphological traits, phylogenetic distance and phenology. Let us 
now summarize all these dissimilarities in a hierarchical dendrogram, where relatedness among resources reflects how 
similar they are from the perspective of the consumers (Fig. 1a). Note that the cluster in Fig. 1 is a dendrogram of 
similarity, and not a cladogram of phylogenetic relatedness. Finally, let us assume that any adaptation that enhances 
the performance of a consumer in exploiting a specific resource (the arrow in Fig. 1a) will also tend to be an adaptation 
to exploit similar resources (the ‘+’ in Fig. 1a), but a maladaptation to exploit dissimilar resources (the ‘−’ in Fig. 1a).

Then, we should not expect constraints in consumer generalism between similar resources. Instead, resources with 
highest availabilities (e.g. the most abundant) should be more strongly exploited by the highest performing consumers. 
Thus, the performance of consumers (i.e. the fitness obtained by each consumer on each resource) in similar resources 
and the resource range used by those consumers are expected to be positively correlated. Consequently, those interactions 
are expected to be nested. Alternatively, if sufficiently dissimilar resources are considered, then constraints in consumer 
generalism are expected. In other words, the performances of consumers exploiting very dissimilar resources is expected 
to be negatively correlated with the resource range used. Therefore, the nested pattern mentioned before should be 
restricted to within each resource cluster (Fig. 1b). In this context, resource clusters are the real units of specialization 
and the true generalist consumers are those that can exploit resources across clusters (blue species in Fig. 1b). The exact 
dendrogram level (the pruning lines in Fig. 1a–b) that represents a threshold between adaptations and maladapta-
tions should coincide with the point at which modules emerge in the network structure.

Figure 1. The integrative hypothesis of specialization. (a) If the dissimilarity among resources is represented as a dendrogram, then a 
mutation that enhances the performance of a consumer in a focal resource (the black arrow), should also represent an adaptation to 
exploit closely related resources (+), but a maladaptation for distant resources (−). The red dashed line marks the dendrogram level 
above which dissimilarities among clusters of resources become sufficiently large to turn adaptations for one cluster into maladapta-
tions for other clusters. (b) The expected pattern of consumer performance on resources. On the one hand, only consumers exploiting 
resources in different clusters (blue) are expected to suffer from tradeoffs in generalism. On the other hand, the performances of con-
sumers specialized in one cluster (purple, orange and green) should be correlated in different resources of that cluster. Then, by sam-
pling consumers exploiting resources of a single cluster, we should find a nested interaction matrix (c) and a positive relationship 
among performance and generalism (d). Otherwise, by sampling consumers exploiting resources at different clusters, we should find a 
compound interaction network (e) and a dependence on the signal of the relationship between generalism and performance to the type 
of generalism analyzed: positive for within-module generalism and negative for between-modules generalism (f ).
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we tested whether the relationship between host range (gen-
eralism) and performance changes from positive within each 
module (within-module generalism) to negative out modules 
(between-module generalism). Our results corroborate the 
IHS and shed light on the processes behind the emergence of 
compound topologies in ecological networks.

Methods

Data set

We used an extensive data set on host–parasite interactions 
that has been analyzed in several studies on ecological inter-
actions (Krasnov  et  al. 2004b, 2008, Vázquez  et  al. 2007, 
Fortuna et al. 2010). It is composed of dozens of flea–mam-
mal interaction matrices sampled all around the world, from 
which we selected 15 Palearctic sites to maximize two param-
eters: matrix size (at least 10 parasite species and 10 host 
species per site), and host sample size (more than 1000 indi-
vidual mammals sampled per site). The selected sites range 
from Poland to Mongolia, with one site located much further 
east, in Magadan, a region in the Russia’s far east (Supporting 
information).

The local networks have an average size of 45.0 ± 12.6 
species (mean ± standard deviation), with 26.2 ± 9.4 flea 
species and 18.8 ± 4.7 mammal species and contain on aver-
age 129.6 ± 57.2 interaction records (Supporting informa-
tion). The mean pairwise overlap of species among sites is of 
32.29% for mammals and 32.03% for fleas.

