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Abstract: Organophosphates (OPPs) are an important element of modern agriculture; however,
because they are being used excessively, their residues are leaching and accumulating in the soil and
groundwater, contaminating aquatic and terrestrial food chains. An important OPP called disulfoton
is frequently used to eradicate pests from a wide range of crops, including Brazil’s coffee crops. Addi-
tionally, it does not easily degrade in the environment, and as such, this compound can slowly build
up in living organisms such as humans. Moreover, this compound has been classified as “extremely
hazardous” by the World Health Organization. This study evaluated the degradation efficiency of
disulfoton using a Fenton-like reaction catalyzed by magnetite nanoparticles and determined the
toxicity of the by-products of the degradation process using the bioindicator Allium cepa. Further,
the removal efficiency of disulfoton was determined to be 94% under optimal conditions. On the
other hand, the Allium cepa bioassay showed different toxic, cytotoxic, genotoxic, and mutagenic
outcomes even after the remediation process. In conclusion, the Fenton process catalyzed by mag-
netite nanoparticles presents great efficiency for the oxidation of disulfoton. However, it is important
to highlight that the high degradation efficiency of the Fenton-based process was not sufficient to
achieve detoxification of the samples.

Keywords: pesticides; degradation; remediation; toxicity; organophosphates; biomonitoring

1. Introduction

The contamination by pesticides in the environment has gradually increased and is
harming living beings. The toxicity of environmental pollutants can affect the ecosystem
and human health since the vast majority of them can potentially bioaccumulate in aquatic
flora and fauna, allowing their entry into the food web [1].

Since 2008, Brazil has been the largest consumer of pesticides in the world. The impacts
of pesticides on public health are diverse, reaching vast territories and involving different
population groups, such as workers in different fields of activity, laborers at factories and
farms, and consumers who eat contaminated food. The impacts are associated with the
current development model, which is primarily focused on the production of goods for
export [2].

The expansion of the number of chemical substances listed in the Draft Resolution
of the Chamber of Deputies (RPC) no. 5, on the 28th of September 2017, Annex XX [3]
can lead to the naturalization of contamination, consequently rendering it banal, as if this
form of pollution were legalized [2]. The quality criteria for water for human consumption
reflect, over time, growing pollution from various processes, including the agricultural
process of using dozens of pesticides and chemical fertilizers. In addition, from January
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to March 2019, the Ministry of Agriculture, Livestock, and Supply (MAPA) approved
121 new pesticide registrations. For example, Act No. 17 of the Department of Plant Health
and Agricultural Inputs, published in the Diary da Union on March 21st, 2019, granted
registrations to 35 new labels, which are now licensed to be sold and consumed throughout
the national territory. Among the approved compounds, six are classified as class I, which
comprises compounds considered “extremely toxic” to human health [4].

Bioaccumulation in the food web is possible and can constitute a risk or hazard to
animals and people over time. It was reported that pesticides cause up to three million
cases of acute and severe poisoning annually, with as many or more cases unreported, and
approximately 220,000 deaths globally [5].

Additionally, organophosphate pesticides (OPPs) are widely used around the world;
these compounds are very toxic when absorbed by the human body, as they cause an
influx of the enzyme acetylcholinesterase [6]. Organophosphates are used in agriculture as
insecticides because they are highly efficient against pests, have low bioaccumulation, and
rapidly degrade in the environment by projection and hydrolysis [7].

Further, beginning with the concern about environmental effects and the contam-
ination of water resources, food safety, and public health, a method of degrading the
contaminant disulfoton, belonging to the organophosphate chemical group, was developed.
Advanced oxidative processes were used with magnetite nanoparticles. The degradation
process was monitored by gas chromatography–mass spectrometry. In addition, cyto-
toxic, genotoxic, and mutagenic effects were evaluated with the bioindicator Allium cepa,
which is considered excellent for such testing due to its sensitivity and ease of analysis in
environmental studies [8].

