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Abstract: Background/Objectives: There is a lack of empirical studies of out-of-pocket health
expenditures associated with dyslipidemias, which are major cardiovascular risk factors, especially in
underrepresented admixed populations. The study investigates associations of health costs with lipid
traits, GWAS-derived genetic risk scores (GRSs), and other cardiometabolic risk factors. Methods:
Data from the observational cross-sectional 2015 ISA-Nutrition comprised lifestyle, environmental
factors, socioeconomic and demographic variables, and biochemical and genetic markers related
to the occurrence of cardiometabolic diseases. GWAS-derived genetic risk scores were estimated
from SNPs previously associated with lipid traits. There was phenotypic and genetic information
available for 490 independent individuals, which was used as inputs for random forests and logistic
regression to explain private quantitative and categorical health costs. Results: There were significant
correlations between GRSs and their respective lipid phenotypes. The main relevant variables across
techniques and outcome variables comprised income per capita, principal components of ancestry,
diet quality, global physical activity, inflammatory and lipid markers, and LDL-c GRS and non-HDL-c
GRS. The area under the ROC curve (AUC) of quartile-based categorical health expenditure without
GRSs was 0.76. GRSs were not significant for this categorical outcome. Conclusions: We present
an original contribution to the investigation of determinants of private health expenditures in a
highly admixed population, providing insights on associations between genetic and socioeconomic
dimensions of health in Brazil. Ancestry information was also among the main factors contributing
to health expenses, providing a novel view of the role of genetic ancestry on cardiometabolic risk
factors and its potential impact on health costs.

Keywords: out-of-pocket healthcare expenditures; dyslipidemia; genetic risk score; GWAS; random forest

1. Introduction

Cardiovascular diseases (CVDs) are among the major causes of mortality worldwide,
resulting in premature deaths, loss of quality of life, and a substantial socioeconomic toll
on individuals, communities, and national health systems [1]. For instance, the burden of
CVDs in the USA has been estimated to be approximately USD 820 billion by 2030 [2].

Dyslipidemias, characterized by alterations in lipid concentrations, are significant risk
factors associated with the occurrence of CVDs, primarily due to their involvement in the
pathophysiology of atherosclerosis [3,4]. CVDs are not only highly prevalent in several
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countries, with low awareness, control, and treatment rates, but also result in a substantial
burden to national health systems [5-7].

In the context of the Brazilian health system, there is a lack of empirical studies
addressing the healthcare costs associated with dyslipidemias. A major part of the economic
literature focuses primarily on analyzing healthcare costs and the economic burden of other
morbidities, e.g., obesity and associated risk factors, which also comprise conditions related
to CVDs [8,9]. Changes in modifiable risk factors, encompassing lifestyle characteristics,
may reduce the impacts of dyslipidemias in societies worldwide [10,11].

In addition, further evidence on the role of additional risk factors linked to genetic
variation has been extensively demonstrated by candidate gene, heritability, and genome-
wide association studies (GWASs) employing single-nucleotide polymorphisms (SNPs)
underlying lipid profiles and dyslipidemias [12-17]. Importantly, previous investigations
have shown the relationship between genetic variation and healthcare outcomes [18,19]. For
instance, positive associations between body mass index (BMI), polygenic risk score, and
health expenditure were found [18]. Yet, there is an absence of studies on specific pathways
and effects of each of these genetic markers on lipid traits and associated healthcare costs.
This gap becomes even deeper when considering that populations of admixed ancestries
are often underrepresented in these investigations.

Recently, in the context of the Brazilian population, several novel loci were found
to be significantly associated with serum lipid traits by a genome-wide association study
(GWAS) [17]. However, the extent to which these associations might have an ultimate
impact on health costs linked to alterations in the lipid profile remains an unexplored
question. Therefore, we aimed to perform an exploratory study to evaluate the relationship
between out-of-pocket (OOP) health expenditures, lipid traits, GWAS-derived genetic
risk scores, genetic ancestry, and other common cardiometabolic risk factors in a highly
admixed population from Brazil. The main hypothesis is that lipid profile is associated
with OOP healthcare expenditures and that using genetic variation significantly associated
with lipids through genetic risk scores provides a better understanding of these costs.

2. Material and Methods
2.1. Study Design and Population

This investigation used data from the observational cross-sectional survey “2015
Health Survey of Sao Paulo with Focus on Nutrition (2015 ISA-Nutrition)”, a population-
based study with a probabilistic sample of individuals living in the urban area of Sao
Paulo (SP). Sao Paulo is the largest city in South America and Brazil, and it has the greatest
contribution to the country’s Gross Domestic Product (GDP) according to the Brazilian
Institute of Geography and Statistics (IBGE). The 2015 ISA-Nutrition aimed at the evalua-
tion of lifestyle and environmental modifiable factors, socioeconomic and demographic
variables, and biochemical and genetic markers related to the occurrence of cardiometabolic
diseases. It was approved by the Research Ethics Committee of the School of Public Health
from the University of Sao Paulo (#43838621.7.0000.5421 and #30848914.7.0000.5421 for
the 2015 ISA-Nutrition). Previously from data collection, informed written consent was
appropriately obtained from 2015 ISA-Nutrition participants. Further details on the study
design and data collection procedures can be found elsewhere [20].