In addition to the local networks, we have also analyzed 
a regional network with all 15 sites pooled, which contains 
263 species (nodes: 161 fleas and 102 mammals) and 1200 
interaction records (links). This regional matrix allows testing 
for a compound topology in a system with much higher taxo-
nomic diversity, which is assumed to lead to stronger interac-
tion tradeoffs.

Furthermore, the regional matrix and some local matri-
ces produced networks with more than one component, i.e. 
a subgroup of species totally disconnected from the other 
nodes of the network. In most of these networks, there is 
a giant component comprising most of the nodes and one 
or few small components, each including a small number of 

nodes. The subsequent analyses, at regional and local scales, 
were carried out by using only the respective binary version of 
the giant component of each matrix, i.e. the larger group of 
species that are all connected to each other, directly or indi-
rectly. In the regional network, the giant component com-
prises 98% of the species. In the local networks, the giant 
components comprise at least 85% of the species.

The presence–absence data of flea and mammal spe-
cies reported for each site can be found in the Supporting 
information.

Network topology

Modularity

The first step to test for a compound topology is to unfold the 
modular structure of the regional and local networks. We did 
this by computing the Barber modularity (Q) (Barber 2007) 
optimized by the DIRTLPAwb+ algorithm (Beckett 2016), 
through the computeModules function of the package bipar-
tite (Dormann  et  al. 2008) for R (<www.r-project.org>). 
Modularity (Q) varies from 0 to 1, and the algorithm also 
reveals the number and composition of the modules found 
in the network.

Nestedness decomposition

In a nested matrix, the interactions of the least connected 
species represent subsets of the interactions of the most con-
nected species (Ulrich et al. 2009). NODF is a metric that 
aims to synthesize this pattern in a single number (Almeida-
Neto et al. 2008). In its default algorithm, a NODF score is 
computed for each pair of species (independently for consum-
ers and resources, i.e. the rows and columns of the matrix), 
and then averaged to calculate the mean NODF score of the 
entire matrix.

Nevertheless, the mean score of a pairwise metric is only 
a good descriptor of the matrix structure if its pairwise dis-
tribution is unimodal. When the pairwise distribution has 
more than one mode, then its mean is a poor descriptor 
of the matrix structure, as the mean will misrepresent all 
modes (Gotelli and Ulrich 2012). For instance, averaging the 

Box 1. Continued

Therefore, on the one hand, by sampling interactions in a group of similar resources and their respective consumers, 
one should find both a nested network topology (Fig. 1c) and a positive relationship between generalism and perfor-
mance (Fig. 1d). On the other hand, we should not expect to find a highly nested topology if the dissimilarity among 
at least some of the resources is higher than the dissimilarity in which interaction constraints emerge. Instead, we 
should find a modular network with internally nested modules: a compound topology (sensu Lewinsohn et al. 2006) 
(Fig. 1e). In addition, we expected the relationship between consumer performance and generalism to be positive 
within each cluster of similar resources, but negative when considering resources of different clusters (modules in the 
network) (Fig. 1f ).
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pairwise NODF among all pairs of species in a compound 
matrix returns an intermediate NODF value, lying halfway 
between the mean NODF between pairs of species belonging 
to the same module and the mean NODF between pairs of 
species belonging to different modules. By focusing on this 
intermediate NODF value, one would conclude that a mod-
erate nestedness describes the overall matrix structure. This 
conclusion, although, is masking the more complex pattern: 
high nestedness between pairs of species belonging to the 
same module, and small nestedness between pairs of species 
belonging to different modules.

In order to solve this problem, we adapted the method 
proposed by Flores  et  al. (2013), and averaged nestedness 
separately between pairs of species of the same module 
(NODFSM), and between pairs of species of different mod-
ules (NODFDM) (see the Supporting information for a math-
ematical formulation of NODFSM and NODFDM).