2. Materials and Methods

All chemicals were of analytical grade and were used as received without any further
purification. The high-purity deionized water (resistivity 18.2 MΩ cm) used throughout
the experiment was obtained using a Milli-Q water purification system (Millipore RiOs-
DITM, Bedford, MA, USA). Analytical standard solutions of disulfoton (O, O-diethyl S-2-
ethylthioethyl phosphorodithioate) and the internal standard, anthracene, were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Two solvents (HPLC grade) were used in the
dispersive liquid–liquid microextraction procedure: acetonitrile and hexadecane. H2O2
was used in the Fenton reaction.

2.1. Summary of Magnetite (Fe3O4) Nanoparticles

The Fe3O4 nanoparticles were synthesized according to the method in which prepa-
ration occurs by co-precipitation of iron (Fe2+) and iron (Fe3+) ions in an aqueous NaOH
solution. In addition, ~5 g of NH4Fe(SO4)2·12H2O and ~8 g of (NH4)2Fe(SO4)2·6H2O were
dissolved in 100 mL of water. After that, Fe3O4 was precipitated at room temperature using
100 mL of 2 M NaOH under agitation for 30 min. The precipitate was washed multiple
times with water and dried at room temperature in a vacuum desiccator.

2.2. Degradation of Disulfoton Using Magnetite Nanoparticles

The disulfoton degradation method using magnetite nanoparticles in this study was
previously described [9]. In this study, modifications were proposed for optimal pesticide
remediation. Consequently, an experimental design was created in order to optimize
the degradation procedure and determine the effect of various factors on the process
(Tables 1 and 2). Disulfoton samples were prepared in 100 mL volumetric flasks with
concentrations of 2, 10, and 50 µg.L−1 and transferred to polypropylene tubes (10 mL).

The amounts of nanoparticles added to the tubes with the compound ranged from
200 to 600 mg. The pH of samples was adjusted (5, 7, and 9) using HCl (0.1 M) or NaOH
(0.1 M). After pH adjustment, different amounts of hydrogen peroxide (200, 400, or 600 µL)
were added to each sample. The samples were mixed on an orbital shaker at 300 rpm for
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15 min, then centrifuged for 5 min, and a magnet was used to separate the nanoparticles
from the sample.

Table 1. Experimental domain for a 24 factorial experimental design.

Factors (X)
Levels

−1 0 1

Disulfoton (µg L−1/X1) 2 10 50
Hydrogen peroxide (µL/X2) 200 400 600

pH (X3) 5 7 9
Magnetite nanoparticles (mg/X4) 200 400 600

Table 2. Complete factorial planning study.

Experiment X1 X2 X3 X4

1 −1 −1 −1 −1
2 1 −1 −1 −1
3 −1 1 −1 −1
4 1 1 −1 −1
5 −1 −1 1 −1
6 1 −1 1 −1
7 −1 1 1 −1
8 1 1 1 −1
9 −1 −1 −1 1

10 1 −1 −1 1
11 −1 1 −1 1
12 1 1 −1 1
13 −1 −1 1 1
14 1 −1 1 1
15 −1 1 1 1
16 1 1 1 1
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0

2.3. Sample Preparation

The microextraction methodology was adapted from Zanjani et al. [6], using a disulfo-
ton solution (purchased from PerkinElmer, New York, NY, USA). The standard solution
was prepared in acetone (purchased from ISOFAR, Sao Paulo, Brazil) at a concentration
of 20,000 µg L−1. Additionally, the concentrations of 50, 10, and 2 µg L−1 were used to
perform monitoring via gas chromatography.

The extraction of organophosphate compounds from water samples was carried out
according to the dispersive liquid–liquid microextraction (DLLME) method. A mass of
0.5 g of NaCl and 10 µL of the internal standard (anthracene) were added to each reaction
tube. Further, a mixture of 180 µL of hexadecane (the extraction solvent) and 420 µL of
acetonitrile (the dispersive solvent) were rapidly added for compound extraction. After
that, the samples were centrifuged for 5 min and placed in a polystyrene box with ice for
10 min. The organic phase was collected and transferred to an Eppendorf tube. The organic
phase was evaporated, and the dried residue was dissolved with 100 µL of acetonitrile,
vortexed for 10 s, and injected into the gas chromatograph for GC-MS.

