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ABSTRACT: Carbon dioxide (CO,) is a prominent greenhouse gas that contributes significantly to global warming. To combat
this issue, one strategy is the conversion of CO, into alcohols and hydrocarbons, which can be used as fuels and chemical feedstocks.
Consequently, a substantial volume of scientific literature has been dedicated to investigating different materials and reaction
conditions to facilitate the CO, reduction reaction (CO,RR) into these so-called high-value products. However, the vastness of this
literature makes it challenging to stay updated on recent discoveries and review the most promising materials and conditions that
have been explored. To address this issue, we applied natural language processing tools to extract valuable data from 7292 published
articles in the scientific literature. Our analysis revealed the emergence of new materials such as cesium—lead—bromide perovskites
and bismuth oxyhalides that have been recently used in the CO,RR and identified Bi-based catalysts as the most selective for
HCOO™ production. Furthermore, we gleaned insights into the composition of other elements and materials commonly employed
in the CO,RR, their relationship to product distribution, and the prevalent electrolytes used in the CO, electrochemical reduction.
Our findings can serve as a foundation for future investigations in the realm of catalysts for CO,RRs, offering insights into the most
promising materials and conditions to pursue further research.

KEYWORDS: CO2 reduction reaction, natural language processing, data analysis, photocatalysis, electrocatalysis

1. INTRODUCTION the scientific community has devoted considerable attention to
this area, leading to a wealth of published articles that explore
diverse materials and methodologies aimed at establishing a
closed CO, cycle.”~"" Figure 1 (yellow) depicts the rising
trend in works regarding the CO, and CO reduction reactions
as topics.

One of the greatest challenges in the CO,RR is the inherent
stability of carbon dioxide molecules. The energy required to
break the C=0 bond is about 750 kJ/mol, about twice the

Carbon dioxide (CO,) is one of the greenhouse gases that
most contribute to global wa\rming.l’2 During the last decades,
its concentration in Earth’s atmosphere has substantially
increased, resulting in a temperature rise of approximately 1
°C.>* Models presented in the 2021 IPCC report suggest that
if the climate policies are kept the same, the average
temperature is predicted to increase by 2.5 to 2.9 °C by
2100, causing deleterious effects on living beings..z’S In 2021,
fossil fuels (including oil, natural gas, and coal) accounted for
77% of global energy consumption. Moreover, between 2020 Received:  October 23, 2023 Stistalnable
and 2021, there was a staggering 17% increase in fossil fuel Revised:  February 10, 2024 ;
consumption.” One of the directions for tackling global Accepted:  February 12, 2024
warming and our dependency on fossil fuels is to convert Published: March 6, 2024
the emitted CO, into so-called high-value products, a process

named CO, reduction reaction (CO,RR). Over the past years,
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Figure 1. (Yellow) Number of articles published and (blue) number
of articles in our corpus over the past 10 years. Results were obtained
by querying the Web of Science using the terms (“CO, *reduction”
OR “CO *reduction” OR “carbon dioxide *reduction” OR “carbon
monoxide *reduction”) AND “*cataly*” as topics.

value for forming C—H, C—-C, and C-O bonds.”!"!
Consequently, the application of an external source of energy
is necessary for the reaction to occur. Furthermore, the
hydrogenation of CO, can Zield multiple products, limiting the
efficiency of the process,'”"> and the competition with the
hydrogen evolution reaction (HER) further complicates the
process. These issues have drawn the attention of a
considerable amount of research regarding the CO,RR.'>'*19
The goals are (i) to reduce the energy required for the reaction
to happen, (ii) to improve the selectivity of the process, and
(iii) to decrease the H, formation. These conditions are
reflected in the following metrics measured in laboratories and
commonly reported in the literature: the applied potential and
light intensity associated with the energy furnished to the
system, the faradaic efficiency (FE), and the formation rate of a
catalyst toward a specific product, indicating the selectivity of
the reaction. Different approaches have been utilized for this
task, each with its own advantages and limitations, resulting in
distinct performances and outcomes. Keeping track of these
metrics is paramount to understanding how research has
progressed over the years and providing some guidance for
future works in this field.

As shown in Figure 1 (yellow), the number of publications
involving the CO,RR has increased yearly. This extensive
literature makes reviewing and staying updated a challenging
task. The most comprehensive a manually written review
article can be, they just provide a fraction of the information
presented in the literature, comprising at most a few
hundred.”~"" This limitation is understandable since an
exhaustive manual analysis of such a large amount of literature
would be intractable. To address this challenge, alternative
approaches utilizing natural language processing (NLP) tools
such as text mining have emerged. NLP is an interdisciplinary
field of computer science and artificial intelligence that
concerns how to use machines to analyze and understand
natural (human) languagem’17 in text and/or audio. Its
applications in computer science date back to the mid-50s
with Allan Turing proposing what is known today as the
Turing test,' but only recently have they been expanded to
materials science due to advancements in machine learning
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(ML) techniques, allowing for automatic extraction of relevant
and high-quality information dug in the scientific literature.

