Teaching software design patterns: An experience using the
Jigsaw classroom

Lina Garcés
Laboratério de Engenharia de Software, Instituto de
Ciéncias Matematicas e de Computacio, Universidade de
Séo Paulo - LabES/ICMC/USP.
S3o Carlos, SP, Brazil
linagarces@usp.br

ABSTRACT

Software design patterns have been one of the most important
topics taught in computer science courses. However, several chal-
lenges remain for teaching design patterns in the classroom, such
as misconceptions about their utility and students’ lack of motiva-
tion for learning them. The Jigsaw classroom is a teaching method
based on cooperative learning, where students, as principal actors,
collaborate to construct their knowledge about a subject. Jigsaw
has demonstrated improvements in students’ cognitive, affective,
and psychosocial skills; however this instructional method has not
been properly explored in software engineering teaching to provide
evidence of its benefits and drawbacks for education in this area.
This study presents an experience on using Jigsaw classroom for
teaching software design patterns in an undergraduate course. The
preliminary results confirm the benefits and some application chal-
lenges the Jigsaw method presents in other areas. Lessons learned
from this experience are shared with educators interested in apply-
ing the Jigsaw method in software engineering-related courses.

KEYWORDS

design patterns, software engineering education, jigsaw, active
learning, experience

1 Introduction

In the foreseeable future, no significant shift is expected in the
core skill set required of software engineering (SE) professionals,
even with the increasing integration of advanced artificial intelli-
gence models into software development practices [8]. Foundational
knowledge in requirements analysis, software design, and testing
continues to be essential to form future professionals [17]. This
scenario is supported by Akdur [1], who surveyed 628 experienced
software practitioners and investigated areas of knowledge that are
most frequently applied in daily software development tasks. The
results revealed that programming, software configuration man-
agement, requirements engineering, and software design are the
four most commonly used areas in practice [1]. At the same time,
considering those SE areas, there remains a gap between academic
curricula and the practical demands of the software industry, par-
ticularly in software design [17]. Addressing these disparities will
better prepare graduates for the realities of professional software
development.

Specifically, design patterns serve as proven, reusable solutions
to common problems encountered in software design [15]. They
encapsulate best practices and facilitate communication among
developers by providing a shared vocabulary [9]. Their relevance

Brauner R. N. Oliveira
Nucleo de Exceléncia em Tecnologias Sociais,
Universidade Federal de Alagoas.
Maceid, AL, Brazil
brauner@alumni.usp.br

extends beyond software design, influencing and enhancing prac-
tices in the other most-required knowledge areas.

In programming, design patterns can contribute directly to code
quality and maintainability [14, 35]. Patterns such as Strategy, Ob-
server, and Factory Method promote flexibility, encapsulation, and
reuse, enabling developers to write cleaner and more adaptable code.
Understanding design patterns allows programmers to anticipate
changes, reduce code duplication, and align their implementation
with established architectural practices [9, 15].

In software configuration management, design patterns can sup-
port modular and decoupled design, which is critical for managing
source code across teams, branches, and versions. For example,
patterns that encourage the separation of concerns simplify ver-
sion control by minimizing merge conflicts and isolating changes
to specific components. This enhances traceability and simplifies
rollback and deployment processes. Moreover, identifying the need
to apply a pattern during code refactoring can improve code read-
ability and maintainability, contributing to the code quality and
software evolution [23].

In requirements engineering, design patterns can help bridge the
gap between requirements and implementation by offering prede-
fined solutions that can be mapped to functional and non-functional
requirements. When requirements indicate the need for extensibil-
ity, responsiveness, or dynamic behavior, certain patterns can be
proposed during the design phase to meet those criteria effectively.
Moreover, using design patterns can improve communication with
stakeholders by making design decisions more transparent and
justifiable.

Considering its relevance for software development practice,
software design patterns have been a mandatory component in
the curriculum of computer science-related undergraduate courses
as proposed by ACM/IEEE [24] and SBC [37] academic societies.
By teaching this content to future software engineers, they are ex-
pected to obtain the skills to define well-designed software systems,
assess best design solutions for a problem, and maintain, evolve, or
refactor software in production [37].

Although software design patterns are a well-established and de-
manding topic in most computer science curricula, their instruction
has not received adequate attention. From the students’ perspective,
software design, particularly the comprehension and application
of design patterns, ranks among the most difficult subjects en-
countered during undergraduate studies [29]. From the educators’
standpoint, teaching this content presents significant challenges,
especially in student engagement and in the development of in-
structional strategies [30]. Therefore, switching from traditional

https://orcid.org/1234-5678-9012

SBES’25, September 22-26, 2025, Recife, PE

lecture classes and exploring different instructional methodolo-
gies is necessary to better teach design patterns in undergraduate
courses.

From another perspective, the Jigsaw method is a well-established
cooperative and active learning strategy that has been employed for
over four decades across various educational levels. It is categorized
as an active learning approach because it places students at the cen-
ter of the learning process, encouraging them to take responsibility
for their own knowledge acquisition. Furthermore, it promotes co-
operative learning, as students collaboratively construct knowledge
on specific topics through peer interaction. At the cognitive level,
the Jigsaw method has been shown to enhance students’ reten-
tion, comprehension, critical thinking, cognitive processing, and
memory, while also mitigating knowledge loss [27]. In addition to
these cognitive benefits, the method contributes to the develop-
ment of affective and psychomotor skills, fostering improvements
in communication and teaching abilities [40]. The Jigsaw classroom
has been effectively implemented in a wide range of disciplines,
including medicine, physics, mathematics, and the humanities. It
has received high levels of acceptance from both students and in-
structors, who have recognized its effectiveness in promoting both
hard and soft skill development. [11].

This study presents an account of the experience of designing
and implementing a Jigsaw classroom for teaching design patterns
in a computer science undergraduate course. The remainder of this
paper is organized as follows. Section 2 provides the background
on design patterns, the Jigsaw classroom learning method, and its
application in software engineering teaching. Section 3 describes
related experience reports on teaching design patterns. Section 4
presents the Jigsaw activity design and intended learning objectives
of its application as an instructional method for teaching design pat-
terns. Results of this cooperative activity are reported in Section 5
and the lessons learned of it are described in Section 6. Finally, the
conclusion and future work are outlined in Section 7.

2 Background
2.1 Software design patterns

At their essence, software design patterns represent formalized
and reusable solutions to recurring design challenges encountered
within specific software development contexts [15]. They are not
concrete implementations but abstract blueprints or templates that
capture proven architectural insights and best practices cultivated
through extensive practical application. These patterns establish
a shared lexicon and conceptual framework among software en-
gineers, thereby facilitating more precise and effective commu-
nication and collaboration [9]. Applying design patterns within
the software development life-cycle yields significant advantages
contributing to software systems’ quality, code reusability and main-
tainability, and team communication and efficiency.

Design patterns are traditionally categorized into three primary
groups [15]: creational, structural, and behavioral. Each category
addresses a distinct aspect of object-oriented design and serves a
specific architectural concerns. In short, creational patterns ab-
stract the process of object instantiation, allowing systems to be de-
coupled from the concrete classes they utilize. This enhances design
flexibility and scalability by promoting the use of interfaces over

Garcés and Oliveira

concrete implementations. Some examples of creational patterns
are [15, 35]: singleton, factory method, abstract factory, builder,
and prototype. Structural patterns address the composition of
classes and objects to form larger, more complex structures. They
define efficient and flexible relationships among entities. Patterns
in this category are [14, 15, 35]: adapter, bridge, composite, decora-
tor, facade, flyweight, and proxy. Finally, behavioral patterns are
concerned with the assignment of responsibilities among interact-
ing objects. They enable effective communication and control flow
within a system by encapsulating complex behavior. Examples of
these patterns are [14, 15, 35]: observer, strategy, command, chain
of responsibility, mediator, state, template method, iterator, and
visitor.