Individuals included in the present study were selected based on two-stage cluster
sampling stratified by conglomerates (urban census tracts and households), to ensure rep-
resentativeness at the population level. Participants were interviewed in their households
by trained researchers in 2015, using structured questionnaires within the ISA-Nutrition
survey to obtain comprehensive information on demographic, socioeconomic, lifestyle, and
other characteristics. Adopting the criteria set forth by both the World Health Organization
(WHO) and the Brazilian Statute for Children and Adolescents, participants were catego-
rized into three age groups: adolescents were defined as individuals aged 12 to 19, adults as
those aged 20 to 59, and the elderly as individuals aged 60 years and older. A subsample of
901 participants was randomly selected for the collection of venous blood samples allowing
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the assessment of biochemical markers, nutritional status, and genetic biomarkers. After the
exclusion of individuals with familial relatedness and missing data, biochemical, genotypic,
sociodemographic, economic, and lifestyle information was available for 667 individuals.

2.2. Healthcare Expenditure and Socioeconomic and Demographic Variables

Household income per capita in adult equivalents, used for fractional classification
of individuals of the sample according to their socioeconomic status in the population,
was estimated through the calculation of adult equivalents in the household with the
following equation:

en = (Ah ¢ + Kh) °

Ah is the number of adult individuals (older than 14 years of age) in the house-
hold h; and Kh is the number of individuals aged lesser than 14 years in the household.
The parameters ¢ and 6 are set at 0.75, according to Deaton’s original weight proposal
(1997) [21], to avoid underestimation of income effects based on the adoption of household
income per capita, due to the lower requirements attributable to younger individuals in the
domestic unit.

Herein, we evaluated OOP healthcare expenditures, also using the terminology “pri-
vate healthcare costs/expenditures” or “private costs/expenditures” for convenience. Thus,
the private healthcare expenditure variable refers to the disbursements self-reported by
individuals on medical consultations, consultations with other healthcare professionals,
medications, hospitalizations, tests, orthotics and prosthetics, dental consultations, private
health insurance, and other healthcare expenses. The values were self-reported for the last
30 days prior to the interview and summed to obtain the total amount spent on healthcare.

The variable corresponding to private healthcare expenditures was also transformed
into natural logarithm to allow comparison with other indicators and converted into tertiles
and quartiles to allow estimation of logistic models. We used both tertiles and quartiles
to have a more comprehensive measure of health expenditures. The economic variables
evaluated are described as follows:

e Natural logarithm transformation—Due to zero inflation (a considerable number
of individuals had no expenses associated with private health services), 0.001 were
added to all original values of the variable so as to perform logarithm transformations.
Importantly, throughout the study, we refer to “original variable” as the one with the
extra 0.001.

Logarithm with base 10.

Two categories considering quartile distribution, i.e., values above the 2nd quartile
(median) were defined as high expenditure, while values equal to or below the 2nd
quartile were defined as low.

e Two categories considering its tertile distribution (combining 1st and 2nd tertiles in
one category named low cost and the 3rd tertile considered high cost).

e Normalization of OOP costs by maximal and minimal values using the formula,
Ny = (Oy — min(Oy)/(max(Oy) — min(Oy)); where Ny corresponds to the normalized
health expenditure, Oy to the original health expenditure, and min(Oy) and max(Qy)
correspond to the minimum and maximum values of the original health expenditure,
respectively.

Other socioeconomic and demographic variables included sex, age, age group, ethnic-
ity, and educational attainment. The age group (adolescents, adults, and older adults) was
defined as mentioned in the previous section. Ethnicity (Black, White, Asian, Brown/Pardo,
Indigenous, and others) was self-reported according to the Brazilian Census categories.
Education attainment was measured using an adequacy score ranging from 0 to 1, which
accounted for the expected years of education considering the individual’s age. The score
was calculated by comparing the self-declared education level to the expected level of
education for the individual’s age, considering the entry age in the Brazilian educational



Healthcare 2024, 12, 2275

40f18

system. Scores closer to 1 represent individuals with higher educational attainment per age,
and scores closer to 0 represent individuals with lower educational attainment per age.

2.3. Biological and Cardiometabolic Characteristics

We used comprehensive information on variables belonging to one of the follow-
ing clusters:

o Inflammation: inflammatory biomarkers such as interleukin (IL)-13, IL-6, IL-10,
C-reactive protein (CRP), monocyte chemoattractant protein 1 (MCP-1), and tumor
necrosis factor-alpha (TNF-«).

e  Glucose metabolism: insulin, fasting blood glucose concentrations, and absence or
presence of insulin resistance according to the homeostasis model assessment of insulin
resistance (HOMA-IR) [22].

e  Anthropometry: body mass index (BMI), waist circumference, and waist circumference
to height ratio). Individuals were categorized into presence or absence of overweight
(including overweight [BMI > 25-29.9] and obesity [BMI > 30]) using BMI, according
to age group.