One of the most important tasks in NLP is named entity
recognition (NER), i.e., to understand the semantic role of a
term within a sentence. It is the pivot of relation extraction,
which aims to establish connections between entities in a
sentence according to their semantic function in texts. This is
the core task in materials science once it enables machines to
recognize materials, reaction conditions, reagents, and
products and reliably extract relations between them. NER
tools can be classified into three categories: dictionary-lookup,
rule-based, and ML-based.'””’ The first consists of a dictionary
with a set of terms that can be exactly matched in texts. This
method is accurate; however, it requires a hugely comprehen-
sible dictionary to extract a significant amount of data. Rule-
based approaches loosen some restrictions for capturing
information by setting rules that need to be satisfied rather
than strict terminology. They are less accurate than the former
strategy, but they facilitate extractions once they demand only
some handcrafted conditions to be fulfilled. Finally, ML-based
methods are the most cutting-edge algorithms employed in
NLP pipelines. They can collect information from text without
a dictionary of terms or rules but instead from vector
semantics.”’ This approach is faster and can extract much
more data compared to the previous ones; however, they
require large amounts of data to be trained and parameters to
be adjusted, which are more computationally expensive.

Although relatively new in the scientific domain, these tools
have already demonstrated their utility in materials science and
other scientific fields by creating data sets, ¥ providing
insights into synthesis routes,”>** and developing materials-
and chemistry-aware language models.”””>” Thus, we
employed these NLP tools to gain insights from the scientific
literature pertaining to the CO,RR and CORR. By selecting
relevant articles through a query in the Web of Science, we
were able to uncover valuable details about commonly used
catalyst elements, their combinations in materials, FEs
reported in the literature for each element-based catalyst, the
relationship between catalyst composition and reaction
selectivity, frequently used electrolytes in the CO, electro-
chemical reduction (CO,ER) reaction, and how these
electrolytes are utilized in combination with the previously
identified catalyst elements. Furthermore, by tracking the use
of these materials over the years, we could identify trends in
the literature and also prominent compositions that have
gained the attention of researchers in recent times.

2. METHODS

Our method primarily relies on a rule-based strategy utilizing regular
expressions and a small dictionary to capture the desired information.
These approaches strike a balance between the high accuracy
obtained through manual extractions and the reduced labor facilitated
by automated tools. Furthermore, the rules in our pipeline are section-
specific, meaning that we extracted data from different sections of a
paper that we deemed relevant to obtaining the desired information.
This helps minimize incorrect extractions and improves the reliability
of our approach. Additionally, when collecting numerical data, we
utilize the GPT3.5-turbo application programming
interface (API)*® to verify the obtained relation rather than
relying solely on human review. By selecting specific sentences, we
assessed the model’s precision, recall, and Fl-score before proceeding
with further analyses. For some cases where we observed that the
GPT model was not accurate, we resorted to manual verification to
remove erroneous relations. This rigorous evaluation helped to ensure
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Figure 2. An illustration of the pipeline used in this work. First, we identified section headings in XML files using regexes and created a corpus with
sentences separated according to the labels in the table (explained in Section 2.2). Afterward, we applied regexes to extract information depending
on the section sentences removed. When gathering numerical and categorical data in long spans of sentences, we used the GPT3.5-turbo API
to evaluate whether the information was correctly extracted. Additionally, we combined the content spread over different sections of the same
article by the files’ ID to gain a broader understanding of the literature in this field.

the accuracy and effectiveness of our strategy. It is worth noting that and relying on only a few articles”* or using these NLP tools in a
similar approaches have been attempted recently in the field of the general fashion.®’ Unlike these previous analyses, our approach
CO,RR, but with a narrower focus on Cu-based catalysts for CO,ER considers a larger corpus and has a broader scope: CO, catalysts
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beyond Cu-based materials. By expanding the range of materials
under investigation, we were able to uncover novel materials that have
gained attention in the field of the CO,RR and CORR. Additionally,
we employed a different strategy to leverage large language models.
While these tools offer powerful language processing capabilities,
there is a concern regarding the generation of inaccurate or false
information, commonly referred to as “hallucinations”. However, by
limiting their responses and providing appropriate context, we could
efficiently mitigate these risks. Figure 2 charts the pipeline adopted in
our work.