2.4. Instrumentation and Sample Analysis

The analyses were performed using a gas chromatography system coupled to mass
spectrometry (GC-MS) from Thermo Fisher Scientific®, Waltham, MA, USA. The determina-
tion of disulfoton was performed using an SLB®-5 ms analytical column (30 m × 0.25 mm
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× 0.25 µm; Sigma-Aldrich®). The initial temperature of the oven was 80 ◦C, which was
maintained for 2 min, followed by a heating ramp of 15 ◦C/min up to 300 ◦C, which was
maintained for 5 min, for a total of 21.67 min running time. Additionally, helium was
used as a carrier gas at a flow rate of 1 mL/min. The injector temperature was 230 ◦C, the
injection volume was 1 µL, the procedure was performed in splitless mode, and the valve
was opened after 1 min.

The detection system used was a quadrupole-type mass spectrometer (ISQ single
quadrupole model, Thermo Fisher Scientific®) equipped with an electron impact ionization
source. The temperatures of the ionization source and the transfer line for the mass
spectrometer were maintained at 300 and 290 ◦C, respectively.

Furthermore, the determinations were performed in full scan mode, monitoring the
range of mass/load ratio (m/z) from 80 to 280, and in selected ion monitoring mode (SIM)
with selected m/z values of 274–89–88 (quantification). The data acquisition start time
was 8 min. Data acquisition and quantification were performed using Thermo XcaliburTM

version 2.2 (Thermo Fisher Scientific®).
The method was validated through tests of precision, accuracy, linearity, robustness,

and the limits of detection and quantification.

2.5. Evaluation of Toxicity Using Allium Test

The experiment was carried out with adaptations according to [10–12]. Three pa-
rameters were evaluated: cyto-, geno-, and mutagenicity. The negative control (C−) was
carried out with water, and the positive control (C+) with methyl methanesulfonate (MMS),
10 ppm. A number of 30 Allium cepa seeds were put on filter paper in a Petri dish, hydrated
with water, and allowed to germinate until the roots reached 1 cm in length. The obtained
seedlings were then exposed to water prepared with disulfoton at concentrations of 2, 10,
and 50 µg.L−1 before and after degradation and to water prepared with 200 mg magnetite.
Moreover, all the samples were prepared in triplicate and subjected to germination for 24 h.
After germination, the roots were cut and fixed using Carnoy’s solution (ethanol:acetic
acid, 3:1) in 1.5 mL microtubes for 24 h. Carnoy’s solution was then replaced with 1 mL of
70% alcohol, and the samples were maintained for 24 h. The volume of 70% ethanol was
replaced, while the roots were stored in the refrigerator until slide preparation.

For slide preparation, the roots were washed three times with water. After that, they
were subjected to acid hydrolysis with a 1 M HCl solution at 60 ◦C in water and kept in a
water bath for 9 min. After acid hydrolysis, the roots were transferred to microtubes coated
with aluminum foil containing Schiff’s reagent (Merck, Rahway, NJ, USA) for 2 h.

Additionally, the tip of each root was cut and placed on a blade, and a drop of 2% acetic
carmin was added. After 9 min, the root tip was covered with a coverslip and carefully
macerated for microscopic analysis.

3. Results and Discussion
3.1. Degradation of Disulfoton

The efficacy of the Fenton reaction in the degradation of disulfoton was studied. In this
reaction, hydroxyl radicals formed by the hydrolysis of H2O2 in the presence of magnetite
nanoparticles oxidized the organic pesticide present in the sample [9]. By using the initial
concentration (Ci) and residual concentration (Cr) of each peak after gas chromatography
analysis, it was feasible to determine the degradation rate (D) of each component, as
described in Equation (1):

D = (Ci − Cr)/Ci × 100 (1)

Several parameters affect the Fenton process and interfere with the degradation of
organic compounds, such as pH, volume of H2O2, nanoparticle mass of Fe3O4, and concen-
tration of analytes; the Fenton’s reagent and pH are the most influential factors [13]. In order
to optimize the degradation process, a 24 factorial design was prepared, complete without
a central point, in which the parameters concentration, pH, volume of H2O2, and weight of
nanomaterial in the degraded contaminant disulfoton were evaluated. Tables 1 and 2 show
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the studied parameters and their respective levels, as well as the development of factor
planning, and Table 3 shows the degradation rates.