Cardiovascular: systolic and diastolic blood pressure.

Lifestyle characteristics (alcohol and tobacco use, diet quality, and physical activity).
Lipid profile: serum concentrations of HDL-c, LDL-c, TGL, HDL-c/LDL-c, total
cholesterol, VLDL-c, and non-HDL-c.

Diet quality was measured by the Revised Brazilian Healthy Eating Index (BHEI-R),
which is derived from twelve dietary components that comprise total and whole fruit,
total vegetables, dark green and orange vegetables and legumes, whole grains, total grains,
milk, and dairy products, meats, eggs and legumes, oils, saturated fat, sodium, and a
component related to the consumption of total calories from solid fat, alcohol and added
sugar (SOFAAS). More information on the assessment of these components and other
variables is described elsewhere [16,20,23].

2.4. Genetic Data and Risk Scores

Using data from a recent GWAS of quantitative lipid traits performed in the same
cohort [17], we derived genetic scores that are linear combinations between the significant
SNP effects and their respective genotypes. Genotype information for each marker was
codified as 0, 1 and 2 for the presence of their respective minor allele and used as a discrete
variable in the GWAS association analysis. Genotype calling was previously performed
using Axiom™ 2.0 Precision Medicine Research Array in Thermo Fisher Scientific Labo-
ratory (Affymetrix Inc., Santa Clara, CA, USA) [24]. The GWAS was performed using the
genetic information of 330,656 SNPs for 667 unrelated individuals, with Hardy—-Weinberg
Equilibrium (P) > 10-5 and MAF > 0.05 filters.

Hence, for each of the seven lipid traits of interest, there were genetic scores available
for further association analysis (Supplementary Table S1). For more details on sample
collection, DNA extraction, quantification, and quality control, and GWAS design, refer to
Leite et al. [17].

2.5. Descriptive Statistics and Modeling of Healthcare Costs

The variables included in the investigation were used exactly as described in the
previous subsections, except for the lipid traits. Particularly, since the genetic data to
be used in this investigation were derived from models whose response variables (lipid
traits) had to be transformed to meet statistical modeling assumptions, we employed the
transformed version of these traits throughout the analysis. The Rank-Based Normal
Inverse Transformation was the one chosen because it has been often and suitably used for
modeling approaches that include genetic variants [16,17,25-27].

Since most other variables did not have a normal distribution according to the Shapiro—
Wilk test, continuous variables were presented in median and interquartile range. Categori-
cal variables were presented in frequency and 95% confidence interval for proportions.



Healthcare 2024, 12, 2275

50f18

Several models were tested according to the nature of the outcome variable, i.e., health
expenditure. These models included linear regression and generalized linear model with
gamma link function, and the zero-inflated quantile approach, for quantitative variables.
A logistic regression model for both the quartile- and tertile-derived categorical private
health cost variables was used, and its accuracy was evaluated by the area under the ROC
curve (AUC).

Models were adjusted for all the covariates belonging to the six non-genetic clusters
mentioned previously, including the 1st and 2nd principal components of ancestry as well as
the genetic risk scores derived from the GWAS results. The first two principal components
of ancestry were used for controlling population stratification along with other important
base covariates such as sex, age, and body mass index (BMI). For variable selection, the
Stepwise method was used, and significance was set at & = 0.05. Model diagnostics of
linear models was performed using the Shapiro-Wilks test and the Breusch-Pagan test for
normality and homoscedasticity, respectively.

Furthermore, we employed the machine learning technique random forest (RF) as
a second tool to identify genetic and non-genetic variables implicated in health costs.
The number of trees in the RFs was set to 1000, and the relevance of each variable was
evaluated by either the percentage increase in mean squared error (MSE) for quantitative
response variables, or the decrease in Gini index for categorical variables. The former
measure corresponds to the increase in the mean squared error (i.e., the mean squared
difference between the observed and the predicted outcome across all trees) due to the
exclusion of a given variable. The latter describes the decrease in node impurity (Gini
index), which measures the proportion of misclassified observations. A lower Gini index
indicates more accurate classification, i.e., the inclusion of more relevant variables leads to
a higher decrease in the Gini index.

All analyses, graphs, and tables were performed and generated with R 4.3.0, and the
significance level was set at 0.05. A visual depiction of the study framework is provided
in Figure 1.

Isa Nutrition 2015
Study (N= 667)

n_p . Cardiomet
Lipid traits abolic risk
Genetic

factors +
Risk
Scores

PC of

ancestry
E Study

Explanatory X .
Q variables Regression with Random
Stepwise selection Forest
@ Method

<>  Outcome

Linear/Logistic

?

OP health
expenditures

Figure 1. Study framework presenting data set, explanatory variables, method, and outcome under
investigation, inquiring whether there are associations between the analyzed variables.