2.1. Journal Article Acquisition. The first step in our pipeline
was to gather the articles containing the relevant information
concerning the CO,/CO reduction reaction into high—value products.
On July 23rd, 2022, we queried the Web of Science’ % for publications
including the following terms as keywords, either in their title or
abstract:

(“CO, *reduction” OR “CO *reduction” OR “carbon
dioxide *reduction” OR “carbon monoxide *reduction”)

AND “cataly*”

This query returned 15,559 articles distributed by a myriad of
publishers. To refine our data set, we focused on the top S publishers
with the highest number of publications: Elsevier, ACS, RSC, Wiley,
and Springer. This narrowed down our options to 12,452 articles.
Using the DOIs acquired in this search, we downloaded Elsevier
publications through its APT** and ACS files by directly contacting the
organization. Altogether, these two publishers provided a corpus of
7292 papers spanning from 1996 to 2022 in extensible markup
language (XML) format. We chose XML due to its lower
susceptibility to conversion errors compared to the portable
document format (PDF).'¥*° Figure 1 (blue) shows the distribution
of the papers in our corpus over the years, starting from 2013. The
complete distribution starting from 1996 is depicted in Figure S1.

2.2. Sentence Segmentation and Section Identification. We
used four Python libraries, BeautifulSoup,34 re® regex,36
and chemdataextractor (CDE),*”** for splitting the files in
our corpus into sentences and identifying sections from which they
were extracted in the articles. The latter step is particularly important
as some of the information we intend to gather may predominantly
reside in specific sections, and relying on data from other sections
could potentially yield inaccurate outcomes. For instance, when
examining the frequency of elements employed in catalysts, we
exclusively considered abstracts as they are more direct, concise
summaries of the article’s scope and avoid connections with the
literature (see Section 2.3). Including the introduction section could
add false counts to a particular element since it might be cited solely
for contextualization. Similarly, adding the discussion section could
also lead to false positives once authors often compare their results
with the existing literature. We employed BeautifulSoup to
convert the markup language into plain text, CDE to segment
sentences in a paragraph into individual units, and re and regex to
write regular expressions (regexes) to identify the section headings.
We applied these expressions to the section titles identified by
BeautifulSoup through the tag <ce:section-title>. We
note here that we did not use regexes for abstracts. This section has a
specific tag in XML files, either <ce:abstract> or <ab-
stract>, depending on the publisher. We assigned a label
“abstract”, “introduction”, “materials-methods”, “discussion”, or
“conclusion” to every sentence according to the section from which
it was extracted. Those for which the section headings were not
identified were labeled as “None” and overlooked in our analyses.
This process yielded a data set comprising over 1.4 million sentences,
distributed over the five categories aforementioned.

2.3. Information Extraction and Data Analysis. We conducted
different sorts of information extraction according to the sections in
which sentences were identified. Starting with the abstract, we gleaned
data about the metallic elements most used in catalysts for the
CO,RR. We selected this section as its sentences tend to be shorter,
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direct (without comparison with the literature), and positive
(mentioning the materials used rather than those not used). We
determined the top 10 most common metal elements employed by
the number of articles, i.e.,, how many articles mentioned a catalyst
based on that element. It is important to note that, for each element,
we only considered whether it was present or not in the abstract but
not the frequency at which it appeared; thereby, if an element was
mentioned ten times within a single abstract, it would only be counted
once. Additionally, aiming to capture only elements in catalysts, we
discarded any composition after the symbols “@”, “/”, and “-” or
mentioned after the prepositions “on” and “at”, so these results do not
account for elements used in supports.

In a similar analysis, we identified the top ten electrolytes
commonly utilized in CO,ER. Nevertheless, unlike the previous
analysis that relied on abstracts, we exclusively focused on the
experimental section. This decision was based on heuristics since
details about reaction conditions are typically described in this section
and oftentimes dismissed in the abstract unless the work emphasizes
the impact of electrolytes on CO,ER. To validate our approach, we
utilized the manually extracted data from ref 29. By comparing our
results to their analysis, we were able to assess the accuracy and
reliability of our methodology.

To gain a more comprehensive understanding of the literature, we
integrated the aforementioned analyses to understand how those
electrolytes are combined with the selected elements. Since all of the
information required is seldom available in a single sentence, our
strategy involved combining relevant data based on file names. In
other words, we considered a pair element-electrolyte only if both the
element and electrolyte were extracted from the same file.
Furthermore, we also analyzed the co-occurrence of elements and
electrolytes with the CO,RR and HER products. We investigated how
frequently they are positively mentioned with the products CH,,
CH,OH, C,H, C,H,OH, C,H,OH, HCOOH, HCOO-,
H,CCOOH, H,;CCOO~, C;H,, CH,, C,HyOH, and CO and H,.
By “positive”, we mean sentences that do not contain negative terms
such as “no”, “don’t”, or “didn’t”. We intentionally disregarded
sentences such as “we observed no methane production during the
reaction” to avoid false positives in pairs element-product or electrolyte-
product. Although it is not guaranteed that a particular element can
favor a specific product simply by analyzing the frequency at which
they co-occur, this result can provide an overview of the relationship
between different elements or electrolytes and their impact on the
selectivity of the reaction. We also notice here that this is the only step
in our pipeline in which we used a dictionary lookup to match
product formulas.

