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Non-Gaussian transverse momentum fluctuations from impact parameter fluctuations
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The transverse momentum per particle, [pt ], fluctuates event by event in ultrarelativistic nucleus-nucleus
collisions, for a given multiplicity. These fluctuations are small and approximately Gaussian, but a nonzero
skewness has been predicted on the basis of hydrodynamic calculations, and seen experimentally. We argue that
the mechanism driving the skewness is that, if the system thermalizes, the mean transverse momentum increases
with impact parameter for a fixed collision multiplicity. We postulate that fluctuations are Gaussian at fixed
impact parameter, and that non-Gaussianities solely result from impact parameter fluctuations. Using recent data
on the variance of [pt ] fluctuations, we make quantitative predictions for their skewness and kurtosis as a function
of the collision multiplicity. We predict, in particular, a spectacular increase of the skewness below the knee of
the multiplicity distribution, followed by a fast decrease.
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There is now wide consensus that collisions between
atomic nuclei at ultrarelativistic energies produce a tiny
droplet of fluid made of quarks and gluons, which quickly
thermalizes as a result of the strong interaction. For two
decades, evidence for the formation of a fluid has largely
relied on the observation of anisotropic flow, seen through az-
imuthal correlations between outgoing particles [1]. Evidence
of a different nature has recently been revealed [2], based on
the fluctuations of the transverse momentum per particle, [pt ],
across collision events with the same multiplicity. These are
traditional observables of nucleus-nucleus collisions [3–8],
which are used to constrain theoretical models [9–12]. The
new observation by the ATLAS collaboration is that the vari-
ance of these fluctuations in Pb + Pb collisions decreases by a
factor ≈2 over a narrow multiplicity range [13] corresponding
to ultracentral collisions [14–21], where [pt ] fluctuations had
not yet been analyzed. This decrease is naturally explained by
invoking thermalization. Thermalization indeed implies that
[pt ] is linked with the density, which depends on impact pa-
rameter. The observed decrease then results from the decrease
of impact parameter fluctuations in collisions with the largest
multiplicity.

In this paper, we show that this mechanism also implies
that fluctuations of [pt ] are strongly non-Gaussian in ultra-
central collisions.1 Using the same model of [pt ] fluctuations
as in Ref. [2], we make quantitative, parameter-free predic-
tions for the skewness and excess kurtosis, which are standard
measures of the non-Gaussianity. In order to understand the
fluctuations of [pt ] at fixed multiplicity Nch, one must take into

1It has already been observed that hydrodynamic calculations imply
a significant skewness of [pt ] fluctuations [22], but the crucial role of
impact parameter has so far been overlooked.

account two effects. The first is that collision events with the
same multiplicity Nch can have different impact parameter b.
This simple fact is often overlooked because Nch is tradition-
ally used as an estimator of the centrality, as defined by b. The
second effect is that for a given multiplicity Nch, [pt ] depends
on impact parameter b. Larger b implies a smaller collision
volume V (Fig. 1), hence larger density Nch/V . If the system
thermalizes, the temperature is higher and the momentum per
particle [pt ] is larger.

We first explain the origin of non-Gaussian fluctuations on
the basis of a simplified model, where [pt ] is a single-valued
function of Nch and b. Instead of b, we use the centrality
fraction cb � πb2/σPb [23] (where σPb is the inelastic cross
section of the Pb+Pb collision) as an equivalent variable
throughout this paper. The variation of cb for fixed Nch is small
enough that the dependence of [pt ] on cb can be linearized2:

[pt ] = pmin
t + λcb, (1)

where pmin
t and λ depend on Nch.