3. Results
3.1. Descriptive Statistics and Correlation Between Lipid Traits and GWAS-Derived Genetic
Risk Scores

In order to provide initial insights on the out-of-pocket health expenditure and preva-
lences of major cardiometabolic risk factors, the descriptive statistics of the data set were
calculated and presented in Table 1. The median value of OOP health expenditure and
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household income were BRL 154.00 and BRL 828.00, respectively. Overall, 49% and 33%
of the sample had high health expenditures based on quartile and tertiles, respectively.
There were moderate-to-high prevalences of major cardiometabolic risk factors such as
dyslipidemia, insulin resistance, and overweight.

Table 1. Descriptive statistics of the ISA 2015 data set for modeling analysis of OOP health expenditures.

Characteristic Total N =490 *
BHEI-R 66 (61, 71)
CRP (mg/L) 0.29 (0.10, 0.78)
TNF-« (pg/mL) 11.1 (8.2,14.3)
MCP1 (pg/mL) 278 (214, 345)
IL6 (pg/mL) 1(1,4)
IL1B (pg/mL) 1.18 (0.91, 1.52)
IL10 (pg/mL) 4.3(3.1,7.0)
Overweight
No 268 (55%)
Yes 222 (45%)
Waist circumference (cm) 91 (78, 103)
Waist circumference/height 0.56 (0.47, 0.63)
SBP 125 (115, 140)
DBP 76 (68, 83)
Ln health expenditure 5.0 (—6.9,6.4)
Health expenditure (BRL) 154 (0, 608)

Education score

0.75 (0.38, 1.00)

Household income (BRL) 828 (521, 1536)
Hypolipidemic drug use
No 449 (92%)
Yes 41 (8.4%)
Ethnicity
Yellow 1 (0.2%)
White 265 (54%)
Indigenous 1(0.2%)
Other 22 (4.5%)
Brown (Pardo) 154 (31%)
Black 47 (9.6%)
Age group
Adolescent 145 (30%)
Adult 163 (33%)
Older adult 182 (37%)
Alcohol use
No 361 (74%)
Yes 129 (26%)
Smoking
Former smoker 90 (18%)
Smoker 58 (12%)
Never 342 (70%)
TGL (mg/dL) 100 (74, 143)
Total cholesterol (mg/dL) 169 (140, 200)
Non-HDL-c (mg/dL) 123 (96, 155)
LDLc (mg/dL) 101 (78, 126)
HDL-c (mg/dL) 43 (35, 53)
VLDLc (mg/dL) 20 (15, 29)
LDL-c/HDL-c 241 (1.66,3.21)
DLP adj.
No 168 (34%)
Yes 322 (66%)
PC1 —0.003 (—0.009, 0.002)
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Table 1. Cont.

Characteristic Total N =490 *
PC2 —0.013 (—0.018, —0.010)
Sex
Female 225 (46%)
Male 265 (54%)
Age (years) 49 (18, 64)
Diabetes
No 415 (85%)
Yes 75 (15%)
HOMA-IR 2.79 (1.82,4.25)
Insulin resistance
No 247 (50%)
Yes 243 (50%)
Insulin (WUI/mL) 11 (8,17)
Glucose (mg/dL) 95 (88, 105)
Global PA (min/week) 440 (170, 1154)
Leisure PA (min/week) 0 (0, 135)
Quartile-based health expenditure
Low 248 (51%)
High 242 (49%)
Tertile-based health expenditure
Low 330 (67%)
High 160 (33%)
Normalized health expenditure 154 (0, 608)

Inv total cholesterol
Inv TGL
Inv HDL-c
Inv LDL-c
Inv LDL-c/HDL-c
Inv VLDL-c
Inv non-HDL-c
Inv BHEI-R
Log10 health expenditure
HDL-c GRS
—0.555
—-0.277
0.000
0.004
0.282
0.559
LDL-c/HDL-c GRS
0.000
0.251
0.502
LDL-c GRS
Non-HDL-c GRS
TGL GRS
0.000
0.392
0.441
0.785
0.834
1.275
Total cholesterol GRS
VLDL-c GRS
0.000

~0.01 (—0.70, 0.67)
0.00 (—0.67, 0.68)
0.00 (—0.67, 0.69)

—0.02 (—0.67, 0.65)

—0.01 (—0.66, 0.66)
0.00 (—0.64, 0.70)

—0.02 (—0.66, 0.66)

—0.03 (—0.69, 0.65)
2.19 (=3.00, 2.78)

41 (8.4%)
177 (36%)
224 (46%)
5 (1.0%)
20 (4.1%)
23 (4.7%)

218 (44%)

206 (42%)

66 (13%)
0.02 (—0.40, 0.47)
0.23 (—0.17, 0.59)

375 (77%)
47 (9.6%)
50 (10%)
7 (1.4%)
10 (2.0%)
1(0.2%)
0.00 (—0.25, 0.29)

425 (87%)
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Table 1. Cont.