Null models

When testing for patterns in ecological matrices, it is a com-
mon procedure to ask whether the observed score differs 
significantly from that expected at a given null scenario, in 
which only a predefined set of processes operates. This prac-
tice allows to ask if the observed pattern could be sufficiently 
explained by the processes kept in the null scenario, or if it 
is necessary to postulate additional processes to explain the 
pattern. The null scenarios are commonly simulated through 
statistical null models, which are randomization procedures 
that shuffle interactions in the observed matrix under specific 
constraints that are expected to mimic the processes of inter-
est (Gotelli 1996). Usually, ecologist uses null models to ask 
if the pattern would emerge ‘at random’, that is, from purely 
stochastic forces, excluded species interactions and abiotic 
forces (Ulrich and Gotelli 2013). However, in principle, null 
models can be constructed to include any processes of inter-
est, stochastic or not. Notice, still, that if a null model fully 
recovers a pattern, this does not means that the pattern does 
not exist, but only that the processes kept in the null models 
are sufficient to produce the pattern (Guimarães 2020).

What should be the null expectations for NODFSM and 
NODFDM? Usually, in nestedness analysis, it is recommended 
to use null models that shuffle interactions while keeping 
constant both the matrix connectance (the number of occu-
pied matrix cells divided by the number of total matrix cells) 
and the species degree distribution (the distribution of the 
number of interactions per species) (Ulrich et al. 2009) – this 
null model is usually named as proportional null model in 
the literature (Vázquez et al. 2007). The logic behind these 
constraints is that both connectance and species degree distri-
bution reflect stochastic factors (sampling and abundance dis-
tribution, respectively) that affect nestedness and, thus, should 
have their effects discounted. Therefore, a first alternative 
would be to compare the observed NODFSM and NODFDM 
scores against the NODFSM and NODFDM expected when 
shuffling interactions in the entire matrix according to the 
proportional null model. By performing such a comparation, 

we would be asking if interactions between pairs of species 
belonging to the same modules, and to different modules, are 
so nested as expected ‘at random’.

Note, however, that NODF, in its essence, is an overlap 
index – the Simpson similarity index (Simpson 1943) adjusted 
to penalize for ties (Almeida-Neto et al. 2008). Happens that, 
by definition, species of the same module overlap more inter-
actions than expected at random. Consequently, any modular 
matrix will have NODFSM higher than expected by species 
degrees (i.e. by the proportional null model), whether the 
modules are internally nested or not. On the other hand, 
species of different modules overlap less interactions than 
expected at random and, thus, any modular matrix will have 
NODFDM smaller than expected by species degrees.

In summary, the only information we would obtain by 
comparing NODFSM and NODFDM against their respective 
expectations under de proportional null model is whether 
the interaction matrix is modular, which is trivial and would 
already know to be the case. The new question we propose, 
to differentiate a pure modular from a compound topology, 
is whether NODFSM and NODFDM are higher than expected 
given the matrix modular structure. In other words, if the 
pairs of species overlap more interactions than expected given 
that they are in the same or in different modules. To answer 
this question, we developed a restricted null model, which, in 
addition to matrix connectance and degree distribution, also 
conserves the matrix modular structure in the null matrices. 
The detailed instructions for performing it are presented in 
the Supporting information. Hereafter, we refer to the pro-
portional null model as free null model, in opposition to the 
restricted null model. Code to perform the analysis, as well 
as a tutorial for reproducing them, are available at GitHub 
repository <https://doi.org/10.5281/zenodo.4616748> .

Z-score

For the giant component of each of the 16 networks (15 local 
networks and 1 regional network), we generated 1000 ran-
domized matrices using the free null model and 1000 ran-
domized matrices using the restricted null model. Next, for 
each randomized matrix, we computed its overall NODF 
and decomposed it into NODFSM and NODFDM using the 
observed partitions of their corresponding real network.