Table 3. Disulfoton compound degradation rate (%).

Sample Ci Cr %

1 2.09 0.27 87
2 49.76 6.12 88
3 2.09 0.20 90
4 49.76 5.47 89
5 2.09 0.48 77
6 49.76 12.67 75
7 2.09 0.52 75
8 49.76 10.72 78
9 2.09 0.21 90
10 49.76 5.49 89
11 2.09 0.12 94
12 49.76 3.16 94
13 2.09 0.54 74
14 49.76 11.70 76
15 2.09 0.42 80
16 49.76 10.06 80
17 10.58 1.48 86
18 10.58 1.27 88
19 10.58 1.27 88
20 10.58 1.38 87

Effects of Disulfoton Degradation Variables

The results of the effects, errors, and time for the variables analyzed in the design
are presented in Table 4. Given the results obtained, it appears that the concentration did
not have an influence; however, the volume effect, pH, and weight of the nanomaterial
positively influenced the degradation of disulfoton at the levels studied. The second-order
effects, however, did not influence the rate of degradation.

Table 4. Effects and errors of factors studied in a full 24 factorial design for mining.

Factor Estimated Effect ± Error (0.756) t

Mean 83.5 221.0
Concentration 0.14 0.2

Volume 3.10 4.1
pH −13.16 −17.4

Weight 2.21 2.9
1 × 2 0.21 0.3
1 × 3 0.64 0.8
1 × 4 0.08 0.1
2 × 3 −0.41 −0.5
2 × 4 1.38 1.8
3 × 4 −0.93 −1.2

Figure 1 shows the Pareto diagram of the standardized effects at p = 0.05. The absolute
value of the impact of each variable and their interaction is given to the right of each bar.
Further, all the results to the right of the dashed line with values larger than 2.571 (p = 0.05)
are significant for the degradation of the compound disulfoton. Figure 1 shows that three
of the main effects were significant (pH, volume, and weight), showing that these factors
influenced the degradation rate. After analyzing the second-order effects, it was seen that
none of the interactions were significant.
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Figure 1. Pareto graph of standardized effects at p = 0.05 for disulfoton degradation. It can be seen
that pH had the greatest influence on the degradation rate. In [14], it was found that the reaction is
favorable in an acid medium with a pH between 3 and 5 for degradation by the Fenton process.

According to Pignatello [15], the pH of the medium plays a fundamental role in the
efficiency of the Fenton and photo-Fenton processes. The values above 3.0 cause Fe (III) to
precipitate in the form of insoluble hydroxide, and at values below 2.5, high concentrations
of H+ can sequester hydroxyl radicals. There is also a predominance of less hydroxylated
species that have less absorptivity, with the need for pH control being the biggest limitation
of these processes. However, no significant differences were observed in the samples due
to the change in pH.

A study by Verma and Haritash [16] analyzing the role of pH, FeSO4, and H2O2 in
the degradation of the antibiotic amoxicillin found that an excess of H2O2 in the Fenton
reaction caused the sequestration of hydroxyl and hydroperoxyl radicals, which have less
potential for reduction, thus hindering the degradation process.

In a study by Watts et al. [17], the results showed that in the presence of magnetite,
the contaminant pentachlorophenol was totally degraded in 12 h, while in the presence
of hematite, only 12% was degraded, showing the greater activity of magnetite. The
authors noted that magnetite was more efficient in degrading compounds because it
consists of Fe2+ and Fe3+, which have the greatest potential to catalyze the decomposition
of hydrogen peroxide.

In a study by Chen et al. [14], the formation of hydroxyl radicals increased due to the
addition of iron ions in a constant amount, and this factor had more influence than other
operational parameters. This has also been observed in studies related to the degradation
of lignin by the Fenton reaction.