Characteristic Total N =490 *
0.405 58 (12%)
0.811 7 (1.4%)

* Median (IQR = interquartile range); N (%) (absolute frequency and proportion); TGL = triglycerides; LDL-c
= low-density lipoprotein cholesterol; HDL-c = high-density lipoprotein cholesterol; VLDL-c = very-low-density
lipoprotein cholesterol; PC = principal component of ancestry; MCP1 = monocyte chemoattractant protein;
CRP = C-reactive protein; TNF-o = tumor necrosis factor ; SBP = systolic blood pressure; DBP = diastolic blood
pressure; global PA = global physical activity; leisure PA = leisure physical activity; HOMA-IR = homeostatic model
assessment for insulin resistance; BHEI-R = revised Brazilian healthy eating index; DLP adj. = any dyslipidemia
adjusted by hypolipidemic drug; GRS = genetic risk score; Inv = normal-inverse transformed.

There were significant correlations between the lipid traits and their respective GRSs,
with higher values especially for LDL-c and non-HDL-c (Figure 2).

Correlation between lipid traits and genetic risk scores

VLDL_prs 011 011 0.09 0.66
TGL_prs 014 014
LDL_HDLRatio_prs -014 014 013

inv_non_hdl -015 024 0z 0% & (& @B % . ‘
inv_ldi 024 03 0 0% 0% G 06 ‘

inv_tofalcol 015 009 027 028 038 05 451 @8 05 Corr
inv_totalchol_hdic @ 013 01 02 02 @& @& ‘ s

inv_Idi_hdl @& -om o012 02 03 0@ 0@

inv_vidic -031 011 01 024 ‘ |
inv_igl -031 011 01 024
nonHDL_prs 063 069
LDL_prs 06
TotalCol_prs
HDL_prs 018
N N 3 3 D
‘\6 Q\% Q\':‘ Q\‘-’ Q@ O \6\0 \\6 ‘\6\0 & >6 \\6 Q@ Q\‘-‘
A7 N M AT A 3 NS @ Q& & 07 N
IOV M ST e O PO
YV VYR 0 & DR CHERN
& & RS & ¥
< N & NERS)
37 ;
& v
A N

Figure 2. Heatmap of correlations between lipid traits and genetic risk factors. Empty and transparent
circles correspond to non-significant correlation coefficients. TGL = triglycerides; LDL = low-density
lipoprotein cholesterol; HDL = high-density lipoprotein cholesterol; VLDL = very-low-density lipopro-
tein cholesterol; prs = polygenic risk score; inv = normal-inverse-transformed version of the variable.

3.2. Quantitative OOP Health Expenditures

Linear regression and generalized linear regression models for quantitative variables
could not be evaluated since the model assumptions were not met for any of the employed
variable transformations, according to the diagnostics tests. Nonetheless, quantitative vari-
ables were successfully modeled through random forest regression. In relation to the original
health expenditure variable, the most relevant variables were household income per capita,
PC1 and PC2, LDL-HDL-c ratio, TGL, non-HDL-c, and waist circumference (Figure 3).
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Variable Importance from Random Forest of
original OOP health expenditure with no GRS

tgl_mg_dI .

renda_pc .
PC2 L
PC1 ®

non_hdlc_mg_dl ]

Variables

ldic_hdlc *
inv_non_hdl .

inv_ldI_hdl *

0 5 10 15 20
% Increase MSE

IncNodePurity & 1e+07 ® 2e+07 @ 2e+07 @ 4e+07 @ 5er07

Figure 3. Relevant variables with more than 5% increase in mean squared error (MSE) in a random
forest of original health expenditure without lipid genetic risk scores (GRSs). tgl = triglycerides;
1dl-c = low-density lipoprotein cholesterol; hdl-c = high-density lipoprotein cholesterol; 1dl_hdl =
ldl-c/hdl-c ratio; PC = principal component of ancestry; renda_pc = household income; ccm = waist
circumference; inv = normal-inverse-transformed version of the variable.

There was a slight increase in the absolute % of variance explanation when adding the
lipid GRSs to this model. The LDL-c and non-HDL-c GRSs were relevant to explain the
original health expenditure, along with the other covariates that were found to be already
relevant (Figure 4).

Variable Importance from Random Forest of
original OOP health expenditure with GRS

tgl_mg_dI o
renda_pc @
PC2 L]
PC1 L ]
nonHDL_prs L

non_hdlc_mg_dl

Variables

Idlc_hdic -

LDL_prs L
inv_non_hdl

inv_IdI_hdl »

ccm *

0o 5 10 15 20

% Increase MSE

IncNodePurity = 25+ @ 4c+07 @ 6e+07
NcNoderunty o 30407 @ 5e+07 @ 7e+07

Figure 4. Relevant variables with more than 5% increase in mean squared error (MSE) in a random
forest of original health expenditure with lipid genetic risk scores (GRSs). prs = genetic risk score;
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tgl = triglycerides; ldl-c = low-density lipoprotein cholesterol; hdl-c = high-density lipoprotein
cholesterol; 1d1_hdl = Idl-c/hdl-c ratio; PC = principal component of ancestry; renda_pc = household
income; ccm = waist circumference; inv = normal-inverse-transformed version of the variable.