2.2 The Jigsaw classroom

Jigsaw is a cooperative learning method created in 1978 by Aronson
et al. [4] as an alternative to conventional teaching methods. Jigsaw
was influenced by the social constructivist theory, which empha-
sizes the significance of learners’ learning when they construct their
knowledge through interaction, collaboration, and group work [2].

In Jigsaw, the classroom organization is centered on the students,
rather than the teacher. Jigsaw promotes collaborative learning by
forming smaller, interdependent groups. Each student is assigned a
specific segment of the overall topic, which they study individually.
Upon completion, the group members integrate their respective
contributions to construct a comprehensive and cohesive under-
standing of the subject matter, thereby assembling the pieces of a
jigsaw puzzle [4, 5].

Figure 1 illustrates a basic Jigsaw classroom design. Students
are initially divided into small (4 to 6 members) heterogeneous
“expert groups”, with members assigned a subtopic related to the
broader subject under study. Following this, students leave their
home groups and join “teaching groups,” composed of peers from
other home groups with different but related subtopics under their
responsibility. Within the expert group, each student teaches their
colleagues the subtopic he/she know. All students in the teaching
group collaborate to analyze, discuss, and master all the taught
content. This structure ensures that all students contribute to the
group’s collective understanding while deepening their knowledge
through teaching and peer interaction.

Round 2 - Teaching Groups

Mix the groups so that each student can teach
what she/he learnt in the first round

Group 1 Group 2 ‘ Group A Group B

Group 3 Group 4 Group C Group D

Round 1 - Expert Groups
Divide students into groups and give each group
a different subtopic to read and discuss

Figure 1: Groups dynamics in the Jigsaw classroom.

Recent studies show that Jigsaw improves academic performance
[27], by improving knowledge retention and reducing the decline

Teaching software design patterns: An experience using the Jigsaw classroom

effects on their learning. Another positive impact of Jigsaw is that
students enhance their learning, comprehension, critical thinking,
cognition, and memory due to the cognitive effort required to under-
stand a topic and explain it to their group’s colleagues [2, 27, 36, 40].

Considering psychosocial skills, the Jigsaw method has beneficial
effects on students’ engagement, learning motivation, self-efficacy
(i.e., feeling of competence), self-esteem, communication skills, over-
coming shyness and hesitation in class [11, 13, 25, 40]. Motivation is
increasing in this kind of activity, as students need to contribute to
forming the knowledge for their group. Being part of a group with
a shared purpose enhances students’ engagement in the activity.
Students feel competent when their colleagues understand his/her
explanation about the topic [12].

2.3 Jigsaw in computer sciences and software
engineering education

Recent research [40] reported that most contributions about the
application of the Jigsaw approach has been obtained from instruc-
tions conducted in areas of medicine, physics, and mathematics.

To understand the evidence of applying the Jigsaw method in
computer science courses, and specifically in software engineering,
a search was conducted on academic databases, Scopus, and Google
Scholar. For this, the following string was used: (TITLE (jigsaw)
AND ALL (("software engineering" OR "computer sciences”) AND (
education OR teaching OR learning))).

Based on the results of database searches, and to the best of our
knowledge, the Jigsaw method has been barely applied as a learning
method in computer sciences or software engineering classes. This
cooperative learning strategy has been reported to teach topics
of programming [10], computational thinking [34, 42], class dia-
grams [31, 33], and software functional size through function points
measurements [32].

Studies in programming and computational thinking have re-
ported better results in terms of students’ performance and engage-
ment when using the Jigsaw method compared to other approaches,
such as traditional teacher-centered lectures, unplugged activities,
or traditional group activities [10, 34, 42].

The studies in [32, 33] reported that students who initially held
misconceptions about the usefulness and importance of a subject
(i-e., class diagrams or function points) demonstrated improved
performance after completing the cooperative learning activity.
Moreover, the same author of [32, 33] conducted an additional
study to understand the knowledge retention of students after a
semester. The results of a post knowledge test demonstrated that
students who participated in the Jigsaw activity six months prior
performed better than students who learned the same content in a
traditional lecture class [31].

Related work identifies several limitations of the Jigsaw teaching
approach in computer science courses: (i) the effectiveness of the
method relies heavily on student accountability, which may lie
beyond the instructor’s control [10]; (ii) implementing the Jigsaw
strategy requires a substantial investment of the instructor’s time
for careful planning, including determining appropriate group sizes,
identifying subtopics, and assigning topics to students [33]; (iii)
depending on the class size, the participation of teaching assistants
may be necessary to effectively monitor group dynamics [34]; and

SBES’25, September 22-26, 2025, Recife, PE

(iv) depending on the scope of the subject matter, students may feel
overwhelmed by the responsibility of both learning and teaching
complex content. Consequently, instructors may encounter chal-
lenges in dividing the main topic into sufficiently granular and
manageable subtopics for student distribution [42].

Despite these challenges, the Jigsaw method is still regarded as a
novel instructional strategy in computer science education, partic-
ularly in software engineering (SE) courses. It is therefore essential
to collect and analyze practical experiences with this approach in
order to better understand its potential benefits and limitations for
SE instruction.

3 Teaching of software design patterns

Jiménez-Diaz et al. [22] propose a pedagogical methodology for
teaching design patterns that emphasizes active learning by in-
volving students in structured role-playing sessions designed to
facilitate software refactoring practices. As a result, the authors con-
cluded that theoretical preparation is essential before the role-play
sessions, as it helps students grasp design problems and context.
Therefore, such preparation makes later role-play sessions more
meaningful and effective.

Jeremic et al. [21] propose a learning environment that integrates
diverse educational systems for teaching software design patterns.
The teacher can use the platform to set different contexts and sce-
narios for pattern application. The platform also helps educators
measure students’ understanding of design patterns based on the
patterns selected in a specific situation.

Intelligent tutors had also been used for teaching software design
patterns. The intelligent tutor proposed in [6] observes students’
coding work and detects possible snippets of code where a pattern
could be applied. The tutor suggests to the student the application
of the pattern and explains the rationale behind its application. This
tutor aims to guide novice students to understand why and how
diverse design patterns can be employed.

In [38], educators reported the use of the Just-in-Time Teaching
(JiTT) method to teach software design patterns in two classrooms
with a total of 130 students. The authors noted that the application
of JiTT had a significant impact on teaching and learning software
design patterns. As a matter of clarification, the JiTT, originally
proposed by Novak et al. [28], is a teaching strategy in which
instructors pose questions to students about pre-class work, such
as readings or videos. Students respond to these questions before
class, and instructors review their answers to identify important
themes to be addressed in in-class activities, making the face-to-
face time more focused on students’ comprehension and areas of
confusion.

Intending to teach the application of software design patterns in
various types of systems, some educators had challenged the stu-
dents to apply their software design knowledge in diverse contexts.
For instance, [19] uses the context of a game development course to
engage and motivate students to understand patterns implemented
in a toy example game. Therefore, students must apply design pat-
terns in a new game project they have idealized. Another example
is the work in [41], where students designed object-oriented embed-
ded systems using the Raspberry Pi as a platform for their projects.
The report in [41] highlights the interesting results of this kind of

SBES’25, September 22-26, 2025, Recife, PE

challenge, particularly regarding the increase in team dynamics
and students’ creativity and engagement when using the Raspberry
Pi platform and working with sensors and actuators.