Figures 2–4 graphically represent the second-order effects. Although no interaction
showed a significant influence, the interaction of H2O2 volume and pH indicates that with
increased volume and acidification, there was an increase in the degradation rate, and this
effect also occurred when there was a high nanoparticle weight and slight acidification,
when both interactions showed a degradation rate close to 95%. Additionally, the interac-
tion between volume and nanoparticles was also favorable, but it presents degradation
rates below 90%.
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3.2. Evaluation of Toxicological Potential by Allium cepa Bioassay
3.2.1. Analysis of Cytotoxic Potential

The statistical analysis of the results of the factorial design suggests that the rate of
degradation of the compound is mainly related to the pH and the amount of nanomate-
rial. Therefore, according to the results of the degradation rate and the significant effects
analyzed, the best conditions for disulfoton degradation are as follows: H2O2 at a volume
of 600 µL, magnetite weight of 600 mg, and a pH of 5. Under these conditions, both
concentrations are calculated as:

MI = (No. of cells in division)/(No. of cells analyzed) × 100 (2)

While evaluating meristematic cells of A. cepa in the process of cell division, it was
possible to determine the mitotic index (MI) for each group. The values found are listed
in Table 5.

Table 5. Number of dividing cells and mitotic index.

Sample No. of Cells
Analyzed

No. of Cells in
Interphase

No. of Cells in
Mitosis

Mitotic Index
(MI)

C− * 5000 4370 630 12.60
C+ ** 5000 4460 540 10.80

Magnetite 5000 4406 594 11.88
2 µg L−1 5000 4742 258 5.08

10 µg L−1 5000 4781 219 4.38
50 µg L−1 5000 4799 201 4.02

2 µg L−1 PD 5000 4948 52 1.04
50 µg L−1 PD 5000 4938 65 1.30

* Ultrapure water; ** MMS; PD, post-degradation.

An analysis of the positive control (MMS) was performed in order to assess the
sensitivity of the test, along with evaluating the negative control and samples.

In the analysis of variance, Student’s t-test, and non-parametric Mann–Whitney test,
it was found that the experimental procedure was effective, with significant values at the
level of 5%.

The samples containing the contaminant disulfoton had a significant reduction in the
mitotic index (MI) when compared to the negative control, revealing that these samples
were contaminated by cytotoxic substances.

The results of the microscopic analysis referring to cell divisions are shown in Table 5.
The data of each sample were analyzed using GraphPad Prism version 9 software, student
version, to verify the behavioral relationships between samples.

The results obtained for the mitotic index show a significant correlation (p < 0.05)
between the negative control and the samples contaminated with pesticide, according to
the Mann–Whitney test, with a value of p ≤ 0.0001. The sample containing only magnetite
showed no statistically significant difference when compared to the negative control, with a
value of p = 0.4693. Thus, the results obtained by means of statistical tests indicate that the
samples containing disulfoton, both before and after degradation, had cytotoxic potential
at the microscopic level.

Cellular progress can be blocked when certain external stimuli are present, such
as exposure to pesticides; this action is called mitoinhibition. Any deviation from the
ordered and directed progression of the cell cycle is reflected in a state of cytotoxicity and
genotoxicity. Mitogens act to overcome the braking mechanisms that block the progression
of the cell cycle, and their action is called myostimulation [18].

Figure 4 shows the results for the mean and standard deviation of the analyzed
samples. The effect of disulfoton consisted of an increased interphase index, and as the
concentration increased, cell division was inhibited at different stages of mitosis.
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Pesticides are bioactive molecules that can form metabolites, and due to their elec-
trophilic characteristics, they are able to react with and combine with biomolecules such as
DNA and induce changes [19].

It can also be noted that the samples showed the greatest reductions in MI when
subjected to the degradation process using a greater number of nanoparticles. This can
be explained by the results of a study by Popescu et al. [20], which showed that pure
Fe3O4 is significantly viable for all investigated periods of exposure, as the nanoparticles
of magnetite have been shown to be biocompatible; however, there is reduced efficiency
and increased toxicity when combined with gemcitabine (GEM), which is a cytostatic drug
used in the treatment of several types of cancer.