For the normalized health expenditure outcome, all lipid traits were relevant except
TGL. In addition, SBP and waist circumference /height ratio were also relevant in the model
without GRSs. As with the model of original health expenditure, only LDL-c GRSs and
non-HDL-c GRSs were relevant in the model with genetic scores (Figures 5 and 6).

Variable Importance from Random Forest of
normalized OOP health expenditure with no GRS

total_chol_mg_dI o
SBP ®
renda_pc .
PC2 @
PC1 L ]
non_hdlc_mg_dl .
Idlc_mg_dl
Idlc_hdlc *
inv_vldic

Variables

inv_non_hdl *
inv_ldI_hdl *
hdlc_mg_dl i
ccm .
cc_height A
0 5 10 15
% Increase MSE

IncNodePurity ® 1e+07 @ 20407 @ 3e+07 @ 4e+07 @ ZSe+07

Figure 5. Relevant variables with more than 5% increase in mean squared error (MSE) in a random
forest of normalized health expenditure without lipid genetic risk scores (GRSs). SBP = systolic blood
pressure; Idl-c = low-density lipoprotein cholesterol; hdl-c = high-density lipoprotein cholesterol;
vldl-c = very-low-density lipoprotein cholesterol; 1dl_hdl = 1dl-c/hdl-c ratio; PC = principal com-
ponent of ancestry; renda_pc = household income; ccm = waist circumference; cc_height = waist
circumference /height ratio; inv = normal-inverse-transformed version of the variable.
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Figure 6. Relevant variables with more than 5% increase in mean squared error (MSE) in a random
forest of normalized health expenditure with lipid genetic risk scores (GRSs). prs = genetic risk score;
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1dl-c = low-density lipoprotein cholesterol; hdl-c = high-density lipoprotein cholesterol; vldl-c = very-
low-density lipoprotein cholesterol; 1d1_hdl = 1dl-c/hdl-c ratio; PC = principal component of ancestry;
renda_pc = household income; ccm = waist circumference; cc_height = waist circumference /height
ratio; inv = normal-inverse-transformed version of the variable.

3.3. Categorical OOP Health Expenditures

The RF model of quartile-based categorical health expenditure without GRSs showed
that some inflammatory markers, glucose, lifestyle factors such as diet quality and physical
activity, and age are also relevant to explain the response variable (Figure 7).

Variable Importance from Random Forest of
quartile-based categorical OOP health expenditure with no GRS

tnf_pgml ¢
SBP B
renda_pc .
pcr_mgl ’
PC2 ]
PC1 L
mcp1_pgml ¢
inv_ldl_hl .
inv_ BHEI R ¢
glucose ¢
GLOBAL_PA min_week o
ccm &
cc_height &
BHEIR ¢
age i
0 5 10 15

Mean Decrease Gini

Variables

MeanDecreaseGini® ¢ @ 10 @ 2 & 14 @ 15

Figure 7. Fifteen most relevant variables according to mean decrease in the Gini index in a ran-
dom forest of quartile-based categorical health expenditure without lipid genetic risk scores (GRSs).
tnf = tumor necrosis factor «; pcr = C-reactive protein; BHEI-R = Brazilian revised healthy index;
GLOBAL PA = global physical activity; 1dl_hdl = ldl-c/hdl-c ratio; PC = principal component of
ancestry; renda_pc = household income; ccm = waist circumference; cc_height = waist circumfer-
ence/height ratio; inv = normal-inverse-transformed version of the variable.

However, no GRS was among the 15th most relevant variables when added to the
model. This was not the case for tertile-based categorical health expenditure, for which
both LDL-c GRS and non-HDL-c GRS were associated with the trait (Figures 8 and 9).

In addition, results of logistic regression of quartile-based categorical health expen-
diture without including lipid GRSs are presented in Table 2, showing that the variables
with the highest odds ratio significantly associated with quartile-based categorical health
expenditure were income per capita, overweight, and the ratio LDL-c/HDL-c. None of
the GRSs for lipid traits were significant when added to the logistic regression models that
include the previously selected significant non-genetic variables.
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Variable Importance from Random Forest of
tertile-based categerical OOP health expenditure with no GRS
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Figure 8. Fifteen most relevant variables according to mean decrease in the Gini index in a random
forest of tertile-based categorical health expenditure without lipid genetic risk scores (GRSs). mcp1
= monocyte chemoattractant protein 1; il6 = interleukin 6; il1b = interleukin 1 3; BHEI-R = Brazil-
ian revised healthy index; GLOBAL PA = global physical activity; 1dl-c = low-density lipoprotein
cholesterol; hdl-c = high-density lipoprotein cholesterol; 1d1_hdl = 1dl-c/hdl-c ratio; PC = principal
component of ancestry; renda_pc = household income; ccm = waist circumference; cc_height = waist
circumference /height ratio; inv = normal-inverse-transformed version of the variable.