The probability distribution of [pt ] is then determined by
that of cb. The probability distribution of cb for fixed Nch,
p(cb|Nch), can easily be determined [23]. First, one assumes
that the distribution of Nch at fixed impact parameter is Gaus-
sian:

p(Nch|cb) = 1√
2πσNch (cb)

exp

(
− (Nch − Nch(cb))2

2σNch (cb)2

)
. (2)

For ultracentral collisions where cb � 1, one neglects the
dependence of σNch on cb, and linearizes the variation of the

2Note that observables depend quadratically on b for small b for
symmetry reasons [24], which forbids a dependence of the type

√
cb

for small b.
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FIG. 1. Representation of Pb + Pb collisions with the same
multiplicity and different impact parameters b = 1.8 fm (left) and
b = 1.0 fm (right), corresponding to centrality fractions cb � 1.5%
and cb � 0.5%, respectively. The interval between these two values
is the typical spread of cb for fixed multiplicity. The larger value of b
goes along with a smaller collision volume, implying a larger density,
symbolically depicted with a darker color.

mean

Nch(cb) = Nknee − βcb, (3)

where Nknee is the knee, defined as the average multiplicity
for b = 0, and β determines the decrease of the multiplic-
ity with centrality. The values of these parameters can be
obtained by fitting the measured distribution of Nch [23]. In
our numerical calculations, we use the values appropriate for
Pb+Pb collisions at

√
sNN = 5.02 TeV, and for the charged

particle multiplicity seen by the inner detector of ATLAS,
namely, Nknee = 3680, σNch = 168, β = 18300 [2]. The prob-
ability distribution of cb for fixed Nch is then given by Bayes’
theorem3:

p(cb|Nch) = p(Nch|cb)

p(Nch)
∝ exp

(
− (Nch − Nknee + βcb)2

2σ 2
Nch

)
,

(4)

where we have used Eqs. (2) and (3). Equation (4) shows that
the distribution of cb is Gaussian with a width σNch/β � 0.9%.
It is, however, a truncated Gaussian, because of the boundary
condition cb � 0 [23]. Equation (1) then implies that the prob-
ability distribution of [pt ] is also a truncated Gaussian with the
boundary condition [pt ] � pmin

t . This is illustrated by the solid
curves in Fig. 2, which will be discussed in more detail below.

This truncation has several effects. First, the distribution of
[pt ] becomes narrower, resulting in a decrease of the variance.
This decrease has been seen by ATLAS [13] and analyzed
in Ref. [2]. Second, the truncation generates non-Gaussian
features such as skewness and kurtosis, which are the focus
of this paper.

We now introduce a more realistic model of [pt ] fluctua-
tions, in order to take into account that [pt ] can vary even if
both Nch and cb are fixed. We assume, following Ref. [2], that
the joint distribution of Nch and [pt ] at fixed cb, p([pt ], Nch|cb),
is a correlated Gaussian. The simplified model above corre-
sponds to the limit where the correlation is maximal and there

3cb is the cumulative distribution of b, therefore, p(cb) = 1 by
construction.

FIG. 2. Probability distribution of [pt ] for various values of the
multiplicity Nch. If one defines centrality according to Nch, the cen-
trality fractions corresponding to these values of Nch are, from top to
bottom, 2.2%, 1.1%, 0.3%, and 0.04%. We decompose [pt ] as [pt ] =
pt0 + δpt , where pt0 is a constant, and we only plot the distribution
of δpt . The solid lines correspond to the simplified model where [pt ]
only depends on Nch and impact parameter [Eq. (1)]. The dashed lines
correspond to a more realistic model, assuming Gaussian fluctuations
of [pt ] for fixed Nch and cb.

is a one-to-one correspondence between [pt ] and Nch at fixed
cb.

The Gaussian ansatz can be justified in the following way.
In a hydrodynamic model, fluctuations of Nch and [pt ] both
stem from fluctuations of the initial density profile. At fixed
b, these density fluctuations originate from quantum fluctua-
tions, either in the wave functions of incoming nuclei [25–27]
or in the collision dynamics. At ultrarelativistic energies,
causality implies that fluctuations in different locations in the
transverse plane are independent. Therefore, fluctuations of
Nch and [pt ] can be thought of resulting from a large number
of independent contributions, and the central limit theorem
implies that their fluctuations are approximately Gaussian.