Nanostructuring with GEM showed a cytotoxic effect, with viability reduced by 60%
compared to the control. The different concentrations and exposure times were evaluated,
and it was determined after the treatment that viability fell below 80% at 0.12 mg/mL and
below 40% at 0.15 mg/mL. Thus, the viability of nanoparticles relative to that of the drug
is dependent on dose and time. It was reported that the loading of GEM into magnetic
chitosan nanoparticles increased the cytotoxic effect of the drug in breast cancer cells after
treatment; viability was reduced below 40%, making it possible to evaluate the highly
cytotoxic effect on the systems [20,21].

3.2.2. Analysis of Genotoxic Potential

The chromosomal aberrations evaluated for genotoxicity analysis are characterized
by changes in chromosome structures at different stages of cell division, which can occur
spontaneously or as a result of exposure to contaminants.

This genotoxicity study was performed by analyzing the chromosomal aberrations
(CAs) present in the slides prepared for the study. The alterations considered in this study
were binucleation, adherence, bridge, C-metaphase, necrosis, and loss and breakage in all
phases of cell division; CAs present in about 5000 cells from each sample were evaluated
for genotoxicity (Figure 5).
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Figure 5. Optical microscope photomicrographs of chromosomal aberrations: (A) binucleation,
(B) metaphase with adherence, (C) anaphase with bridge, (D) C-metaphase, (E) necrosis, and
(F) chromosomal loss.

The results regarding chromosomal aberrations are shown in Table 6.
According to the results obtained through microscopic analysis to assess genotoxicity

and subsequent statistical analysis using the Mann–Whitney test, it can be said that the an-
alyzed samples had a genotoxic effect, as they presented statistically significant differences
when compared to the negative control.
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Table 6. Chromosomal aberrations found in analysis.

Sample Binucleation Adhesion Bridge C-Metaphase Necrosis Break Total CA

C− * - - 2 - - 2 4
C+ ** 28 14 40 19 - 27 141

Magnetita 32 - 34 - - 11 91
2 µg L−1 25 16 9 14 123 19 213

10 µg L−1 45 9 7 - 201 3 271
50 µg L−1 63 13 15 11 4600 7 4717

2 µg L−1 PD - - - - 4948 - 4948
50 µg L−1 PD - - - - 4938 - 4938

* Ultrapure water; ** MMS; PD, post-degradation.

The positive control and the sample containing only magnetite showed a p-value of
0.0024 and 0.0023, respectively, whereas samples contaminated with disulfoton showed
a p ≤ 0.0001.

Silvério et al. [22] evaluated pesticide exposure in rural workers in southern Minas
Gerais, where disulfoton is the most commonly used organophosphate, representing almost
70% of the application in the region.

According to the authors, exposure to organophosphates can cause acute and chronic
effects, because their results showed that compared to the control group, workers exposed
to organophosphates had a significantly higher incidence of muscle tremors, weakness,
irritability, restlessness, blurred vision, dizziness, tingling of limbs, abdominal cramps,
nausea, breathing difficulties, nasal irritation, increased bronchial secretions, cough, de-
creased hearing, and tinnitus; in addition, budding changes and condensed chromatin and
karyolitic cells were found when the cytoma of the oral mucosa was used as a biomarker
for genotoxicity.

Several types of chromosomal aberrations were observed in the present study
(Table 6 and Figure 6). This indicates that DNA damage cannot be easily repaired [23].
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Thus, the occurrence of various types of aberrations in the chromosomes of meris-
tematic cells of A. cepa roots can be attributed to the collective effect of clastogenic and
aneugenic actions by various contaminating compounds [24].
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According to Seth et al. [25] the induction of breaks, chromosomal losses, and damage
to DNA in plants indicates that the contaminant being tested by the bioindicator has
clastogenic potential.

DNA damage can be associated with the generation of free radicals, causing DNA
strand breaks and irreversible damage, by binding to proteins involved in DNA replication,
repair, recombination, and transcription [26,27].

It can be seen that necrosis was the most frequent chromosomal aberration in the
analyzed samples, which can be explained by the response of cells to irreversible damage
to the genetic material. Different mechanisms for maintaining cell homeostasis are linked
to the processes of cell division, cell metabolism, and cell death [28].