We continued extending our extractions, now incorporating the FE
toward each product, but focused solely on elements in catalysts. This
type of information is often encountered in the results and discussion
sections. Therefore, we carried out these extractions uniquely
considering sentences labeled as “discussion” by our previous
approach. To avoid capturing misleading relations, we devised a set
of rules to be fulfilled in every single sentence: (i) the same number of
materials, products, and FE values should be reported; (ii) the same
number of materials and FEs should be reported for a single CO,RR
product; or (iii) the same number of FEs and CO,RR products
should be reported with a single material composition. In addition,
the sentence should explicitly contain the term “faradaic efficiency” or
“FE” and a value reported with “%” as a unit. Finally, to ensure the
quality of the data, we employed the GPT API’® on the selected
sentences to verify the veracity of the relation extracted. We utilized
the model GPT3.5-turbo to provide the following prompt:

Is the information that a FE of [value] toward [product] was

obtained using a [element]-based catalyst present

in this sentence [sentence]? 1 (for “Yes”) or 0 (for “No”)

where [value], [product], [element], and [sentence]
are variables containing the value of the FE extracted, the target
product, one of the ten elements obtained in our first analysis, and the
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Figure 3. (a) Top ten elements most used in catalysts for the CO,RR. The numbers at the top of the bars indicate the number of papers
mentioning a material containing that element. (b) Top ten electrolytes most commonly employed in CO,ER. The values above each bar indicate
the number of articles mentioning the corresponding electrolyte. (c) Co-occurrence matrix of electrolytes and elements most used in catalysts. The

frequency was normalized by the total element count.

sentence from which the relation was extracted, respectively. We set
all parameters to zero except the maximum token length, which we set
to 1, thereby drastically reducing the probability of the model
“hallucinating”.

If one considers our text corpus with 1.4 million sentences, it is
virtually impossible to identify the number of sentences that contain
certain information that we want to extract (e.g, the catalyst
definition or the FE value). Although it is necessary to determine this
number to directly calculate recall and precision values for our NLP
approach, its most accurate calculation would require human reading
of the entire corpus, which is unfeasible. In this context, we used a
benchmark model (GPT3.5-turbo) for indirectly evaluating
precision and recall. To ensure the reliability of this strategy, we
selected 20 sentences per element to manually confirm the data
extracted. By contrasting our labels with those proposed by
GPT3.5-turbo, we computed the precision, recall, and Fl-score
of the model, defined as

- TP
recision = ————
P TP + FP )
TP
recall = ———
TP + FP @)
2 X recall X precision
F]‘score = . .
precision + recall (3)

where TP (true positives) and TN (true negatives) indicate labels
predicted by the GPT model that matched our analysis, and FP (false
positives) represents labels assigned as positive by the model but as
negative in our manual analysis. For the particular case where we
observed that GPT3.5-turbo did not perform as accurately, we
resorted to manual analysis to remove erroneous relations obtained.
Guaranteed the effectiveness of our approach and the quality of our
data set, we utilized sentences recognized as relevant in the task of
linking elements, products, and FEs from the papers in our corpus.
Additionally, we explored the composition of materials employed in
the CO,RR. Using the same regular expressions to match elements
and specific rules to avoid wrong extractions, we determined how
elements co-occur in binary and ternary compounds. We selected the
most prominent results from each category and searched for these
materials in reviews in the literature regarding this topic. In cases
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where we did not encounter any discussion about the compositions
identified in the checked review articles, we analyzed the sentences
extracted in order to gain some insights on the application of these
materials in carbon dioxide reduction. Finally, we investigated how
the number of publications about these materials has changed over
the years. Applying this strategy, we were able to identify promising
structures and compositions that have only recently gained attention
in the literature regarding the CO,RR.

3. RESULTS AND DISCUSSION

3.1. Elements in CO,RR Catalysts and Electrolytes in
CO,ER. Initially, we focused on extracting information
regarding metallic elements most employed in catalysts for
the CO,RR from the abstracts of the papers in our corpus. By
using a set of regular expressions to identify elements and clean
the sentences, we selected the top 10 most frequent metals, as
depicted in Figure 3a. We remember that these results account
for materials solely employed in catalysts but not in supports. It
can be seen that Cu and Ti are the most common elements
encountered. Copper is widely recognized as a highly
promising material for electrochemically converting carbon
dioxide into hydrocarbons and alcohols,">"*** while titanium
serves as a reference material for CO, photoreduction.”'"*’
Additionally, we observed significant counts of Ni, Ag, and Bi.
These elements are also frequently employed in carbon dioxide
reduction in both electrochemical and photochemical
approaches. Nevertheless, it is interesting to note the growing
trends in Bi-based catalysts in this field, as shown in Figure S2,
and that our approach was able to identify them.