Finally, for each matrix (16 in total), considering the com-
binations of null models (2: free and restricted) and NODF 
metrics (3: NODF, NODFSM and NODFDM), a Z-score was 
calculated as the difference between the observed value and 
the average value in the randomized matrices, divided by 
the standard deviation of values in the randomized matrices. 
Observed and expected modularity values were also com-
pared using Z-scores, but only for the free null model, as 
it does not make sense to compare observed and expected 
modularity scores with a null model that fixes the modules.

Nestedness and modularity standardized by null models 
are hereafter called relative nestedness and relative modular-
ity, respectively. For simplicity, they will be represented here 
as ZF or ZR, depending on the null model, followed by the 
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metric name (e.g. ZFQ and ZFNODFSM represent, respec-
tively, relative modularity and relative nestedness between 
pairs of species of the same module, when standardized by 
the free null model).

Our goal was to test how modularity and nestedness 
interact with each other in a continuous way. Therefore, 
in all analyses we used the original Z-scores, without clas-
sifying them as significant or non-significant. We used AIC 
(Johnson and Omland 2004) to rank linear models assuming 
different hypotheses about the relationship between the local 
values of nestedness and modularity. We include matrix size 
as a covariate in the models since both the raw and relative 
values of nestedness and modularity are known to depend on 
the size of the matrix (Ulrich et al. 2017a, 2018).

Matrix plotting

The interaction matrices were reorganized by a procedure 
adapted from Flores  et  al. (2013, 2016). Briefly, we first 
reordered the matrix rows and columns within modules by 
degree and then permuted the entire modules to find the 
arrangement of modules that maximizes the concentration 
of interactions closer to the matrix diagonal. This procedure, 
implemented in the plotmatrix function of the bipartite pack-
age (Dormann et al. 2008), facilitates the visualization of a 
compound topology.

Performance versus within and between-
module generalism

Performance index

In a consumer–resource system, performance is defined as 
the fitness obtained by each consumer when exploiting each 
resource (Pinheiro et al. 2019). In the particular case of host–
parasite interactions, the performance of a parasite on a host 
is usually quantified indirectly through some metric assumed 
to reflect it, such as prevalence, intensity or abundance 
(Poulin 2007). We chose abundance: the average number of 
individual fleas per individual mammal (calculated includ-
ing infected and uninfected hosts). Abundance is considered 
a good measure of performance for studying interactions 
between ectoparasites and hosts (Krasnov et al. 2006). For a 
parasite that does not multiply on the host, where each indi-
vidual found represents a successful infection event, abun-
dance captures one key performance aspect, directly related 
to parasite fitness: the ability to successfully infest a host. All 
else being equal, several parasites on one host species means 
that the parasites perform well on that host, i.e. that they 
have a high rate of success at infesting it. Other measures, e.g. 
rate of blood extraction from the host, are simply not avail-
able for all flea–mammal combinations.

Moreover, the abundance of a consumer (i.e. parasite) in 
a habitat (i.e. host) can be considered as a measure of its effi-
ciency of resource exploitation (Morris 1987). For fleas this 
was proved by combining field observations (Krasnov et al. 

1997) with laboratory experiments (Krasnov  et  al. 2004a, 
Khokhlova et al. 2012). Finally, abundance integrates inten-
sity of infestation and prevalence in a single metric (abun-
dance = intensity of infestation times prevalence), measuring 
different aspects of parasite performance.

Generalism within-modules and between-modules

For each flea species, generalism within and between-modules 
was measured, respectively through its within-module degree 
and participation coefficient (Guimerà and Amaral 2005). 
Within-module degree and participation coefficient define 
the functional role of a species in a network and are related to 
the number of interactions a species makes with other species 
of its own module and with species of other modules, respec-
tively. Within-module degree and participation coefficient 
values were calculated independently for each local network. 
See the Supporting information for a detailed explanation of 
within-module degree and participation coefficient.

Mixed models

Once all relevant theoretical variables (performance, within-
module and between-module generalism) where operation-
alized in measurable variables (abundance, within-module 
degree and participation coefficient, respectively), we built a 
mixed model that mirrors the IHS prediction that perfor-
mance correlates positively with within-module generalism 
but negatively with between-module generalism (Fig. 1).