Table 2. Significant associations between quartile-based categorical health expenditure with lipid
traits and other non-genetic variables.

Variable Estimate Std. Error z Value p-Value Odds Ratio  Lower CI Upper CI
Overweight (Yes/No) 0.558 0.235 2.377 0.017 1.747 1.106 2.780
Income per capita 0.001 0.000 5.015 0.000 1.001 1.000 1.001
LDL-c (mg/dL) —0.083 0.029 —2.864 0.004 0.920 0.867 0.971
LDL-c/HDL-c 1.075 0.371 2.898 0.004 2.930 1.453 6.237
PC2 —43.889 16.500 —2.660 0.008 0.000 0.000 0.000
Age (years) 0.014 0.007 2.066 0.039 1.014 1.001 1.028
Glucose (mg/dL) 0.006 0.003 2.107 0.035 1.006 1.001 1.013
Inv LDL-c 5.596 1.852 3.022 0.003 269.241 8.324 11,972.248
Inv LDL-c/HDL-~c —2.828 1.011 —2.796 0.005 0.059 0.007 0.381

Obs: LDL-c—low-density lipoprotein cholesterol; HDL-c—high-density lipoprotein cholesterol; inv—inverse-
normal-transformed trait; and PC—principal component of ancestry.
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Variable Importance from Random Forest of
tertile-based categorical OOP health expenditure with GRS
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Figure 9. Fifteen most relevant variables according to mean decrease in the Gini index in a random
forest of tertile-based categorical health expenditure with lipid genetic risk scores (GRSs). prs = genetic
risk score; mcpl = monocyte chemoattractant protein 1; il6 = interleukin 6; BHEI-R = Brazilian revised
healthy index; GLOBAL PA = global physical activity; 1dl-c = low-density lipoprotein cholesterol;
hdl-c = high-density lipoprotein cholesterol; 1dl_hdl = ldl-c/hdl-c ratio; PC = principal component
of ancestry; renda_pc = household income per capita; ccm = waist circumference; cc_height = waist
circumference /height ratio; inv = normal-inverse-transformed version of the variable.

This model had a considerably high accuracy of 0.76 as shown by its ROC curve (Figure 10).
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Figure 10. Logistic regression receiver operating characteristic (ROC) curve of quartile-based categor-
ical health expenditure with no GWAS-derived genetic risk score (GRS) for included lipid traits.
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4. Discussion

Despite the severe health and economic burden of dyslipidemia and related CVDs,
comprehensive analyses of these and other risk factors in relation to OOP health expen-
ditures are still scarce, especially in the context of highly admixed underrepresented
populations. Hence, in the present study, we evaluated the relationship between private
health expenditures and a comprehensive set of sociodemographic, cardiometabolic, an-
thropometric, lifestyle, and genetic risk scores related to lipid traits. The use of random
forest provided significant insights into the determinants of quantitative and categorical
health costs that would otherwise not be identified using traditional linear models.

Several variables were consistently relevant to explain health costs not only across
different techniques such as random forest and logistic regression but also across several
measures of health cost. For instance, the major non-genetic factors associated with these
outcomes were household income, waist circumference, global physical activity, diet qual-
ity, inflammatory markers, and several lipid traits, especially LDL-c and LDL-c/HDL-c.
The role of lifestyle in CVDs and other chronic diseases has been widely recognized and
might mediate their impact on health expenditures. For instance, recent evidence from
a global study estimated astonishing 499.2 million new cases of non-communicable dis-
eases and INT$ 520 billion of direct healthcare costs, resulting from insufficient physical
activity. A major part of this estimated burden would occur in low- and middle-income
countries by 2030 [11]. Also, the concomitant associations of inflammatory markers, lipid
phenotypes, and adiposity measures such as waist circumference with health expendi-
tures are in line with the extensive and robust evidence of the role of inflammation as a
fundamental process underlying cardiometabolic diseases and other non-communicable
diseases. For instance, the accumulation of lipids in fat tissues stimulates the production
of pro-inflammatory cytokines such as IL-6 and IL-1f3, which can ultimately establish a
chronic systemic inflammatory state [28-30].

Regarding healthcare expenditures, the literature on the associations between these
variables and lipid traits remains quite limited, with most studies focusing either on specific
dyslipidemias, such as familial hypercholesterolemia, or on evaluating the reduction in
healthcare costs through lipid-lowering therapies [31,32]. Recently, Kazi et al. (2023)
showed high out-of-pocket expenses pertaining to medications for patients with several
CVD conditions, including hypercholesterolemia, for which the projected annual mean
cost was USD 1629 [33]. An earlier study by Boudreau et al. (2009) also found a significant
economic burden due to any dyslipidemia, with an additional cost estimate of USD 838 for
the presence of dyslipidemia in individuals with overweight and hypertension over a long
lifespan [34].