Similarly, in [20], a learning model was proposed to assist novice
developers in understanding and selecting the most suitable design
patterns for a specific problem. The model guides the developer
through a sequence of three phases, comprising the identification
of the design strategy, the specification of the design scope, and
the recognition of the design intention. By following these phases,
the developer can select a suitable design pattern for their problem,
while also acquiring the skills necessary to understand patterns
and make their own autonomous decisions.

More recently, in [26], the authors experimented with 60 students
to evidence the improvement of software design patterns learning
by using serious video games. The authors perceived improvements
in retention and understanding of the topic, and in motivation and
satisfaction from learning with the video game.

Finally, in [18], the author evaluates the use of ChatGPT by stu-
dents to learn software design patterns. He analyzed the students’
interaction with ChatGPT as a tutor. He focused on the questions
the students asked about it while studying this topic. Additionally,
students’ learning was assessed through an exam to determine
whether they comprehend and retain the theory, using ChatGPT
as a tutor. As a result, the author recognized the value of ChatGPT
as a learning tool. However, it requires providing students with
structured guidance on how to formulate questions that encour-
age critical thinking about software design patterns in real-world
scenarios.

Despite the growing advocacy for active and cooperative learn-
ing in computer science education, there remains a noticeable
scarcity of documented experiences regarding the use of such
methodologies in the specific context of teaching software engineer-
ing courses, and specifically software design patterns. While the
pedagogical literature increasingly emphasizes student-centered
approaches, there is limited empirical or practical evidence demon-
strating how constructivist methods, like the Jigsaw classroom,
can be effectively integrated into the teaching of this topic. This
study contributes to filling this gap by reporting on the use of the
Jigsaw method by highlighting both the benefits and limitations en-
countered, as well as lessons learned during implementation. This
work offers valuable insights that can support other instructors in
adapting and applying the method in their own teaching contexts.

4 Activity Design

The primary objective of this activity was to effectively teach soft-
ware design patterns to 59 third-year students enrolled in the In-
formation Systems program. In planning the activity, the following
constraints were taken into account: (i) the activity should not ex-
ceed two in-class sessions, each lasting 1.7 hours; (ii) the majority
of students are employed full-time and attend classes after their
work; and (iii) the class is held during evening hours.

4.1 Learning objectives

Educational goals were defined in the cognitive, affective, and psy-
chomotor domains.

Garcés and Oliveira

4.1.1 Cognitive goals. The revised Bloom’s taxonomy [3] was used
as a frame for the cognitive domain. The cognitive goals are pre-
sented as follows:

LGO1 - Analyze: The students distinguish important from unim-
portant parts in the material that presents a design pattern.

LGO2 - Understand: The students comprehend and construct
together the main knowledge (e.g., context, purpose, problem, so-
lution, application, and trade-offs) about nine software design pat-
terns: singleton, builder, prototype, adapter, proxy, facade, mediator,
observer, and chain of responsibility. Additionally, the students com-
pare design patterns in the same and in different pattern categories:
structural, behavioral, and creational.

LGO3 - Recall: The students retrieve relevant design patterns
knowledge from long-term memory.

4.1.2 Affective goals. Considering the affective domain, the learn-
ing objectives were:

LGO04 - Receive: The students learn through the explanations
brought by their colleagues about a new design pattern.

LGO5 - Respond: The students react to the new information
they received from their colleagues, showing involvement.

4.1.3 Psychomotor goals. Finally, for the psychomotor domain, the
established educational objectives were:

LGO6 - Precision: The students explain design patterns with
accuracy and control.

4.2 Jigsaw activity design

The activity consisted of four rounds: individual studies of a design
pattern, group sessions of ’one pattern experts’, group sessions
of ’teaching patterns in one category’, and a final ’teaching all-
categories’ group session. Each round is explained below.

1. Singleton 2. Builder 3. Prototype

4. Adapter 5. Proxy 6. Facade

7. Mediator 9. Chain of

responsibility

8. Observer

Legend: Students’ Group Student

Figure 2: Expert group session. Students grouped by pattern
in the in-person class session.

Individual studies. Fifty-nine (59) students were enrolled in the
class. The teacher assigned each student a design pattern one week
before the in-class session. The selected design patterns were: Sin-
gleton (7 students), Builder (6 students), Prototype (6 students),

Teaching software design patterns: An experience using the Jigsaw classroom

&)
&)
&)

A1 A2 A3

&)
B

B1 B2

m
‘w‘

c1 c2 c3

A- Creational Specialists (students) B - Structural Specialists (students) C - Behavioral Specialists (students)
Singleton Adapter Mediator

@ Observer

@ Chain of responsibility

Builder @ Proxy
@ Prototype Facade

Figure 3: First teaching group session. Students groups dis-
cuss patterns in the same category in the in-person class
session.

‘X1 A ‘XZJ ‘X3.1
‘X1 2 ‘XZ.Z @X3.2
‘X1 3 ‘XZ.B ‘X3.3
‘X1 4 @XZA ‘X3.4

Patterns Category Specialists (students) @ structural @ Creational @Behavioral

Figure 4: Second teaching group session. Student groups dis-
cuss patterns in all categories in the in-person class session.

Adapter (7 students), Proxy (6 students), Facade (7 students), Medi-
ator (7 students), Observer (7 students), and Chain of responsibility
(6 students).Those nine patterns were selected from the twenty-one
patterns proposed in [15], the reason for that is the teacher con-
sidered them sufficient to achieve the learning objectives intended
for the Jigsaw activity. From the teacher’s perspective, focusing on
a selected subset of design patterns is more efficient than briefly
covering all of them, especially given the limited time available to
explore this topic.

Students were advised that they would explain the pattern to
colleagues in the in-class session. For that, students should prepare
a 10-minute oral presentation. The students were also oriented to
study the designated design pattern before the in-class session. The
students should consider, for instance, the pattern’s purpose, the

SBES’25, September 22-26, 2025, Recife, PE

problem it solves, the proposed solution, the application use cases,
the benefits and drawbacks of using such a pattern, and code imple-
mentation examples. For this, the design patterns catalog available
in [35] and the design patterns chapter in [39] were recommended.

Artifact: As a result of the individual studies, the students sent to
the teacher an individual report before starting the in-class session.

Expert group session. In a second moment, with the students in
the classroom, the educator explained the Jigsaw activity and what
was expected of them. After this, the students were divided into
expert groups, i.e., those who prepared the same pattern. Figure 2
illustrates the nine groups of experts by pattern and the expected
number of students in each group.

In this 40-minute session, expert groups were asked to discuss the
studied pattern, socializing their understanding. The idea was that
the shared information would construct a more robust knowledge
of the pattern. In case some students had doubts or lack knowledge,
the colleagues, as a group, could fill content gaps. The teacher also
solved additional doubts.

Artifact: The group should prepare a unified material for teach-
ing the pattern to colleagues in other groups. All individuals in the
expert group should be confident in explaining the content to other
groups colleagues.

First teaching group session. On the same class day, new groups
of students were composed. On this occasion, groups were formed
to discuss design patterns by category. This session last 40 minutes.
Figure 3 shows organized groups for categories of organizational,
structural, and behavioral patterns. As illustrated, three groups
were formed for each category. At least two representatives of the
pattern expert groups participated in a category group.

Students experts in a pattern explained the patterns to their
colleagues. For instance, in groups Al - A3, students taught and
discuss singleton, builder, and prototype creational patterns.

After reviewing the three patterns, the group discussed and com-
pared patterns in the same category, for instance by discussing
patterns’ use cases, similarities, differences, benefits, and draw-
backs.

Artifact: The students’ group prepared a document with a com-
parative table summarizing the results of such discussions.