To test this first prediction, we fitted the log-transformed 
abundance of each flea species per mammal species per region 
against the within-module degree and participation coeffi-
cient values of each flea species in each region. We decided 
to use flea abundances per mammal species, rather than 
average it between all mammals exploited by a flea, to con-
trol for mammal characteristics known to affect abundance 
(e.g. carrying capacity, susceptibility and richness of parasite 
fauna) (Krasnov et al. 2005). Averaging would also decrease 
the power of the analysis (Hopkins 1982, Schank and  
Koehnle 2009).

However, as presented in Fig. 1 (Pinheiro  et  al. 2019), 
the negative relationship between performance and between-
module generalism is only expected in highly diverse, heavily 
compartmentalized networks, in which modules boundaries 
reflect strong interaction constraints. We should not expect 
to find a negative relationship between performance and 
between-module generalism in poorly diverse, weakly com-
partmentalized networks, in which modules boundaries are 
more ‘permeable’ or even spurious. To account for this, we 
included an interaction between both ZFQ and ZFNODFDM 
and within-module degree and participation coefficient. We 
expect ZFQ and ZFNODFDM to have an influence on the 
effect of participation coefficient on abundance, but not to 
have an influence on the effect of within-module degree. 
Specifically, we expected that the effect of participation coef-
ficient on abundance should be negative only in local net-
works in which the modular structure constrains nestedness 
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7

between pairs of species of different modules, that is, in 
local networks with negative values of ZFNODFDM and/or 
with positive values of ZFQ. Since ZFNODFDM and ZFQ 
are partially correlated, we expected that only one of them, 
that which better modulates the relationship between par-
ticipation coefficient and abundance, to be kept in the  
minimal model.

Lastly, to control for taxonomic and spatial pseudorepli-
cation (Hurlbert 1984), we included mammal species, flea 
species and region as crossed random factors of the model. 
We used backward stepwise regression to select fixed and ran-
dom effects, following the protocol suggested by Bolker et al. 
(2009). First, we used the likelihood ratio (LR) test to com-
pare models with different random structures (to which the 
models are refitted with maximum likelihood) and, once the 
minimal random structure was defined, we perform Wald χ2 
tests on the fixed effects to access their significance. To tell 
apart the variance explained by fixed and random factors in 
the minimal selected model, we computed both marginal and 
conditional R2 (Nakagawa and Schielzeth 2013). The mar-
ginal R2 informs the amount of variance explained by the 
random structure of the model, while conditional R2 informs 
the variance explained by the complete model (random and 
fixed effects). The confidence intervals of the parameters were 
obtained by bootstrapping. For these analyzes we use the fol-
lowing R packages: MuMIn, interplot, car and lme4.

Results

Topology of the local networks

Nestedness and modularity varied widely between local net-
works, which, in general, were more nested (NODF = 0.51 ± 
0.15) than modular (Q = 0.28 ± 0.14) (Fig. 2a). In addition, 
some relationships between these two topologies were evi-
dent. First, nestedness and modularity were negatively related 
to one another in the local networks, both for their raw and 
Z-scores. However, the relationship with modularity was 
much weaker for the Z-scores of nestedness computed by the 
restricted null model (Fig. 2a, c, e, Supporting information).

Second, observed and relative values of local NODFSM 
were higher than those of local NODFDM (Fig. 2b, d, f ), and 
the difference between them increased with modularity. In 
addition, the Z-scores of NODFDM decreased with modu-
larity when computed in comparation with the free null 
model expectation (ZFNODFDM), but not when computed 
by the restricted null model (ZRNODFDM). The Z-scores of 
NODFSM, on the other hand, was not influenced by modu-
larity independently of the null models used.