Using another set of regexes, we collected information
regarding electrolytes used in CO,ER. As electrolytes are
essential for any electrochemical reaction, this information is
typically presented in the methodology section of the articles
rather than the abstract, except when the work focuses on the
impact of salts on CO,ER selectivity. To prove this statement,
we attempted this extraction solely on sentences from the
abstract. This result is shown in Figure S3. It can be seen that
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Figure 4. (a) Co-occurrence frequency of elements and CO,RR products. (b) Median of FE. Cells without co-occurrence were marked with N/A.

just a small number of sentences comprised the desired
information. Figure 3b shows the results obtained by our
extractions. As can be seen, KHCO; emerged as the most
commonly employed electrolyte in CO,ER, followed by
Na,SO, and KOH. These salts represent different reaction
conditions utilized in CO, electroreduction, specifically
neutral, acidic, and alkaline media. In fact, they are the most
commonly used in each of these conditions,*’ with KHCO,
being the most frequent electrolyte overall. Additionally, we
conducted a comparison of Figure 3b with the manually
extracted results published in ref 29, which also focused on the
same objective: electrolytes employed in CO,ER. Notably, the
top five electrolytes identified in their analysis are also present
in our top five, albeit in a different order. This correspondence
indicates the accuracy of our automated approach in extracting
relevant information. Nevertheless, it is important to highlight
that our approach encompasses a significantly larger data set,
comprising six times more papers than the study mentioned,
and considers not only copper-based catalysts but also a
broader range of catalysts. Thereby, our analysis provides a
more comprehensive view of the literature and better indicates
trends and insights into this field.

Afterward, we performed a third analysis by combining the
data from Figure 3a,b to gain insights into the utilization of
electrolytes based on the catalyst composition. Since the
likelihood of finding all this information in a single sentence is
low, we linked the data using the files’ IDs. The underlying
concept behind this strategy is as follows: if Article A mentions
a Cu-based catalyst and CH, as a product in the abstract and
describes KHCOj as the electrolyte in the methodology, it is
highly probable that KHCO; was employed as the electrolyte
for methane production. Figure 3c illustrates the frequency of
each electrolyte in Figure 3b co-occurring with the elements in
Figure 3a, normalized by the total frequency of each element.
Notably, KHCO; is the electrolyte most used with all of the
elements considered, except for Ti and Pt. These metals are
more frequently associated with the use of Na,SO, as the
electrolyte, which might indicate a preference for acidic media
conditions.

Our approach also provided valuable insights into product
selectivity based on the presence of specific elements in a
catalyst. We conducted two types of analyses using different
sections of the articles: the abstract and the discussion. In the
first, we simply examined the positive co-occurrence between
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catalyst elements and products of the CO,RR and HER. The
result of this analysis is portrayed in Figure 4a; the numbers in
the heatmap indicate the frequency of a pair element-product
that co-occurs in the abstract. We initially searched for CH,,
CH;0H, C,H,, C,H;OH, C;H,, C;H,OH, HCOOH,
HCOO™, H;CCOOH, H;CCOO~, CH,, CH,OH, and
H,. Nevertheless, we had only one occurrence for C;H,OH
and none for C;H,, C,H,;, and C,H,OH. It is important to
note that these compounds are indeed generated in the
CO,RR but usually in small quantities. Consequently, they are
not commonly mentioned in abstracts, where only major
products are typically cited. Furthermore, we excluded CO as a
target product in this analysis. This choice was based on the
nature of our corpus, which consists of articles focusing on
carbon dioxide and carbon monoxide reduction. Therefore,
including CO as a product would introduce a bias toward
higher frequencies for element-CO pairs. We conducted a
similar analysis for electrolyte-product pairs. These results are
shown in Figure S$4.

From Figure 4a, we can see that either H, or CH, is the
product that most co-occurs with all the elements, with one
notable exception: bismuth, primarily associated with HCOO™.
Moreover, it is interesting to note that bismuth exhibits the
lowest co-occurrence with H,, followed by copper. Copper is
widely recognized as an excellent catalyst for carbon dioxide
due to its lower selectivity toward the HER compared to that
of other metals. Our findings suggest the possibility that
bismuth might be even less favorable to the HER and
potentially more efficient to CO, reduction. These observa-
tions indicate that our analysis may have captured valuable
insights into the product selectivity associated with different
catalyst elements.