The two-dimensional Gaussian distribution has five param-
eters: The mean and standard deviation of Nch and of [pt ],
and the Pearson correlation coefficient r between Nch and [pt ].
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FIG. 3. (a) Histogram of the number of charged particles Nch (left), measured in the inner detector of ATLAS, and of transverse energy ET

(right), measured in the forward and backward calorimeters. The vertical dashed line indicates the position of the knee. The next four panels
display the first cumulants of the distribution of δpt , calculated using Eq. (10), as a function of the centrality estimator. (b) Mean. (c) Standard
deviation Var(pt )1/2. (d) Standardized skewness Skew(pt )/Var(pt )3/2. (e) Standardized kurtosis Kurt(pt )/Var(pt )2. The model is calibrated
using ATLAS data for the standard deviation [13], shown as symbols in (c). In (b), (d), and (e), we display our predictions using the Duke and
JETSCAPE parametrizations of the centrality dependence of σNch (Appendix). The difference between the two is negligible for the mean [see
inset in (b)] and the standard deviation (not shown), but is sizable for the skewness and kurtosis, where it is displayed as a pink shaded band.
The contributions of the various terms in Eq. (11) are shown for the Duke parametrization only.

All these parameters may depend on cb. We now explain how
they are obtained. We use experimental data when possible,
and model calculations otherwise.

From the probability distribution of the charged multiplic-
ity P(Nch), which is accurately measured [Fig. 3(a)], one can
infer the cb dependence of the mean multiplicity, Nch(cb), as
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well as the standard deviation σNch for cb = 0 [2,23]. On the
other hand, the cb dependence of σNch is not at all constrained
by existing data. We therefore borrow this information from
state-of-the-art models which have been tuned to experiment
through Bayesian analyses. We use the maximum a posteriori
parameter set from two analyses, one by the Duke group [28]
and the other by the JETSCAPE collaboration (using the
Grad viscous correction to the distribution function at parti-
clization) [29]. The JETSCAPE analysis is tuned to a larger
set of data, including several collision energies. The Duke
analysis is specifically tuned to 5.02 TeV data, which are the
ones we use in this paper, and differs from the JETSCAPE
analysis in the sense that nucleon substructure is taken into
account, which may have an effect on fluctuations. We eval-
uate σNch (cb) for both models, in a way which is explained
in detail in the Appendix. The Duke parametrization predicts
that σNch increases between b = 0 and b = 3.5 fm, while the
JETSCAPE parametrization predicts a slight decrease. We use
the difference between these two models as an estimate of the
error in our predictions.

The other parameters of our Gaussian model are the mean,
pt0, and the standard deviation, σpt , of [pt ] at fixed impact
parameter, and the Pearson correlation coefficient r between
Nch and [pt ]. Based on the observation that the variation of
the mean value of pt is below the percent level in the 0–30 %
centrality range [30], we assume that pt0 is independent of
impact parameter. We decompose [pt ] = pt0 + δpt , and we
only model the distribution of δpt , so that our results are
independent of pt0. We assume that σpt varies with cb like a
power law of the mean multiplicity

σpt (cb) = σpt (0)

(
Nknee

Nch(cb)

)α/2

, (5)

and we assume for simplicity that r is independent of cb. The
three parameters σpt (0), α, and r are fitted to ATLAS data on
the variance of pt fluctuations [2,13], in a range corresponding
roughly to the 20% most central collisions. These data imply
in particular that [pt ] is strongly correlated with the density,
which is reflected in the correlation coefficient r, which is
close to 0.7.

A property of the two-dimensional Gaussian is that if one
fixes one of the variables, e.g., Nch, the distribution of the
other variable, e.g., δpt , is Gaussian (this property will be
used below in order to evaluate the skewness and kurtosis).
The distribution of δpt at fixed Nch and cb is defined by

p(δpt |Nch, cb) = p(δpt , Nch|cb)

p(Nch|cb)
. (6)

The distribution of δpt at fixed Nch is then obtained by aver-
aging over impact parameter

p(δpt |Nch) =
∫ 1

0
p(δpt |Nch, cb)p(cb|Nch)dcb

= 1

p(Nch)

∫ 1

0
p(δpt , Nch|cb)dcb, (7)

where we have used Eqs. (4) and (6) in going from the first to
the second line. The distributions p(δpt |Nch) are displayed as
dashed lines in Fig. 2 for selected values of Nch near the knee.

The full lines in this figure are obtained by setting the correla-
tion coefficient to its maximum value r = 1, corresponding to
the simplified model of Eq. (1).