Second teaching group session. This last session was performed
in another class day. All groups shared the produced material in a
shared directory to be accessible to all students. New groups were
formed. On this moment, members came from different categories.
For instance, in Figure 4, the group X1.1 was formed by past mem-
bers of groups A1, B1, and C1 (See Figure 2). The main task was to
share their knowledge about pattern comparison in each category.
Artifact: The students’ groups produced a document with the
comparisons between patterns in a category and a discussion about
pattern categories, e.g., the meaning of a pattern being creational,
structural, or behavioral, and the importance of each category.

4.3 Learning assessment

One week after the activity, the students conducted a test. This test
aimed to measure their cognition of the design patterns worked on
in the Jigsaw activity. The assessment comprised five single-choice
questions, each worth two points. The maximum score was ten

SBES’25, September 22-26, 2025, Recife, PE

points. Moreover, a self-assessment questionnaire was administered
to students to understand the affective and psychomotor skills they
trained during the Jigsaw classroom.

5 Activity Results

This section analyses the accomplishment of cognitive, affective,
and psychomotor learning objectives that outlined the Jigsaw ac-
tivity.

5.1 Cognitive goals

As defined by Anderson and Krathwohl in [3], cognitive learning
objectives focus on developing students’ intellectual, critical think-
ing, and problem-solving skills. In the proposed Jigsaw activity,
the next cognitive learning objectives were intended: analyzing,
understanding, and remembering.

5.1.1 Analyzing. This skill was exercised by the students in individ-
ual studies. In this moment, students prepared individual patterns,
a task they performed before the in-person session. The teacher
asked to students sending a report summarizing the knowledge
they obtained from individual research. Students had one week to
study and prepare the individual report. Additionally, students were
asked to add a reference list for the material used in their research.

This activity was thought to encourage the development of the
analysis level of Bloom’s Taxonomy[3] by requiring students to en-
gage critically with information related to a specific design pattern.
In order to complete the task, students searched for and identi-
fied relevant sources (e.g., books, articles, websites, videos, etc.),
extracted essential concepts, and differentiated between core struc-
tural elements and contextual applications of the pattern. This
process involves decomposing information into meaningful knowl-
edge components and understanding the relationships between
them, which are considered central aspects of analytical thinking
[3]. Furthermore, by synthesizing the gathered content into a coher-
ent report, students organized and structured the material reflecting
their understanding of the pattern.

% of students (n=50)

0
e o £ COECA e ® (2 Sl o
(@ ot i 1028 o0 Na o et o° RS i
ou = e O‘a'. o “\\)s% @\\00\0 “\e‘“@ P R ¥
o

A0 e e

N A 0

P @@ w“N

2@

Design patterns knowledge component

Figure 5: Students that reporting a specific knowledge com-
ponent about patterns in individual reports.

Garcés and Oliveira

Figure 5 presents the knowledge components about design pat-
terns that students considered relevant to include in the individual
report. From the 59 students enrolled in the course, 50 of them
delivered the report. All students (n=50) included in their report
information about the purpose, solution, application, benefits, and
drawbacks of using a specific design pattern. 90% (45/50) described
the problem that a pattern solves. 80% (40/50) considered relevant
to report the application of the pattern and possible use cases. In
a less proportion, 30% (15/50) of students included examples of
patterns implementation in code. Only 10% (5/50) of the students in-
cluded information about relationships with other design patterns,
examples of patterns use in realistic software systems, and best
practices to be considered at using and implementing a pattern. No
student considered relevant to explain the pattern through UML’s
class diagrams, even when in well-known literature and famous
websites, such diagrams are commonly presented.

5.1.2 Understanding. This cognitive skill was exercised through-
out all three group sessions: the pattern specialist session, the cate-
gory specialist session, and the all-categories specialist session. It
is noteworthy that 50 out of 59 students were present during these
activities.

During the expert group session, students engaged in discussions
focused on a single design pattern. The objective was to share and
complement the knowledge they acquired during their studies. This
collaborative exchange enabled students to address gaps in their
understanding of the designated design pattern. As a result, each
student could supplement their individual report with information
obtained from their peers.

Students were instructed to develop comparative charts as an
outcome of the first and second teaching group sessions. During the
first teaching groups session, each group created a chart that com-
pared design patterns within a single category. For example, groups
focusing on creational patterns produced comparisons among the
Singleton, Builder, and Prototype patterns. In the second teaching
groups session, students expanded their analysis to include com-
parisons across all nine patters from the three categories, namely,
creational, structural, and behavioral.

(%) Groups (n=12)

Criteria used by groups to compare patterns

Figure 6: Criteria used by groups to compare design patterns.

Teaching software design patterns: An experience using the Jigsaw classroom

Figure 6 shows the criteria that students’ groups selected to
analyze and compare design patterns in the same category and be-
tween categories. Twelve groups participated in the group sessions
in total (See groups settings in Figure 4). 92% (11/12) of the groups
considered pattern drawbacks as important comparison criteria.
The application and benefits were reported by 83% (10/12) of groups
for comparing patterns. Differences and similarities between pat-
terns were also considered as comparison criteria by 75% (9/12) and
67% (8/12) of groups, respectively. The purpose of the pattern was
addressed by 50% of the groups. Other criteria such as examples of
use, implementation, problem, operation, and flexibility of patterns
were used as comparative baseline by 25% (3/12) of the groups.

The cognitive level of understanding was incentivized among
students in the following way. Students engaged in peer discussions
in each group session and collaboratively produced summaries or
comparative charts of design patterns. During peer discussions,
students either explained the design patterns they had studied
or learned from their peers. This required them to organize their
thoughts, communicate using accessible language, and respond to
their colleagues’ questions. Such activities foster cognitive engage-
ment, as students were not merely recalling memorized content
but also interpreting and articulating their understanding to share
it with others.

5.1.3 Recalling. To understand the students’ recall of design pat-
terns, the test in Table 1 was executed ten days after the Jigsaw
activity concluded. No previous advice about the test was gave to
students. A total of 50 students individually answered the test and
all of them participated of the Jigsaw classroom sessions. The test
was executed in an in-person class.

The resultant grades for n=50 students were: average grade =
9/10 points, mean grade = 10/10 points, mode = 10/10 points, and
stdv = 1.27. Only one student did not pass the test with a grade of
4 points. Overall, it was possible to conclude that students’ recall
was satisfactory, as shown in Figure 7.

B Correctanswers [l Incorrect answers

100%
98%

75% 80%

=50)

% of students (n:

25%

Number o question

Figure 7: Students’ grades in the post-Jigsaw activity test.

For the test question #1, 94% (47/50) of the students were able
to identify the purpose of each pattern category. Three students
confused (interchanged) the goals of behavioral and structural pat-
terns.

SBES’25, September 22-26, 2025, Recife, PE

Identifying a pattern belonging to a specific category was also
well-recalled by the students, since 96% (48/50) of them correctly
answered question #2. Two students got this question wrong, asso-
ciating the Adapter or the Facade pattern with software behavior,
but not with its structure.

Additionally, from question #3, 94% (47/50) of the students cor-
rectly remembered implementation details about the Singleton pat-
tern. Few students (3/50) were confused about implementing this
pattern using multiple inheritance or a normal class constructor
that allows creating multiple instances of objects.

The functioning of the Facade pattern was correctly recalled by
98% (49/50) of the students. The student who failed the question #4
related this pattern with creating a unique object instance (i.e., the
purpose of the Singleton pattern).