Finally, NODFSM values were higher than expected by the 
free null model, but equal or higher to that expected by the 
restricted null model, showing that when overlap due to mod-
ularity is controlled, interactions among species on the same 
module are more or equally nested as expected by their degrees 
(Fig. 2d, f ). The same was true for pairs of species at different 
modules, as NODFDM values were either equal or lower than 

expected by the free null model, but equal or higher to that 
expected by the restricted null model (Fig. 2d, f ).

Those results show that some of the local networks present 
a compound topology: significant modularity, and NODFSM 
higher than expected given the modular structure.

Topology of the regional network

The regional network presented higher modularity 
(ZFQ = 51.13) and equal nestedness (ZFNODF = 0.39) than 
expected by the free null model. However, the observed scores 
of nestedness were almost five times higher between pairs of 
species of the same module than between pairs of species of 
different modules (NODFSM = 0.45, NODFDM = 0.09).

In addition, as expected if the modules constrain nestedness 
between species of different modules, NODFDM was smaller 
than expected by the free null model (ZFNODFDM = −13.02) 
(Fig. 3), but equal to expected by the restricted null model 
(ZRNODFDM = 0.20) (Fig. 3). Finally, nestedness between 
pairs of species of the same module was higher than  
expected by both null models (ZFNODFSM = 48.68, 
ZRNODFSM = 7.49) (Fig. 3).

Therefore, the regional flea–mammal network also pres-
ents a compound topology, which can be easily seen when we 
plot the interaction matrix maximizing nestedness without 
disrupting the modular structure (Fig. 4).

Generalism versus performance

On the one hand, flea abundances were always positively cor-
related with their within-module generalism (within-module 
degree) in the local networks (Supporting information). On 
the other hand, as expected, the relationship between flea 
abundance and between-module generalism (participation 
coefficient), depended on the degree of restrictions that the 
modules impose to the interactions. Specifically, the effect of 
flea participation coefficient on abundance changes from pos-
itive to negative as NODFDM becomes smaller than expected 
by the free null model, crossing zero at ZFNODFDM ≈ −2 
(Fig. 5a). In addition, the predicted positive effect of the par-
ticipation coefficient on flea performance was higher than 
that of the within-module degree, when NODFDM becomes 
equal to or higher than expected by the free null model. 
Interestingly, ZFQ was not kept in the minimal model.

Figure 5b shows the predicted effects of participation 
coefficient and within-module degree on fleas’ abundances 
for three selected localities, confirming the predictions of 
Fig. 1, that as the network becomes more modular the effect 
of between-module generalism on performance changes from 
positive to negative.

Random factors explained a significant portion of the 
variance in flea abundance (Supporting information). In 
addition, as expected, only within-module degree, participa-
tion coefficient, and the interaction between participation 
coefficient and relative nestedness for species of different 
modules compared to the free null model (ZFNODFDM) sig-
nificantly explained flea abundances. Neither ZFNODFDM 
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8

Figure 2. Relationship between observed and relative (ZF and ZR) scores of nestedness components (NODF, NODFSM and NODFDM) and 
modularity in local networks. ZF and ZR represent the relative score of a metric (nestedness or modularity) standardized by the score 
expected in the absence (the free null model) or in the presence (restricted null model) of the modular structure, respectively. NODF 
(green): overall nestedness. NODFSM (purple): nestedness between pairs of species of the same module. NODFDM (yellow): nestedness 
between pairs of species of different modules. Left panels (a, c and e): relationship between observed and relative nestedness and modularity 
scores. Right panels (b, d and f ): box plots of observed and relative nestedness scores. Notice that relative modularity is always standardized 
by modularity expected by the free null model, both in (c) and (e). Only curves representing significant relationships (p < 0.05) are shown.
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nor its interaction with within-module degree were retained 
in the minimum selected model (Supporting information). 
Although the complete models explained a large amount of 
data variance, the fixed factors were responsible for only a 
small fraction of the explanation (R2

(m) = 0.086, R2
(c) = 0.53).

Discussion

Here, we provide empirical support for the integrative 
hypothesis of specialization (IHS, Pinheiro et al. 2016, 2019, 
Mello et al. 2019), which proposes a mechanistic model for 
the emergence of compound topologies in interaction net-
works (Box 1, Fig. 1).