We expanded our investigations to consider the FE toward
products of the CO,RR on different element-based materials.
To gather this information, we relied solely on the discussion
section, where most of the numerical data are presented. We
also employed the GPT3.5-turbo API to check whether
the relation extract was correct or not. However, before we
continued with this approach, we selected about 20 sentences
for each element to manually evaluate the accuracy of the data
collected. Based on our labels, we evaluate the model’s
performance in identifying the correct extractions. The
precision, recall, and Fl-score obtained were 0.84, 0.96, and
0.90, which are very high scores (the maximum is 1.0 for each
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one). Therefore, we decided to keep with our approach and
neglected sentences labeled as 0 (i.e., wrong) by GPT3.5-
turbo. Nevertheless, for the particular case of Ag, we notice
our regexes also capture relations where “Ag” was extracted
from “Ag/AgCl’, a reference electrode. Even though we
devised our regexes to ignore such cases, a few of them were
matched. Nevertheless, the GPT3 . 5 model could not identify
some of these errors. Therefore, specifically for Ag, we
manually removed these inaccurate extractions. After checking
the quality of the data set, we utilized sentences recognized as
relevant in the task of linking elements, products, and FEs from
the papers in our corpus. The results of this analysis are
depicted in Figure 4b, where the numbers in the heatmap
indicate the median of the FE extracted for an element-product
pair, and “N/A” means no such relation was found (standard
deviation and skweness are shown in Figure SS). Boxplots
illustrating the range of FEs collected and the number of
papers from which this information was extracted are
presented in Figure S6. Additionally, we point out that,
different from our previous analysis in Figure 4a, we included
CO as a product in both Figures 4b, S5 and S6 since the set of
rules devised is satisfactory for not capturing carbon monoxide
as a reactant.

The analysis of Figure 4b reveals that CO and H, exhibit the
highest median FEs, which is true for most of the elements.
This observation can be attributed to the fact that CO is the
primary reduction product of CO, and that reducing water
requires less energy compared to that for CO,. This trend is
further supported by the data presented in Figure S6, which
demonstrates that the majority of the collected data
correspond to these two products. However, contrasting this
trend in Figure 4b, we can notice the FE values toward
HCOOH, H;CCOOH for Cu and Ti, and HCOO™ for Zn and
Bi that surpass those obtained for CO and H,. It is important
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to consider that, on closer examination of Figure S4, the high
FE values for HCOOH and H;CCOOH are based on a single
data point, rendering these results statistically unreliable. On
the other hand, for Zn, the FE in Figure 4b is the median of
eight data points, which, although still a relatively small sample
size, can be considered statistically reliable. Nevertheless, for
Bi, the relatively high median FE of 86% toward formate
(HCOO") is supported by 67 data points. The abundance of
data and the elevated FE suggest a potential selectivity of Bi
and Bi-based materials in promoting formate production
(HCOO™), which aligns with similar reasoning applied in the
analysis of Figure 4a. These findings related to bismuth may
offer an explanation for the increased application of Bi in the
CO,RR over the years, as evidenced in Figure S2. It is
important to mention that reproducibility is indirectly assessed
in these results by the dispersions of FE values reported in the
literature for each catalyst/product pair. The median is a
statistical metric that determines the 50% separation point of
the data. For example, the FE value of 86% for Bi in the
reaction toward formate (HCOO™) indicates that 50% of the
articles report an FE greater than 86% for this reaction, while
the other 50% report an FE lower than 86%. In addition, when
there is a low standard deviation in the distribution of FE
values for a specific catalyst/product pair, it means that there is
convergence in the values reported in the literature. This is the
case for the Bi/HCOO™ pair. Finally, the skewness of a
distribution of FE values for a specific element-product pair can
also be analyzed. As an example, the dispersion for FE values of
the Bi/HCOO™ pair is negatively skewed, thus indicating that
a measured FE value most likely will be higher than the value
expressed by the median for this pair (86%).

3.2. Material Composition Commonly Employed in
the CO,RR. Using similar regexes as those described in
Section 3.1 to match elements and clean the sentences, we
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conducted an analysis on how elements co-occur in binary and
ternary compounds for CO,ER, once again solely focusing on
abstracts. The chord diagrams in Figure § illustrate the top 10
binary compositions (upper panels) and the top S ternary
systems (lower panels) that most frequently appeared in our
search. The other 5 most common compositions in ternary
materials are portrayed as chord diagrams in Figure S7. From
Figure 5a, we observe a significant presence of oxides in binary
systems, particularly for Ti and Cu. TiO, is a well-known
reference material used in carbon dioxide photoreduction. Its
wide bandgap facilitates carbon dioxide reduction in addition
to water oxidation, despite being cheap, stable, and nontoxic.'!
CuO or Cu,0, on the other hand, can be used in either CO,
electro- or photocatalysis; however, it is most famous for its
outstanding performance in CO,ER."

Furthermore, it is worth noticing that almost every metal in
Figure Sa occurs as an oxide. This is not surprising considering
the abundance of oxygen on Earth, which contributes to the
stability and cost-effectiveness of these materials. However, it is
interesting to observe that Mo and Cd do not co-occur with
oxygen but exclusively with sulfur. This result is highlighted in
Figure Sb, where we overlook the O-containing materials. In
this modified chord diagram, we can clearly see that sulfur co-
occurs with most of the elements, not only Mo and Cd but also
Zn and Cu. We notice that the utilization of metal sulfides for
the CO,RR is a common strategy described in the literature,
with MoS, and CdS being the main materials in this
subgroup.' " Nevertheless, in addition, ZnS is mentioned as
a promising material for carbon dioxide photo-reduction.*’
Despite S-containing materials, we can also identify TiC in
Figure Sb, with a significant number of occurrences. We
searched for a material containinﬁ these elements in different
review papers about the CO,RR,""** but we could not find any
specific mention of this composition. However, upon analyzing
our extracted sentences, we discovered that this composition
refers to Ti;C,, an MXene material that has recently garnered
attention in the field of carbon dioxide photoreduction.