Finally, question #5 assessed the capacity of the students to
understand the applicability of a specific pattern in an unseen
context. By presenting an unknown situation to the student, he/she
must understand the problem and select, from the known patterns,
the best option to solve such a problem. This question exercises
not only the students’ memory (recall) but also their analytical
skills for decision-making. 80% (40/50) of the students answered
it correctly, i.e., the most adequate pattern for the problem is the
Observer. 14% (7/50) related the new software context to the Chain
of Responsibility pattern, while 6% of the students answered that
the best option for the problem was the Mediator pattern.

5.2 Affective and psychomotor goals

Following the Jigsaw activity, a self-assessment questionnaire was
administered to the students. The purpose of this questionnaire was
to gather data on students’ perceptions of their own performance,
both during the individual preparation phase prior to class and
throughout the collaborative group interactions during the in-class
session. The questionnaire included the following five statements:

e (0Q1) The preparation of the design pattern under my respon-
sibility prior to the classroom activity was highly satisfac-
tory;

e (02)1felt very confident when explaining my assigned pat-
tern to my peers;

e (03) The participation of my group mates was highly satis-
factory;

e (Q4)IDbelieve I learned a great deal about design patterns I
was previously unfamiliar with through my peers’ explana-
tions; and

o (05)1 greatly appreciated this type of activity (Jigsaw) for
learning design patterns and prefer it over traditional lec-
tures.

Students answered each affirmation following the Likert scale: 1
- Totally disagree, 2 - Disagree, 3 - I do not know, 4 - Agree, and 5 -
Strongly agree.

Participation in the questionnaire was voluntary and did not
impact students’ grades. Twenty-two out of 50 students who partic-
ipated in the Jigsaw activity completed the questionnaire. Results
are depicted in Figure 8.

Regarding affective goals, our aim was to assess students’ open-
ness to learning new content from their peers, specifically, design
patterns they had not studied prior to class. Based on the responses

SBES’25, September 22-26, 2025, Recife, PE

Table 1: GoF Design Patterns - Single Choice Quiz

Garcés and Oliveira

Question | Description Answer Options Rationale

1 The GoF design patterns are grouped into three categories: | A) Creational patterns deal with code organization, structural pat- | This question checks if stu-
creational, structural, and behavioral. Which of the options | terns handle object creation, and behavioral patterns define how | dents understand the funda-
below correctly describes these categories? classes are organized into packages. mental classification of GoF

B) Creational patterns deal with object instantiation, structural | patterns and can distinguish
patterns handle the composition of classes and objects, and behav- | their purposes accurately.
ioral patterns define the interaction and communication between

objects.

C) Creational patterns define how objects interact, structural pat-

terns deal with multiple inheritance, and behavioral patterns assist

with code reuse.

D) Creational patterns are related to algorithm execution, struc-

tural patterns handle database modeling, and behavioral patterns

deal with data persistence.

2 Which of the following options corresponds to a behavioral | A) Singleton This question assessed stu-
pattern according to the GoF design pattern classification? B) Adapter dents’ ability to classify spe-

C) Mediator cific patterns correctly within
D) Facade the GoF categories.

3 Which of the following characteristics is essential for cor- | A) The use of inheritance to allow multiple controlled instances | This question evaluates under-

rectly implementing the Singleton design pattern? of the class. standing of a pattern’s core im-
B) A public constructor to allow the creation of multiple instances | plementation mechanism and
whenever needed. purpose.

C) A static method that returns a unique instance of the class and
a private constructor to restrict the creation of new objects.

D) The creation of a new object every time the instance is requested,
ensuring independence between calls.

4 The Facade design pattern is used to facilitate interaction | A) The Facade encapsulates object creation to ensure that only | This question checks whether
with complex systems. Which of the following best describes | one instance is created and reused throughout the system. students can identify the in-
the purpose and operation of this pattern? B) The Facade provides a simplified interface to a set of classes | tent and usage of the pattern

and subsystems, reducing complexity and making usage easier. within a system architecture.
C) The Facade allows new behaviors to be added dynamically to

objects without modifying their original structure.

D) The Facade defines a family of interchangeable algorithms that

can be selected dynamically at runtime.

5 In an online multiplayer game, there is a notification system | A) Observer This scenario-based question

that tracks player status. Whenever a player joins or leaves a | B) Mediator tests the students’ ability to
match, several parts of the system need to be updated auto- | C) Chain of Responsibility map real-world behavior to a
matically, such as: D) No behavioral pattern can be used pattern.
- The scoreboard, which must display the list of active players.
- The mini-map, which must add or remove the player’s posi-
tion.

- The chat system, which displays messages about player ac-

tivity.

Given this scenario, which behavioral design pattern is being

applied?

to questions Q3 and Q4, 95% of the students agree or strongly agreed
that their classmates’ explanations of the other patterns were sat-
isfactory. Furthermore, 90% of the students agreed that they were
able to learn effectively through the insights shared by their group
members.

With regard to the psychomotor aspect, responses to question
Q1 indicate that the majority of students (85%) actively engaged
in studying the design pattern for which they were responsible. In
addition to completing the individual report assigned by the in-
structor, some students also prepared slide presentations to support
their explanations to group members. The remaining 15% reported
feeling unsatisfied with their preparation prior to the in-class ses-
sion. Furthermore, by Q2, 90% of the students expressed a high level
of confidence in sharing their knowledge with peers on multiple
occasions.

5.3 Students’ opinions on the Jigsaw classroom

When asked, in Q5, about their perception of the Jigsaw activity
for learning design patterns, 85% of the students agreed that this
method was more effective than traditional lecture-based classes.
Meanwhile, 10% were unsure how to respond, and 5% expressed a
preference for lectures over cooperative learning approaches such
as Jigsaw.

The questionnaire also included an open-ended section in which
students could share their thoughts on the experience. According
to several responses, the most motivating aspect of the activity was
either explaining a pattern to peers or engaging with classmates to
gain a better understanding of the other patterns.

“T felt that the coolest part of the dynamic was the teaching aspect.
Even though this impression might come from a personal preference,
I noticed that the topics I retained best were the ones I actively en-
gaged with — either by teaching or by responding to more interactive
explanations that some classmates prepared.”

Teaching software design patterns: An experience using the Jigsaw classroom

SBES’25, September 22-26, 2025, Recife, PE

i
i

Q1 - The preparation of the

design pattern under my
responsibility prior to the 5% 5% 50 %
classroom activity was highly

satisfactory.

i
i
i
|
i
i

Q2 - | felt very confident
when explaining my assigned{0 % 10 % 35 %
pattern to my peers.

Q3 - The participation of my
groupmates was highly 10 % 5% 35%
satisfactory.

Q4 - | believe | learned a
great deal about design
patterns | was previously 10 % 10 % 25 %
unfamiliar with through my
peers' explanations.

Q5 - | greatly appreciated
this type of activity (Jigsaw)
for learning design patterns{0 % 5 % 10 % 20 %
and prefer it over traditional

lectures. i

[Totally disagree Disagree

Percentage of Responses

| do not know Agree - Strongly agree

Figure 8: Students’ self-assessment after the Jigsaw activity.

Students also shared suggestions for improving future Jigsaw
activities, focusing mainly on issues caused by student absences.
Some key areas for improvement include:

“T found this type of activity interesting, but I think it is necessary
some strategy to encourage more in-person participation from the
class.”

‘T liked the format, but the downside is that there’s a chance we
might miss out on some content if our classmates are absent from
class (which isn’t uncommon).”

‘T liked the activity, but unfortunately some people from my (pat-
tern) group were absent.”

Other comments pointed to a lack of time for discussing the
patterns in more detail. For example:

“I believe there was a lack of time for the second part of the activity.
I felt we had to rush through the explanations, which affected the time
for questions or clearing up doubts.”