We developed a method to test for compound topologies 
and used it to confirm the emergence of compound topolo-
gies in interaction networks formed by fleas and mammals 
in the Palearctic Region (Fig. 2–4). Next, we showed that 
flea performances were positively related to within-module 
generalism, but negatively related to between-module gen-
eralism in local networks (Fig. 5), as predicted by the IHS. 
Together, our results provide insight into the solution of two 
long-standing debates in the ecological literature, which we 
discuss bellow.

The first debate concerns the topology of interaction net-
works. How to make sense of the fact that nestedness and mod-
ularity, two conceptually different patterns (Lewinsohn et al. 
2006, Ulrich  et  al. 2017b), coexist in several interaction 

Figure 3. Observed values (dots) of NODF, NODFSM and NODFDM in the regional network contrasted with the values expected by species 
degrees (distributions) in the absence (free null model) or presence (restricted null model) of a modular structure. NODF: overall nested-
ness. NODFSM: nestedness between pairs of species of the same module. NODFDM: nestedness between pairs of species of different mod-
ules. As expected if the regional network has a compound topology, NODFSM is higher than expected given the modular structure, that is, 
by the restricted null model.

Figure 4. Interaction matrix reorganized to maximize between- and within-module nestedness without disrupting the modular structure of 
the network. Interactions within modules (delimited by boxes) are showed in black, while those outside modules are showed in gray. Flea 
species are represented in columns and mammals in rows. The compound topology of the regional network is evident.
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10

networks in nature (Olesen et al. 2007, Fortuna et al. 2010, 
Thebault and Fontaine 2010)? An interaction matrix that is 
both nested and modular lies within the triangular space pro-
posed by Ulrich et al. (2017b) at some point midway between 
nestedness and modularity. But what does such an interac-
tion matrix looks like? Is nestedness superimposed over the 
modular structure, as suggested by the ‘two sides of the same 
coin’ perspective (see Fig. 1C in Fortuna et al. 2010), or is 
nestedness confined to the modules, in a compound topology 
(Lewinsohn et al. 2006)?

At a first glance, considering only that some local and 
the regional flea–mammal networks presented scores of 

nestedness and modularity higher than or equal to those 
expected by species degrees (by the free null model) (Fig. 2c–
d, 3), one could conclude that those two topologies combine 
freely as two sides of the same coin (Fortuna  et  al. 2010). 
However, as found in previous studies (Thebault and Fontaine 
2010, Trøjelsgaard and Olesen 2013, Pinheiro et al. 2019), 
the observed and relative values of modularity and nestedness 
were negatively correlated in the local flea–mammal networks 
(Fig. 2a, c). In addition, while nestedness between pairs of 
species of the same module was higher than expected by spe-
cies degrees (i.e. by the free null model), the opposite was true 
for nestedness between pairs of species of different modules 

Figure 5. The predicted effect of participation coefficient on flea performances (abundance) for different values of ZFNODFDM (relative 
nestedness between pairs of species at different modules in each local network when compared to that expected by the free null model). (a) 
Lines show the predicted effect of participation coefficient on abundance (and its 95% confidence intervals), while dots indicate the fifteen 
local networks. As expected by the IHS, the effect of participation coefficient changes from negative to positive as nestedness between spe-
cies in different modules increases. (b) Predicted effect of participation coefficient and within-module degree on abundance for three 
selected local networks (roman numerals in (a)) with decreasing modular restrictions. Node colors indicate module membership recovered 
by the modularity algorithm.
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(Fig. 2d). In addition, the difference between these two parti-
tions of nestedness (NODFSM and NODFDM) increased with 
modularity (Fig. 2a, c). Those results point out that modu-
larity restricts nestedness at higher hierarchical network lev-
els, making it stronger within the modules in a compound 
structure.