Once the distribution of δpt is known, one can evaluate
its cumulants. We derive semi-analytic expressions of the
cumulants by using the property that the distribution of δpt

is Gaussian for fixed cb:

P(δpt |Nch, cb) = 1√
2πκ2(cb)

exp

(
− (δpt − κ1(cb))2

2κ2(cb)

)
,

(8)
where we omit the dependence on Nch in the right-hand side.
κ1(cb) and κ2(cb) are the mean and the variance at fixed Nch

and cb, given by [2]

κ1(cb) = r
σpt (cb)

σNch (cb)
(Nch − Nch(cb)),

κ2(cb) = (1 − r2)σ 2
pt

(cb). (9)

Note that in the limit r → 1, the variance κ2(cb) vanishes
and P(δpt |Nch, cb) reduces to a Dirac peak δ(δpt − κ1(cb)),
implying that δpt is solely determined by Nch and cb.

The moment of order n is obtained by multiplying Eq. (8)
with δpn

t and integrating over δpt . One thus obtains the fol-
lowing expressions for the first four moments:

〈δpt |cb〉 = κ1,〈
δp2

t

∣∣cb
〉 = κ2

1 + κ2,〈
δp3

t

∣∣cb
〉 = κ3

1 + 3κ2κ1,〈
δp4

t

∣∣cb
〉 = κ4

1 + 6κ2κ
2
1 + 3κ2

2 , (10)

where the dependence on cb on the right-hand side is implicit.
These moments must then be averaged over cb, as in Eq. (7).
The cumulants are finally obtained from the moments using
standard inversion formulas. The first four cumulants are the
mean, the variance, the skewness, and the excess kurtosis [31]:

〈δpt 〉 = 〈κ1〉,
Var(pt ) = (〈

κ2
1

〉 − 〈κ1〉2
) + 〈κ2〉,

Skew(pt ) = 〈
κ3

1

〉 − 3
〈
κ2

1

〉〈κ1〉 + 2〈κ1〉3

+ 3(〈κ2κ1〉 − 〈κ2〉〈κ1〉),

Kurt(pt ) = 〈
κ4

1

〉 − 4
〈
κ3

1

〉〈κ1〉 + 6〈κ2
1 〉〈κ1〉2 − 3〈κ1〉4

+ 6
(〈

κ2κ
2
1

〉 − 〈κ2〉
〈
κ2

1

〉 − 2〈κ2κ1〉〈κ1〉
+ 2〈κ2〉〈κ1〉2) + 3

(〈
κ2

2

〉 − 〈κ2〉2
)
, (11)

where angular brackets denote averages over cb. One sees that
κ1 and κ2 contribute separately to the variance. The term in-
volving κ1 is responsible for the sharp decrease of the variance
around the knee, as shown in Ref. [2]. The skewness has terms
involving κ1 only, and a term proportional to the correlation
between κ1 and κ2. The kurtosis has one more term, which is
proportional to the variance of κ2. The skewness and the kurto-
sis encode the non-Gaussian properties of the event-by-event
fluctuations of [pt ]. In our model, which assumes Gaussian
fluctuations at fixed impact parameter, all non-Gaussianities
originate from impact parameter fluctuations. If the impact pa-
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rameter does not fluctuate, each line in the above expressions
of Skew(pt ) and Kurt(pt ) is identically zero.

Our quantitative predictions are displayed in panels (b),
(d), and (e) of Fig. 3. The increase of the mean, displayed
in panel (b), has already been discussed in the litera-
ture [2,32,33]. The new results of this paper are the skewness
and the kurtosis, which both display sharp variations around
the knee. We predict an increase of the skewness below the
knee (such an increase has already been seen by the ALICE
collaboration [34], as will be discussed below), followed by
a fast decrease above the knee. The kurtosis has first a min-
imum, followed by a maximum roughly at the knee. These
structures come from the terms involving κ1, and are inherited
from the truncated Gaussian. The cumulants of the truncated
Gaussian (4) can be calculated analytically. The maximum of
the skewness occurs at Nch � Nknee − σNch � 3510. The kurto-
sis has a minimum at Nch � Nknee − 2σNch � 3340, followed
by a maximum at Nch � Nknee � 3680. This corresponds to
the structure seen in our numerical results.