6 Discussion

Educators interested in applying the Jigsaw classroom in software
engineering courses could consider the following perceived benefits
and drawbacks, and lessons learned from this experience.

6.1 Perceived benefits

The Jigsaw method is a cooperative learning strategy that fits
well for large student groups (over 40) [11, 40]. In addition to
the Jigsaw’s benefits reported by educational researchers [2, 11-
13, 25, 27, 36, 40], and presented in Section 2, observations from
this experience confirmed the high level of student engagement
during group sessions, with only a small number of students (2 out
of 50) adopting a more passive role in discussions.

As reported in Section 5, the Jigsaw method proved to be a prac-
tical instructional approach for fostering cognitive, affective, and
psychomotor skills across the entire class. Furthermore, based on

the author’s experience and in comparison with previous applica-
tions of active learning strategies in software engineering education
[7], the Jigsaw approach revealed latent student abilities that had
not been identified through other methods. For example, students’
body language often conveyed a sense of satisfaction when peers
actively engaged with the material they presented. Several students
also expressed to the instructor their appreciation for the opportu-
nity to teach their classmates, noting that they felt confident when
responding to questions.

6.2 Perceived limitations

The main limitation of using Jigsaw as a learning method for soft-
ware design patterns is related to the scope of Bloom’s cognitive
levels [3] explored with it. As designed in this experience, only
the remembering, understanding, and analysis levels could be exer-
cised.

When considering higher cognitive levels, e.g., applying, eval-
uating, and creating, the Jigsaw design and application increases
in complexity. In the case the educator consider such higher levels
as essential learning objectives for design patterns teaching, other
active learning methods could better option, for instance, problem-
based or project-based learning. Through those approaches the
instructor can incentivize students to deal with patterns in different
real or realistic software projects, for instance, by coding using pat-
terns, refactoring code by applying patterns, or selecting patterns
to solve a diversity of real problems.

Additionally, we can consider that design patterns is not a sub-
ject to study isolated in a specific course. Therefore, patterns can be
taught (reinforced) in different courses of the undergraduate cur-
riculum, for instance, in courses of object-oriented programming,
object-oriented analysis and design, software architecture, main-
tenance, refactoring, configuration management, software quality,
and integrated projects. Those courses are commonly spread over
undergraduate courses curriculum, then, enforcing this subject in

SBES’25, September 22-26, 2025, Recife, PE

diverse courses could improve the effectiveness of students patterns
learning.

6.3 Lessons Learned

Lesson #1: Division of topics and individual allocation of
contents to students. The subject or topic selected can be naturally
broken into distinct subtopics. Each student must get a unique
subtopic for individual preparation. This will facilitate the junction
and relationship of the jigsaw pieces for the students.

The allocation of subtopics to students must be fair. Each subtopic
must be the same (or very similar) complexity for all students and
must be adequate to their abilities.

Lesson #2: Contingency plan for students’ absenteeism.
Student absenteeism in in-person classroom sessions is a common
occurrence and must be anticipated when designing Jigsaw ac-
tivities. Instructors should develop contingency plans to address
potential disruptions caused by the absence of expert group mem-
bers. One effective strategy involves assigning the same subtopic
to multiple students within the expert groups. For example, if the
instructor intends to form four teaching groups, the same subtopic
can be assigned to six students within the expert groups. This re-
dundancy ensures that, even in the case of student absences, the
subtopic can still be adequately covered by the remaining expert
group members. Additionally, instructors may mitigate the impact
of absences by sharing the learning artifacts produced during group
sessions, such as slides, summaries, or reports, with the entire class,
thereby reinforcing the material and promoting continuity in the
learning process.

Lesson #3: Continuous observation of group members’ in-
teraction The instructor is required to circulate and observe group
interactions, mainly to clarify doubts, support teams on discussion
management, mainly to avoid that one student monopolizes the dis-
cussion, to support disagreement resolutions, or incentivize quiet
students to participate.

Lesson #4: Deal with unprepared students The instructor
must incentivize the students’ accountability for preparing the
individual topic, highlighting their role as ’specialists’ and the im-
portance of their participation in contributing to their colleagues’
learning. Moreover, it is important to suggest to them basic study-
ing material (e.g., book chapters, websites, etc.) for preparing the
subtopic. Another strategy is to allow the specialist in the same
subtopic to share their reports and discuss the subject to fill gaps in
their knowledge. Finally, a grade can be provided to individual re-
ports to increase the students’ dedication to preparing the material
for teaching the subtopic under their responsibility.

Lesson #5: Time control Controlling time during group dis-
cussions in a Jigsaw activity helps to keep the activity focused
and complete all planned group sessions. The total session time
must consider the time for each student’s intervention, new group
formation (moving from one group to another), doubt resolution,
reflection, summarization, artifact production, and resolution of un-
foreseen situations. Ideally, in each group, roles can be assigned to
students, for instance, for taking notes, time keeping, intervention
orchestrating, or communicating with the instructor.

Lesson #6: Prepare materials previously: The instructor must
produce artifact templates for students to use during discussion

Garcés and Oliveira

sessions. Ideally, the material can be physically printed to avoid
students’ distractions by using notebooks, tablets, or smartphones.
Moreover, it is important to explain to students the Jigsaw dynamics
before starting the activity, as this will avoid questions not related
to the subject being learn.

Lesson #7: Select the right physical space for group for-
mation Students must be able to move through the physical space
without problems. Set the initial space for groups, explaining where
each student must sit in the different group sessions. This can be
done in a projected slide with the list of group members visible to all
students. Additionally, the physical space should be selected with
the aim of preventing groups from disturbing each other during
parallel discussions.

7 Conclusion

The application of the Jigsaw method in software engineering educa-
tion remains relatively underexplored. This report offers educators
in this area a case study to inspire their instructional design based
on Jigsaw.

Beyond design patterns, the Jigsaw method seems practical for
teaching other software engineering topics that can be decomposed
into subtopics and benefit from group discussions. The Jigsaw’s
collaborative structure can allow a more profound understanding
through active student engagement and knowledge collaborative
construction.

While the jigsaw approach supports the development of founda-
tional knowledge and collaborative skills, higher-order cognitive
objectives in teaching software design patterns may require com-
plementary instructional strategies. For instance, project-based
Learning (PjBL) can be particularly effective when integrated into
software maintenance courses, where students evaluate and apply
design patterns during refactoring activities [22, 23]. Such pedagog-
ical combinations may better support critical thinking, synthesis,
and practical application skills, ultimately enhancing the overall
learning experience in software engineering education.

ARTIFACT AVAILABILITY

Artifacts related to data collection and analysis used in this study
are available in [16].

ACKNOWLEDGMENTS

The author gratefully acknowledges the support of the Brazilian
National Council for Scientific and Technological Development
(CNPq) (Grant number: 440425/2024-7), and the PRPI-USP (Grant
number: 22.1.09345.01.2).

REFERENCES

[1] Deniz Akdur. 2022. Analysis of Software Engineering Skills Gap in the Industry.
ACM Trans. Comput. Educ. 23, 1, Article 16 (Dec. 2022), 28 pages. https://doi.org/
10.1145/3567837

[2] V.1 Akpan, U. A. Igwe, I. C. Mpamah, and C. O. Okoro. [n. d.]. Social Construc-
tivism: Implications on Teaching and Learning. https://www.eajournals.org/wp-
content/uploads/Social-Constructivism.pdf. Accessed: 2025-05-01.

[3] Lorin W. Anderson and David R. Krathwohl (Eds.). 2001. A Taxonomy for Learning,
Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives.
Allyn Bacon, Boston, MA. Part of the Pearson Education Group.