In addition to the non-genetic associations found for some lipid traits in this study,
the use of lipid-related genetic risk scores, particularly the one related to non-HDL-c and
LDL-c concentrations also contributed to the explanation of the phenotype of interest, as
shown by the random forest technique. Furthermore, in this study, the two main prin-
cipal components of ancestry were found to be strongly associated with private health
expenditures across all analyses, which consistently highlights the importance of includ-
ing population genetic admixture in the evaluation of health costs. This aligns with the
increasingly growing recognition of the importance of studying underrepresented admixed
populations in genetic research, including populations in Latin America [34-36]. Hence,
expanding on that literature, our findings introduce the notion that an admixed genetic
background could also significantly influence health cost predictions, highlighting the
importance of considering genetic ancestry, by means of reducing the endogeneity bias
in health expenditure predictions, thereby providing a clearer picture of the underlying
determinants of health costs.

Regarding more precise genetic influences, previous investigations have also sought
to unravel the effect of the genetic predisposition to cardiometabolic risk factors on health
expenditures. Using longitudinal data from survey and medical claims of older adults,
Wehby GL et al. (2018) found an association between a 1 SD increase in the BMI polygenic



Healthcare 2024, 12, 2275

15 of 18

risk score and an average increase of USD 805-871 in annual health expenditures [18]. Their
results were also consistent across other measures of expenditure including categorical
high expenditure. Similarly, consistency among several measures of cost was present in
our study, although the evaluated genetic score was not the same. In addition, even though
the authors also adjusted their models for principal components of ancestry, there was
no reported effect of those components on health costs, as opposed to our investigation.
Noteworthily, household income and lipids traits were not included as covariates in their
analysis. This omission poses a challenge for comparing these studies, especially consider-
ing other disparities in study design, population demographics, and statistical approaches.

To the best of our knowledge, this is the first study evaluating the connection between
private health expenditures and lipid traits under a broad perspective, i.e., evaluating serum
lipids, rather than focusing exclusively on a given dyslipidemia. Despite the complexity
of analyzing multifactorial risk factors like lipids and multifactorial responses such as
health costs, we successfully found significant associations of health costs with both lipid
traits and their GWAS-derived genetic scores. This achievement was made possible by
the use of non-traditional methods such as random forest and through the inclusion of
genetic ancestry information. Moreover, the utilization of data from a highly admixed
Brazilian cohort comprising free-living individuals, as a part of a population-based study
representative at the population level, underscores the methodological rigor employed in
data collection and analysis, which is another fundamental strength of the study:.

Nonetheless, some limitations should be recognized. First, there was a limited sample
size available for the analysis mainly due to a relatively high number of missing data across
phenotypic and genotypic information. Second, the interpretability of the random forest
results is lower than the one for traditional linear regression models in terms of the direction
of effect sizes. Third, the GWAS-derived genetic risk scores may bring previous biases from
the limited number of SNPs used in the association tests with their respective phenotypes
(in comparison to millions of SNPs in larger GWASs), as well as other statistical limitations
in those previous analyses. However, in spite of our GWAS-derived scores being estimated
from a limited number of SNPs, their correlation with lipid traits was high in comparison
to other findings from individuals with familial hypercholesterolemia in another Brazilian
cohort from Sao Paulo [37]. Considering the growing recognition of SNPs and polygenic
scores as useful instrumental variables to clarify the relationship of exposures and outcomes
of interest of both biological and socioeconomic dimensions [38,39], our findings support
the use of this genetic information as an instrument to predict other phenotypes, including
health expenditures.

Further studies using data from other Brazilian admixed cohorts should be based on
more precise data assessments with larger sample sizes and larger panels of SNPs. This
would dramatically enhance the analytical power of the random forest models and could
facilitate the use of other approaches to bring interpretability to the findings. In addition,
the inclusion of more extensive SNP panels and larger and more diverse cohorts would not
only enhance our understanding of the economic burden associated with dyslipidemia and
CVDs, but also facilitate the integration of genetic data into public health strategies.

5. Conclusions

To the best of our knowledge, this is the first study performed in a highly admixed
population providing relevant insights on a set of comprehensive determinants of private
health expenditures. These determinants mainly comprised lifestyle, inflammatory markers,
principal components of ancestry, lipid profiles, and GWAS-derived genetic risk scores
related to lipid traits.

The initial hypothesis that the lipid profile and its underlying genetic background
might have an impact on private health expenditures was confirmed through a machine
learning approach that has not been much used in the field, highlighting its relevance
to answer economics—-medicine research questions. Importantly, we provided a novel
view about the role of genetic ancestry on cardiometabolic risk factors and its potential
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impact on health costs, considering that ancestry information was among the main factors
contributing to health expenses.

Further investigations with more ethnically diverse cohorts and larger data sets in
terms of sample size and genetic and non-genetic information should be performed. This
may aid in unraveling the role of each group of these factors in health expenses more
precisely, as well as in clarifying how they might interact with each other in a mechanistic
way. Finding the most suitable factors that can be targeted by public policies and clinical
interventions will then be fundamental to decrease the economic burden resulting from
cardiovascular diseases.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390 /healthcare12222275/s1, Table S1. Composition of Genetic
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