However, to say that modularity restricts nestedness 
between species of different modules is a logical consequence 
of the definitions of modularity and nestedness, a truism 
that is recognized since the propositions of these archetypes 
(Leibold and Mikkelson 2002, Presley et al. 2010, Ulrich and 
Gotelli 2013). A much more interesting question, which our 
method allows answering, is whether interactions between 
species of different modules are more nested than expected 
given that they belong to different modules. Here, we show 
that both the local (Fig. 2f ) and the regional (Fig. 3) net-
works have interactions between species of different modules 
equally nested as expected by their degrees, once the decreas-
ing in overlap expected between-modules is discounted. That 
is, NODFDM was equal to expected by the restricted null 
model.

This result implies that when a flea of the module A 
exploits a host from the module B, it tends to exploit the 
most exploited host of module B. This does not necessarily 
need to be true since competitive exclusion might predomi-
nate over host exploitability outside the modules. For exam-
ple, if parasites have poor performance on hosts that do not 
belong to their modules, diffuse competition could hinder 
parasites of module B from successfully establishing them-
selves in the most exploited hosts of module A. If that hap-
pens, parasites might become supertramps (sensu Diamond 
1975) when exploiting hosts of other modules, infecting only 
the less exploited hosts outside its own module, and pro-
ducing an anti-nested (Poulin and Guégan 2000) pattern of 
between-module interactions. Although this is not true nei-
ther in the flea–mammal network analyzed here, nor in the 
bat–plant network analyzed by Mello et al. (2019), it is an 
interesting hypothesis to be tested with other systems. Recent 
evidence suggests that interactions are more flexible than pre-
viously supposed (Calatayud et al. 2016), and understanding 
the processes governing the spillover of interactions between 
modules has important practical implications. It may help, 
for example, to predict which species are likely to invade new 
habitats or which parasite or pathogen species are more likely 
to exploit new hosts, as observed in the current COVID-19 
pandemic.

The second issue our results provide insight into con-
cerns what is the expected relationship between the resource 
range (generalism) of a species and its average performance 
at exploiting these resources (Futuyma and Moreno 1988). 
As in the case of network topology, conflicting results have 
been reported, and two scenarios are possible. First, the rela-
tionship between generalism and average performance varies 
among systems, taxa, place, and interaction types. Second, 
this relationship should change at different network hierarchi-
cal levels, from positive within modules to negative between-
modules, as predicted by the IHS (Pinheiro et al. 2016).

Our results support the second scenario (Fig. 5). In local 
networks where modules represent a significant constraint 
to interactions, the relationship between flea abundance and 
generalism changed from positive within to negative between-
modules, as predicted. In addition, the effect of participation 
coefficient on abundance becomes stronger as the modular 
structure imposes stronger constraints on the between-mod-
ule interactions. Therefore, if the network is composed of 
more than one module, the relationship between generalism 
and performance should depend on the network hierarchical 
level analyzed.

Otherwise, if the network is composed of very similar 
resources (i.e. just one module), we expect a simple positive 
relationship between generalism and performance. A further 
step would be to test if the contradictory results reported by 
previous studies which addressed the relationship between 
performance and generalism would also be explained by dif-
ferences in the diversity of each community studied. While 
some of them focused on different populations of the same 
resource species (Szollõsi et al. 2011) others sampled entire 
resource communities (Poulin 1998, Hellgren et al. 2009).

In conclusion, although the results of our study fully cor-
roborate major predictions of the IHS, as a novel hypothesis 
the IHS needs to be further tested. We encourage research-
ers to put the IHS to the test using other kinds of interac-
tion made between other taxa. The method we develop here 
can help to answer if compound topologies are also present 
at local scales in other systems, something that might have 
been overlooked in the literature, considering that most stud-
ies focus on single-taxon, single-interaction systems. Indeed, 
most mutualistic and antagonistic networks studied so far are 
strongly taxon-biased, so they most probably represent mod-
ules of larger networks (as proposed by Bezerra et al. 2009, 
Mello et al. 2011, Sarmento et al. 2014), in which the stron-
gest trade-offs are absent.
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