One sees that our predictions depend little on which sce-
nario (Duke or JETSCAPE) one chooses for the centrality
dependence of multiplicity fluctuations. The main limitation
of our model is that we have assumed a Gaussian distribution
of [pt ] at fixed Nch and b. Since [pt ] is a positive quantity,
one expects its distribution to have a positive skewness κ3

and a positive excess kurtosis κ4. This will give additional
positive contributions to Skew(pt ) and Kurt(pt ) in Eq. (11),
of the form 〈κ3〉 and 〈κ4〉, so that our predictions should
be considered a lower bound, both for the skewness and
for the kurtosis. Predicting quantitatively the value of this
additional term is difficult and would require high-statistics
hydrodynamic simulation. We can however safely state that
the additional contributions should have a smooth dependence
on Nch, and will typically result in a positive offset from our
prediction. The sharp variations of the skewness and kurtosis
around the knee in Fig. 3(c) and 3(d) are robust, quantitative
predictions.

The ATLAS collaboration also carries out analyses by esti-
mating the centrality using the transverse energy ET deposited
in two calorimeters symmetrically with respect to the colli-
sion point, at smaller angles with respect to the beam than
the inner detector. The whole analysis can be repeated by
replacing Nch with ET everywhere, as shown in the right panel
of Fig. 3. It turns out that ET is a better centrality estimator
than Nch, which results in smaller impact parameter fluctu-
ations [24,36]. Since, in our model, all the non-Gaussianities
originate from impact parameter fluctuations, one expects that
both the skewness and the kurtosis are smaller if the centrality
is determined as a function of ET , which is exactly seen in
our predictions. Experimental verification of these predictions
will be crucial in assessing the importance of impact parame-
ter fluctuations.

Finally, let us comment on the recent preliminary results
on the skewness released by the ALICE collaboration [34].
The centrality estimator is the amplitude deposited in scintil-
lators located at forward rapidities, qualitatively similar to the
ET -based centrality determination of ATLAS. The skewness is
then determined in the central pseudorapidity (η) region, again
similar to the ATLAS analysis, although with a narrower in-

terval in η. The binning in centrality is much coarser than that
of ATLAS, with each point corresponding to a 5% interval.
Our analysis covers roughly the 20% most central collisions,
therefore, our predictions can only be compared with the last
four data points of ALICE, which correspond to the ranges
(in TeV) 1.6 < ET < 2.1, 2.1 < ET < 2.7, 2.7 < ET < 3.5,
and ET > 3.5. The quantity shown by ALICE is the intensive
skewness [22], not the standardized skewness. It is obtained
by multiplying the standardized skewness with the mean, 〈pt 〉,
and dividing by the standard deviation Var(pt )1/2. We have not
evaluated this quantity because the ATLAS collaboration does
not provide the value of 〈pt 〉. Given the pt range covered by
ATLAS, a rough guess is 〈pt 〉 ≈ 1 GeV/c. We then predict
that the intensive skewness is essentially constant and close to
10 in the interval 1.8 < ET < 3.5 TeV, while ALICE values
increase from (slightly below) 4 to (slightly above) 5 in the
equivalent range. However, one should not compare the abso-
lute values, because they depend on the pt coverage, which
is 0.2 < pt < 3 GeV/c for ALICE, and 0.5 < pt < 5 GeV/c
for ATLAS.4 The interesting observation of ALICE is that
the intensive skewness in the most central bin is close to 8,
significantly higher than in the previous bins. This last point
of ALICE corresponds to the interval ET > 3.5 TeV, over
which our calculation predicts a rise and fall of the intensive
skewness, which peaks at a value ≈18 below the knee. It is
tempting to see in the ALICE result a first confirmation of our
prediction. It will be useful if the ALICE analysis is repeated
in finer centrality bins, and if they specify the value of the
centrality estimator in each bin.
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the framework “Investissements d’Avenir” (ANR-11-IDEX-
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4The dependence of σpt (cb) on the pt interval is not trivial. How
the fluctuation of the pt spectrum depends on pt is at present not
known, and assessing it would require to measure the quantity v0(pt )
recently introduced in Ref. [35].
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APPENDIX: CENTRALITY DEPENDENCE
OF MULTIPLICITY FLUCTUATIONS

The probability distribution of the multiplicity at fixed
impact parameter b is expected to be approximately Gaus-
sian [23] and can be characterized by its mean Nch and
standard deviation σNch , which both depend on b. The mean
can be reconstructed using the simple following rule. If a
fraction cb of events have a multiplicity larger than N , then
N � Nch(cb) [40]. This simple rule, which is applied to AT-
LAS data in Fig. 4(a), works well except for multiplicities
around and above the knee.