The failure of the repair mechanism can promote neoplastic transformation, indicating
the beginning of the tumor formation process. Thus, unrepaired cells are sent to the cell
death process (known as necroptosis in pathology) or programmed cell necrosis in order to
prevent the onset of tumors [29].

Cell necrosis involves the decomposition of negatively affected cell groups [30], where
mitochondria increase in volume and dry up with little or no need for energy. Further,
there is no synthesis of protein or nucleic acid, nor does new gene transcription occur, and
DNA is digested randomly.

Necrosis is characterized by the early disappearance of ion pumping activities due to
damage to the membrane or depletion of cellular energy [31].

3.2.3. Analysis of Mutagenic Potential

The analysis of mutagenic potential was performed based on the frequency of mi-
cronuclei (MN) in meristematic cells in all phases of the cell cycle. For this purpose, 5000
cells from each sample were analyzed to obtain the mutagenic potential and the frequency
index of MN through the relationship between dividing cells and the presence of MN.

The micronuclei found in the analyses were present in cells in interphase and prophase,
as can be seen in Figure 7. The data obtained through microscopic analysis are shown
in Table 7.
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Table 7. Results of micronuclei found in analyses.

Sample No. of Cells Analyzed No. of Micronuclei Frequency MN (%)

C− * 5000 - -
C+ ** 5000 27 0.60

Magnetita 5000 26 0.59
2 µg L−1 5000 29 0.61

10 µg L−1 5000 21 0.44
50 µg L−1 5000 31 0.65

2 µg L−1 PD 5000 31 0.63
50 µg L−1 PD 5000 27 0.55

* Negative control. ** Positive control.
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According to the results obtained through microscopic analysis to assess mutagenicity
and the subsequent statistical analysis, it can be said that the analyzed samples had a
mutagenic effect, as they presented a statistically significant difference when compared to
the negative control.

The positive control, the sample containing only magnetite, and the samples contami-
nated with disulfoton showed values of p ≤ 0.0001.

Organochlorine and organophosphate pesticides are the most common compounds
produced by the pesticide industry worldwide [32]. Various effluents from industrial
wastewater and sludge have shown high mutagenic potential [33]. Several scientific studies
on the genotoxicity of wastewater and pesticides have suggested a direct association with
the mutagenicity of pollutants in water bodies and possible risks to human health [34–37].

According to Santos [34], organophosphates represent a class of pesticides with high
toxicity in widespread use, for which it is difficult to assess the effects of long-term exposure
and low doses due to the absence of clinical manifestations [35].

The exposure to these compounds causes damage to the nervous and respiratory
systems and the reproductive organs, dysfunctions in the immune and endocrine systems,
as well as mutagenicity and carcinogenicity [36]. Further, the biomonitoring of workers
exposed to pesticides indicated the occurrence of MNs, while the formation of MNs is
induced by substances that cause chromosomes (clastogens) to break. Micronuclei are
chromosomal fragments or whole chromosomes that are not included in the nucleus during
cell division, forming a much smaller nucleus [37]. Many cancers have an epithelial origin,
suggesting that micronuclei in epithelial cells represent an important biomarker that can be
used in epidemiological studies [38]. Figure 8 shows the means and standard deviations of
the micronuclei found in the analyzed samples.
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4. Conclusions

In this study, the results show that the Fenton process catalyzed by magnetite nanopar-
ticles described here presents great efficiency in the oxidation of the compound disulfoton,
since the obtained results demonstrate that there was up to 94% degradation under optimal
conditions, established after factorial planning aimed at optimizing the methodology.

Furthermore, the results of the present study show that there was induction of cell di-
vision, formation of MN, and a significant increase in chromosomal aberrations, confirming
the cytotoxic, genotoxic, and mutagenic potential of disulfoton.
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The evaluation of cytotoxicity, genotoxicity, and mutagenicity demonstrated that
the samples had toxicological potential, even after degradation of the compound and
reduced concentration. These findings clearly indicate that the indiscriminate use of the
organophosphate pesticide disulfoton is highly dangerous. In view of the common practice
of applying this compound on agricultural land, it is necessary to develop methodologies
for environmental remediation in areas contaminated with this type of compound, as
pollutants can enter the food chain and cause risks to human health.
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