

ANAIS

DO 18° SIMPÓSIO DE GEOLOGIA DO SUDESTE

Campinas, São Paulo 2025

Editores:

Iata Anderson de Souza Adilson Viana Soares Júnior Daniela Kuranaka Marina Thimotheo Wagner da Silva Amaral Francisco Manoel Wohnrath Tognoli Danielle Simeão Silvério Rocha Saul Hartmann Riffel

18º SIMPÓSIO DE GEOLOGIA DO SUDESTE 26 a 30 de maio de 2025 | Campinas - SP

RELATIONSHIP BETWEEN ENVIRONMENTAL DYNAMICS AND ISOTOPO E COMPOSITION OF FARMED CALCITE EXPERIMENT ON WELL-VENTILATED CAVES IN CENTRAL BRAZIL

Vanessa Bohrer¹, Evandro Luiz Garcia Assumpção², Plácido Fabrício Silva Melo Buarque³, Matheus Simões Santos⁴, Hamilton dos Reis Sales⁵, Francisco William da Cruz⁶, Nicolás M. Stríkis⁷

> ¹Universidade de São Paulo, Brazil, ne.bohrer@usp.br ²Dept de Geoquímica, Universidade Federal Fluminense, evluga@gmail.com ³ Dept de Geoquímica, Universidade Federal Fluminense, placido buarque@alumni.usp.br ⁴ Instituto Federal do Norte de Minas Gerais (IFNMG), matheusanalytica@gmail.com ⁵Instituto Federal do Norte de Minas Gerais (IFNMG), hamiltonbioflora@gmail.com ⁶Universidade de São Paulo, Brazil, cbill@usp.br

⁷Universidade de São Paulo, Brazil; Dept de Geoquímica, Universidade Federal Fluminense, strikis@gmail.com

In Central Brazil the increase in potential evapotranspiration resulting from high temperatures, combined with the strongly seasonal hydrological regime, heightens the risk of drought and draws attention to the vulnerability of associated ecosystems. Therefore, expanding climate observational data is essential to understanding how climate variations related to the rise in global average temperature, driven by greenhouse gas emissions, may affect regional climate and water availability. Novel research findings from well-ventilated caves in Central Brazil, developed by the Paleoclimate Research Group at IGc-USP, indicate that variations in relative humidity and, consequently, in potential evaporation affects the isotope composition of speleothems calcite. This study continued the geochemical monitoring of well-ventilated caves in Central Brazil to assess the influence of environmental parameters—such as temperature, relative humidity, and dipping rates—on the C and O isotopic signatures recorded in speleothems from open-system caves. The selected site was the Lapa da Onça cave, located in the northern region of Minas Gerais. The results indicate that the deposition rate of CaCO3 is not solely dependent on aquifer water availability but also on environmental conditions of the cave atmosphere, showing a strong correlation between calcite δ^{18} O with temperature at seasonal time-scale (intra-annual). Additionally, temperature and relative humidity directly influence the isotopic behavior of $\delta 13C$ and $\delta^{18}O$ in speleothems. However, variations in cave atmosphere relative humidity are the primary driver of isotope variability at interannual timescales. The influence of humidity on the isotopic fluctuations observed during the monitoring of the Lapa da Onça cave is intensified by the high ventilation of the deposition environment, which exhibits seasonal variations of approximately 50%. The results of this research are essential for interpreting the isotopic variability of the speleothem records from Lapa Onça Cave and supports the application of carbon and oxygen isotopes from wellventilated cave environment as proxyes of evaporative potential.