On the other hand, Figure 5d provides insights into the
elements that frequently co-occur in ternary materials
employed in the CO,RR. Similar to Figure Sa, we can observe
significant occurrences of oxides, primarily BiVO and BiOBr.
BiVO from bismuth vanadates (BiVO,) is commonly cited as
an alternative material to TiO, in CO, photoreduction once it
allows for the same reactions to occur, but in contrast, it is
active at visible light.'"** Similarly, BiOBr appears to be
another promising material for the CO,RR. Although we
extensively searched for information about this composition in
several review papers,”'"**** we could not find any specific
mention of it. Therefore, we manually examined the sentences
selected in our analysis to gain some insight into this
composition. BiOBr, named bismuth oxybromide, is a
semiconductor that “has obtained wide attention because of
its unique narrowed band-gaps, low cost, non-toxicity, as well
as higher structure stability”.** Additionally, during our
examination of the review papers, we came across a reference
to a similar material, BIOCI. Bismuth oxychloride, in addition
to bismuth oxyiodide (BIOI), also has a high-frequency score
in our analysis, as portrayed in Figure S7, but not as high as
BiOBr. Also interesting is the fact that we did not find any
mention of BiOF.

Nonetheless, the compositions with the highest scores in
Figure 5d are CsPbBr and NaBH. We reproduced this diagram
in Figure Se but excluded O-containing materials for a better
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view. The NaBH composition originates from NaBH,, which is
a commonly used reducing agent in material synthesis. We
found it quite interesting that this compound appeared in our
results, considering that we exclusively analyzed the abstracts
of the papers in our corpus. We expected this kind of
compound to be present in the methodology section. Once
again, we investigated review articles for the applications of this
salt but did not find any specific mentions of it. By analyzing
the extracted sentences in detail, we confirmed that most
occurrences referred to the use of NaBH, as a reducing agent
in material synthesis. It was interesting to find, however, that
this compound has already been directly applied to reduce
carbon dioxide, a process called CO, hydroboration.* ™" It is
worth noting that only a few articles mentioned the application
of sodium borohydride for this purpose, with the majority of
them published between 2014 and 2016.

CsPbBr, on the other hand, belongs to a significant family of
halide perovskites that have been extensively studied for their
applications in solar cells. However, it seems that these
materials have only recently gained attention in the CO,RR.
When searching for these structures in reviews about CO,
reduction, we just found brief mentions of them.'"*
Nevertheless, we did come across reviews specifically
discussing the application of these structures in CO,
photoreduction, indicating their potential as promising
catalysts in this field. Interestingly, we noted that these reviews
were all published after 2020.°' >’ Upon analyzing the
sentences extracted from our corpus, we discovered that the
first mention of this structure was in a paper published in 2017
by Xu et al.,”* which coincidentally was also cited in the review
by Wu et al.'' Actually, according to the authors, this paper “is
the first report on artificial photosynthesis based on halide
perovskite QDs”. Therefore, it is likely that our corpus includes
one of the early papers that explored the application of halide
perovskites in carbon dioxide reduction.

Additionally, we investigated binary and ternary compounds
in the CO,RR exclusively considering cations. This allowed us
to gain insights into the metal alloys employed, as shown in
Figure Scf. In Figure Sc, we can observe the prevalence of Cu
as the metallic element that most appears in alloys, followed by
Ni and Pd. Numerous articles in the literature have explored
the alloying of Cu with different metals to modulate the FE
and applied potential for the CO,RR.'">*~7 Nevertheless, the
highest frequency scores occur for the NiFe and PdAu alloys.
NiFe catalysts are commonly utilized in the methanation
reaction to hydrogenate carbon monoxide into methane.’®
Papers in our corpus, however, mention the application of this
material for both the CORR and CO,RR. AuPd alloys, on the
other hand, are also known compositions for the CO,RR.*
One of the articles in our corpus mentions that “Pd;Au,, can
convert CO, to CO with 100% FE” at applied potentials
ranging from —0.6 to —1.2 V vs RHE.* However, we are
surprised that these alloys have a higher citation score than any
Cu-based materials. Another interesting result in Figure Sf is
that copper only occurs in a single composition, NiFeCu,
despite having a lower score than that of CoAlLa and CoNiPt.
Among the identified sentences, CoAlLa is predominantly
mentioned as a layered double hydroxide. These structures are
cited in one of the reviewed articles'' as a strategy for
designing catalysts for the CO,RR. However, it is worth
noticing that the papers in our corpus that mention CoAlLa
were all published after 2019. Conversely, publications on
PtCoNi alloys are slightly older, with the most recent one
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Figure 6. Percentage of paper in our corpus per year mentioning the compositions (a) CsPbBr, (b) BiOBr, (c) TiC, and (d) NaBH. We selected
these compounds since we found no reference to them in the consulted review articles about the CO,RR.

published in 2020, and all of them primarily employed PtCoNi
alloys for the HER.