On the other hand, the centrality dependence of σNch is
not known, and we use state-of-the-art hydrodynamic cal-

FIG. 4. (a) Variation of charged multiplicity Nch with centrality
in Pb+Pb collisions at

√
sNN = 5.02 TeV measured by ATLAS [13]

and ALICE [37]. For ATLAS, the centrality is defined from the
cumulative distribution of Nch and then divided by a calibration factor
1.153 [38],which corrects for the fact that for the largest centrality
fractions, some of the recorded events are fake. The ALICE results
have been rescaled by a factor 1.73 to correct for the different accep-
tance and efficiency of the detector. The circles display the centrality
dependence of the mean initial energy for the TRENTo parametriza-
tions used by the Duke [28] and JETSCAPE analyses [29]. The
centrality is defined as πb2/σPb, where σPb = 767 fm2 is the total
inelastic cross section. (b) Variation of the standard deviation of Nch

with centrality.

FIG. 5. Parametric plot of the mean and variance of Nch as a func-
tion of b. Both models have been calibrated in such a way that they
match data at b = 0. Solid lines are fits using y = γ x + (1 − γ )x2,
where y ≡ σ 2

Nch
(b)/σ 2

Nch
(0) and x ≡ 〈Nch〉(b)/〈Nch〉(0) with γ = 2.83

(Duke) and γ = 1.90 (JETSCAPE). The calculation in Ref. [2] was
done with γ = 1 (variance proportional to mean).

culations by the Duke group [28] and by the JETSCAPE
collaboration [29] to evaluate it. However, we want to avoid
running massive hydrodynamic calculations, and we there-
fore estimate the multiplicity fluctuations from the initial
conditions of these calculations. We assume that for every
collision event, the multiplicity is proportional to the ini-
tial energy. Both Duke and JETSCAPE analyses employ the
TRENTo parametrization [39] for the initial energy density,
but with slightly different values of the parameters. We run
these TRENTo initial conditions for several fixed values of
b (specifically, b = 0, 3.5, 5, 6, 7, 8, 8.5, 9.25, 10, 11, 12
fm). For each b, we generate 105 events with both Duke and
JETSCAPE parameters, and we compute the initial energy of
each event. We rescale this energy by a constant factor so
that it matches the ATLAS result for the charged multiplicity
at b = 0 [2]. The variation of the mean Nch with centrality
is displayed in Fig. 4(a). Experimental data are also shown.
One sees that ALICE and ATLAS data are in excellent agree-
ment once properly rescaled. The calculation using the Duke
parametrization agrees very well with experiment. Agreement
is not quite as good, but still reasonable, for the JETSCAPE
parametrization.

We then calculate the standard deviation of Nch, σNch , for
each value of b. Results are displayed in Fig. 4(b). The stan-
dard deviation can only be measured at b = 0 [36] from the
tail of the distribution of Nch, therefore, there is only one
data point on this plot. One sees that both model calculations
are in reasonable agreement with this data point, but slightly
overestimate it.

We use model calculations only to predict the b dependence
of σNch , not the value at b = 0 which is measured precisely. We
therefore rescale σNch from the model calculation by a constant
factor so that it matches the experimental value at b = 0. The
resulting predictions for b > 0 are displayed in Fig. 5. We
plot the variance σ 2

Nch
as a function of the mean. If Nch is

the sum of k identical, uncorrelated distributions, where k
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depends on b, both the mean and the variance are proportional
to k, therefore, they are proportional to one another. This
behavior is only observed for large values of b. Both model
calculations predict that the variance increases more slowly

as b decreases. The Duke calculation even predicts that it
decreases for the smallest values of b. The two solid lines,
which are polynomial fits to our calculations, are used as two
limiting cases which define the error bands in Fig. 3.
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