[4] E. Aronson. 1978. The Jigsaw Classroom. SAGE Publications. https://books.
google.com.br/books?id=EUOfAAAAMAA]

https://doi.org/10.1145/3567837
https://doi.org/10.1145/3567837
https://www.eajournals.org/wp-content/uploads/Social-Constructivism.pdf
https://www.eajournals.org/wp-content/uploads/Social-Constructivism.pdf
https://books.google.com.br/books?id=EUOfAAAAMAAJ
https://books.google.com.br/books?id=EUOfAAAAMAAJ

Teaching software design patterns: An experience using the Jigsaw classroom

Elliot Aronson and Shelley Patnoe. 2011. Cooperation in the Classroom: The Jigsaw
Method (3 ed.). Pinter & Martin, London.

Luis Berdun, Analia Amandi, and Marcelo Campo. 2011. An intelligent tutor
for teaching software design patterns. Computer Applications in Engineering
Education 22, 4 (2011), 583 — 592. https://doi.org/10.1002/cae.20582 Cited by: 5;
All Open Access, Green Open Access.

blind author. blind year. blind title. In blind conference (blind location). blind
publisher, blind city, 00000. https://doi.org/blinddoi

Grady Booch. 2018. The History of Software Engineering. IEEE Software 35, 5
(2018), 108-114. https://doi.org/10.1109/MS.2018.3571234

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. 1996. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
John Wiley & Sons.

[10] Jie-Qi Chen and Yu Huang. 2024. International Journal of STEM Education.

International Journal of STEM Education 11 (2024), 36. https://doi.org/10.1186/
540594-024-00495-2

Deepti Chopra, Gagandeep Kwatra, Bharti Bhandari, Jaspreet K. Sidhu, Jayant Rai,
and C.D. Tripathi. 2023. Jigsaw Classroom: Perceptions of Students and Teachers.
Medical Science Educator 33, 4 (2023), 853 — 859. https://doi.org/10.1007/s40670-
023-01805-z Cited by: 5; All Open Access, Green Open Access.

Fatemeh Darabi, Zahra Karimian, and Alireza Rohban. 2025. Putting the pieces
together: comparing the effect of jigsaw cooperative learning and lecture on
public health students’ knowledge, performance, and satisfaction. Interactive
Learning Environments 33, 1 (2025), 495 - 512. https://doi.org/10.1080/10494820.
2024.2351157

Océane Cochon Drouet, Vanessa Lentillon-Kaestner, and Nicolas Margas. 2023.
Effects of the Jigsaw method on student educational outcomes: systematic review
and meta-analyses. Frontiers in Psychology 14 (2023). https://doi.org/10.3389/
fpsyg.2023.1216437

Eric Freeman and Elisabeth Robson. 2004. Head First Design Patterns. O’Reilly
Media, Inc.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional.

Lina Garcés. 2025. Dataset Teaching software design patterns: An experience us-
ing the Jigsaw classroom. XXXIX Simposio Brasileiro de Engenharia de Software
(SBES), Recife, PE, Brazil. https://doi.org/10.5281/zenodo.16161087 Data set.
Vahid Garousi, Gérkem Giray, Eray Tiiziin, Cagatay Catal, and Michael Felderer.
2019. Aligning software engineering education with industrial needs: A meta-
analysis. Journal of Systems and Software 156 (2019), 65-83. https://doi.org/10.
1016/j.jss.2019.06.044

Cagdas Evren Gerede. 2024. Are We Asking the Right Questions to ChatGPT for
Learning Software Design Patterns? UBMK 2024 - Proceedings: 9th International
Conference on Computer Science and Engineering (2024), 1092 — 1097. https:
//doi.org/10.1109/UBMK63289.2024.10773596 Cited by: 0.

Paul Gestwicki and F. Sheldon Sun. 2008. Teaching design patterns through
computer game development. ACM Journal on Educational Resources in Computing
(JERIC) 8, 1 (March 2008), 2:1-2:21. https://doi.org/10.1145/1348713.1348715
Masita Abdul Jalil, Nurul Azarina Abd. Rahman, Noraida Hj. Ali, Shahrul Az-
man Mohd Noah, Noor Maizura Mohamad Noor, and Fatihah Mohd. 2020. Devel-
opment of A Learning Model on Software Design Pattern Selection for Novice
Developers. ACM International Conference Proceeding Series (2020), 108 — 113.
https://doi.org/10.1145/3383923.3383966 Cited by: 1.

Zoran Jeremic, Jelena Jovanovic, and Dragan Gasevic. 2011. An environ-
ment for project-based collaborative learning of software design patterns.
International Journal of Engineering Education 27, 1 PART 1 (2011), 41 —
51. https://www.scopus.com/inward/record.uri?eid=2-s2.0-79958847658&
partnerID=40&md5=a38b2018c8be90caa7ea05704da3b118 Cited by: 15.
Guillermo Jiménez-Diaz, Mercedes Gomez-Albarran, and Pedro A. Gonzalez-
Calero. 2008. Teaching GoF Design Patterns through Refactoring and Role-Play.
International Journal of Engineering Education 24, 4 (2008), 717-728. https:
//www.ijee.ie/articles/Vol24-4/s9_Ijee2082.pdf

[23] Joshua Kerievsky. 2004. Refactoring to Patterns. Pearson Higher Education.

Amruth N. Kumar, Rajendra K. Raj, Sherif G. Aly, Monica D. Anderson, Brett A.
Becker, Richard L. Blumenthal, Eric Eaton, Susan L. Epstein, Michael Goldweber,
Pankaj Jalote, Douglas Lea, Michael J. Oudshoorn, Marcelo Pias, Susan Reiser,
Christian Servin, Rahul Simha, Titus Winters, and Qiao Xiang. 2023. Computer
Science Curricula 2023. ACM Press, IEEE Computer Society Press, and AAAI
Press, New York, NY, USA. https://doi.org/10.1145/3664191

Soohyun Nam Liao, William G. Griswold, and Leo Porter. 2018. Classroom
experience report on jigsaw learning. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education (Larnaca,
Cyprus) (ITiCSE 2018). Association for Computing Machinery, New York, NY,
USA, 302-307. https://doi.org/10.1145/3197091.3197118

Alan RL. Loyola Alvarez and Segundo E. Cieza-Mostacero. 2024. Serious Video
Game to Improve the Learning of Software Design Patterns. TEM Journal 13, 3
(2024), 2557 — 2567. https://doi.org/10.18421/TEM133-81 Cited by: 0; All Open
Access, Gold Open Access.

[27

(28]

[29

'w
=

[31

[32

[33

&
=

[35

[36

S
=

(38]

[39

[40

[42

SBES’25, September 22-26, 2025, Recife, PE

Hira Moin, Sadaf Majeed, Tatheer Zahra, Sarim Zafar, Amna Nadeem, and Sidra
Majeed. 2024. Assessing the impact of jigsaw technique for cooperative learning
in undergraduate medical education: merits, challenges, and forward prospects.
BMC Medical Education 24, 1 (2024). https://doi.org/10.1186/s12909-024-05831-2
Cited by: 2; All Open Access, Gold Open Access, Green Open Access.