Finally, we performed an annual analysis of the articles
referring to the four compositions mentioned earlier (TiC,
CsPbBr, BiOBr, and NaBH), which were not found in the
reviewed articles. The results are presented in Figure 6; the
values over the bars indicate the percentage of papers in our
corpus published in the corresponding years that cited the
respective material: (a) for CsPbBr, (b) for BiOBr, (c) for TiC,
and (d) for NaBH. The trends observed in these plots are very
interesting. For CsPbBr, the first article on this structure was
published in 2017, and since then, the number of papers
involving this material has steadily increased. The publication
count almost doubled from 2021 to 2022 and more than
doubled compared to that in 2020. This indicates a significant
upward trend for the utilization of CsPbBr in the literature. A
similar pattern can be observed for BiOBr, with the number of
publications more than doubling from 2021 to 2022. However,
unlike the previous result, the publication count from 2016
onward has not shown a consistent upward trend. We
complemented this analysis by including all the bismuth
oxyhalide semiconductors. This result is shown in Figure S8a,
and as can be seen, the number of publications using these
materials has also grown over the years. When a material shows
a rise in the number of publications, it indicates that there is a
growing interest around it. We understand that the sheer
number of publications does not mean that the material is
efficient per se. However, it is very unlikely to observe a rising
trend in the number of published articles with negative results,
such as those reporting nonreproducible synthesis methods or
materials with poor properties.
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In Figure 6¢, we can observe a significant increase in the
number of papers regarding TiC starting from 2019. The
publication count almost tripled from 2019 to 2020 and
doubled from 2020 to 2021. However, in 2022, there was a
decrease in the percentage of publications. We notice that in
2009, publications about TiC accounted for 3% of the total
literature on the CO,RR (Figure S8b), but from 2009 onward
to 2014, we did not find any further mentions of TiC in the
articles included in our corpus. However, our corpus comprises
only 33 papers published in 2009, as shown in Figure S1. This
value of 3.03% accounts for a single publication. Therefore, we
can say that TiC has indeed recently gained attention in the
CO,RR. Regarding NaBH, from Figure 6d, we can observe
that there is a decreasing trend in the number of publications
about this compound, starting from 2014, when it accounted
for 2.76% of the papers. The percentage steadily declined to
0.52% in 2018, and since then, it has remained relatively
constant, representing around 0.50% of the papers published.
It is interesting to note that most of the articles employing
NaBH for direct CO, reduction were published between 2014
and 2016, with a higher concentration in 2014, indicating a
specific trend during that period, which may explain the
highest score in that particular year.

4. CONCLUSIONS

Our comprehensive pipeline for extracting various types of
information from scientific publications focused on the
reduction of the amount of CO,/CO into high-value products.
The pipeline encompasses the extraction of categorical and
numerical data, specifically the composition of catalysts, the
utilization of electrolytes in CO,ER, and the FE toward
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different products of the CO,RR. Furthermore, we combined
these extracted data to gain valuable insights from the literature
and conducted an annual analysis to identify trends in this
research field. Our findings suggest that bismuth (Bi) exhibits
promise as a material for hydrogenating CO, into formate
(HCOO™). Bi is frequently mentioned alongside formate and
demonstrates a significantly high median FE while displaying a
distinct pattern of least co-occurrence with hydrogen (H,).
Additionally, we discovered that CsPbBr; and bismuth
oxyhalides are novel structures that have recently gained
attention in the field of CO, reduction. The number of
publications involving these materials has shown a notable
increase over the years, indicating their growing significance in
the research community. Our analyses demonstrate the
utilization of NLP tools for investigating the CO,RR and
other catalyzed reactions. By employing rule-based techniques,
such as regular expressions and dictionary lookups, we strike a
balance between automated analysis to reduce workload and
the precision achieved through manual extractions. The high-
quality data obtained using these methods can be leveraged for
various NLP tasks. It is worth noting that while we adopted
these particular strategies, alternative NLP methodologies also
exist. To the best of our knowledge, our work extends previous
research by integrating multiple types of information to offer a
comprehensive and conclusive review of the advancements in
the CO,RR. Notably, our investigation incorporates a larger
corpus and encompasses a broader range of target materials,

enhancing the breadth and depth of our findings.
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