G. M. Novak. 2011. Just-in-time teaching. New Directions For Teaching & Learning
2011, 128 (2011), 63-73.

Damla Oguz and Kaya Oguz. 2019. Perspectives on the Gap Between the Software
Industry and the Software Engineering Education. IEEE Access 7 (2019), 117527—
117543. https://doi.org/10.1109/ACCESS.2019.2936660

Sofia Ouhbi and Nuno Pombo. 2020. Software Engineering Education: Chal-
lenges and Perspectives. In 2020 IEEE Global Engineering Education Conference
(EDUCON). 202-209. https://doi.org/10.1109/EDUCON45650.2020.9125353

Jose Antonio Pow-Sang. 2015. Replacing a traditional lecture class with a jigsaw
class to teach analysis class diagrams. Proceedings of 2015 International Conference
on Interactive Collaborative Learning, ICL 2015 (2015), 389 — 392. https://doi.org/
10.1109/ICL.2015.7318059 Cited by: 8.

José Antonio Pow-Sang. 2017. Experiences using the Jigsaw learning technique to
teach IFPUG function points. EDUNINE 2017 - IEEE World Engineering Education
Conference: Engineering Education - Balancing Generalist and Specialist Formation
in Technological Carriers: A Current Challenge, Proceedings (2017), 76 — 79. https:
//doi.org/10.1109/EDUNINE.2017.7918186 Cited by: 3.

José Antonio Pow-Sang Portillo and Pedro G. Campos. 2009. The Jigsaw Tech-
nique: Experiences Teaching Analysis Class Diagrams. In 2009 Mexican Interna-
tional Conference on Computer Science. 289-293. https://doi.org/10.1109/ENC.
2009.31

Yilong Pu, Libing Zhang, and Heng Luo. 2024. Using Jigsaw Pedagogy to
Promote Learning in Unplugged Information Technology Class: An Experi-
mental Study. Proceedings - 2024 6th International Conference on Computer
Science and Technologies in Education, CSTE 2024 (2024), 347 - 351. https:
//doi.org/10.1109/CSTE62025.2024.00072 Cited by: 0.

Alexander Shvets. 2021. Catalogo dos Padrdes de Projeto. https://refactoring.
guru/pt-br/design-patterns/catalog Accessed: 2025-05-03.

Helena Silva, José Lopes, Eva Morais, and Caroline Dominguez. 2023. Fostering
Critical and Creative Thinking through the Cooperative Learning Jigsaw and
Group Investigation. International Journal of Instruction 16, 3 (2023), 261 — 282.
https://doi.org/10.29333/iji.2023.16315a Cited by: 4; All Open Access, Gold Open
Access.

Sociedade Brasileira de Computacio. 2017. Referenciais de Formagdo para os
Cursos de Graduagao em Computagao 2017. Sociedade Brasileira de Computacio,
Porto Alegre, RS, Brasil. https://books-sol.sbc.org.br/index.php/sbc/catalog/
view/134/586/904

Ye Tao, Guozhu Liu, Jiirgen Mottok, Rudi Hackenberg, and Georg Hagel. 2015.
Just-in-Time-Teaching experience in a Software Design Pattern course. In 2015
IEEE Global Engineering Education Conference (EDUCON). 915-919. https://doi.
org/10.1109/EDUCON.2015.7096082

Marco Tulio Valente. 2020. Engenharia de Software Moderna: Principios e Praticas
para Desenvolvimento de Software com Produtividade. Editora Independente.
https://engsoftmoderna.info/ Accessed: 2025-05-03.

Eva Vives, Céline Poletti, Anais Robert, Fabrizio Butera, and Pascal Huguet.
2024. Learning With Jigsaw: A Systematic Review Gathering All the Pieces of
the Puzzle More Than 40 Years Later. Review of Educational Research (2024).
https://doi.org/10.3102/00346543241230064 Cited by: 3; All Open Access, Green
Open Access.

Chad Williams and Stan Kurkovsky. 2017. Raspberry Pi creativity: A student-
driven approach to teaching software design patterns. Proceedings - Frontiers in
Education Conference, FIE 2017-October (2017), 1 - 9. https://doi.org/10.1109/FIE.
2017.8190735 Cited by: 5.

Zehui Zhan, Tingting Li, and Yaner Ye. 2024. Effect of jigsaw-integrated task-
driven learning on students’ motivation, computational thinking, collaborative
skills, and programming performance in a high-school programming course.
Computer Applications in Engineering Education 32, 6 (2024). https://doi.org/10.
1002/cae.22793 Cited by: 1.

https://doi.org/10.1002/cae.20582
https://doi.org/blind doi
https://doi.org/10.1109/MS.2018.3571234
https://doi.org/10.1186/s40594-024-00495-2
https://doi.org/10.1186/s40594-024-00495-2
https://doi.org/10.1007/s40670-023-01805-z
https://doi.org/10.1007/s40670-023-01805-z
https://doi.org/10.1080/10494820.2024.2351157
https://doi.org/10.1080/10494820.2024.2351157
https://doi.org/10.3389/fpsyg.2023.1216437
https://doi.org/10.3389/fpsyg.2023.1216437
https://doi.org/10.5281/zenodo.16161087
https://doi.org/10.1016/j.jss.2019.06.044
https://doi.org/10.1016/j.jss.2019.06.044
https://doi.org/10.1109/UBMK63289.2024.10773596
https://doi.org/10.1109/UBMK63289.2024.10773596
https://doi.org/10.1145/1348713.1348715
https://doi.org/10.1145/3383923.3383966
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79958847658&partnerID=40&md5=a38b2018c8be90caa7ea05704da3b118
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79958847658&partnerID=40&md5=a38b2018c8be90caa7ea05704da3b118
https://www.ijee.ie/articles/Vol24-4/s9_Ijee2082.pdf
https://www.ijee.ie/articles/Vol24-4/s9_Ijee2082.pdf
https://doi.org/10.1145/3664191
https://doi.org/10.1145/3197091.3197118
https://doi.org/10.18421/TEM133-81
https://doi.org/10.1186/s12909-024-05831-2
https://doi.org/10.1109/ACCESS.2019.2936660
https://doi.org/10.1109/EDUCON45650.2020.9125353
https://doi.org/10.1109/ICL.2015.7318059
https://doi.org/10.1109/ICL.2015.7318059
https://doi.org/10.1109/EDUNINE.2017.7918186
https://doi.org/10.1109/EDUNINE.2017.7918186
https://doi.org/10.1109/ENC.2009.31
https://doi.org/10.1109/ENC.2009.31
https://doi.org/10.1109/CSTE62025.2024.00072
https://doi.org/10.1109/CSTE62025.2024.00072
https://refactoring.guru/pt-br/design-patterns/catalog
https://refactoring.guru/pt-br/design-patterns/catalog
https://doi.org/10.29333/iji.2023.16315a
https://books-sol.sbc.org.br/index.php/sbc/catalog/view/134/586/904
https://books-sol.sbc.org.br/index.php/sbc/catalog/view/134/586/904
https://doi.org/10.1109/EDUCON.2015.7096082
https://doi.org/10.1109/EDUCON.2015.7096082
https://engsoftmoderna.info/
https://doi.org/10.3102/00346543241230064
https://doi.org/10.1109/FIE.2017.8190735
https://doi.org/10.1109/FIE.2017.8190735
https://doi.org/10.1002/cae.22793
https://doi.org/10.1002/cae.22793

	ABSTRACT
	1 Introduction
	2 Background
	2.1 Software design patterns
	2.2 The Jigsaw classroom
	2.3 Jigsaw in computer sciences and software engineering education

	3 Teaching of software design patterns
	4 Activity Design
	4.1 Learning objectives
	4.2 Jigsaw activity design
	4.3 Learning assessment

	5 Activity Results
	5.1 Cognitive goals
	5.2 Affective and psychomotor goals
	5.3 Students' opinions on the Jigsaw classroom

	6 Discussion
	6.1 Perceived benefits
	6.2 Perceived limitations
	6.3 Lessons Learned

	7 Conclusion
	REFERENCES

