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1. Introduction

The classification of gradings by arbitrary groups on a given algebra has been a topic 
of significant interest, particularly after the groundbreaking works by Patera and Zassen
haus [8] and Bahturin, Sehgal, and Zaicev [1]. Such classifications have been obtained for 
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many important classes of algebras, including the simple finite-dimensional associative, 
Lie, and Jordan algebras (see the monograph [5] and the references therein).

Advancements in the classification of group gradings on non-simple algebras have 
also been made, as seen in the articles [2,4,7]. In particular, the complete classification 
of isomorphism classes of group gradings on the algebra of upper triangular matrices 
is given in the works [3,11]. As a generalization of these algebras, the description of 
group gradings on incidence algebras is provided in the paper [9], and their isomorphism 
classes are described when the grading group is abelian. Their main result states that 
every group grading on a finite-dimensional incidence algebra is graded isomorphic to 
a graded upper triangular algebra. Although the authors characterize the structure of 
graded bimodules, there is no description of the algebra structure of the upper triangular 
algebra.

In this paper, we complete the work initiated in [9] and, in particular, answer the 
last question of the paper. We provide a complete description of group gradings on a 
given incidence algebra. Moreover, we classify the finite-dimensional graded algebras that 
can be realized as an incidence algebra endowed with a group grading. As a byproduct, 
we investigate the structure of graded bimodules and elucidate a connection between 
Yetter-Drinfel’d modules and graded bimodules.

This paper is organized as follows. In Section 2, we give the basic definitions concerning 
group gradings, incidence algebras, and the description of group gradings on incidence 
algebras given in [9]. In Section 3, we investigate the structure of graded bimodules, 
proposing a new approach to the theory. The following section is devoted to classifying 
the graded triangular algebras that can be realized as an incidence algebra endowed with 
a group grading (Proposition 4.2). An explicit construction of the poset is also provided 
(Theorem 4.1). The last section is dedicated to studying the product of bimodules that 
occurs in an incidence algebra. We prove that the characters appearing in a product of 
bimodules should be extensions of the product of the characters (Theorem 5.6). Finally, 
in the last section, we summarize the results obtained, characterizing the graded algebras 
that can be realized as graded incidence algebras (Theorem 6.1).

2. Preliminaries

2.1. Group gradings

Let G be a group and 𝒜 an F -algebra. We will use the multiplicative notation for 
the group G and denote its neutral element by 1. A G-grading on 𝒜 is a vector space 
decomposition

𝒜 =
⨁︂
g∈G

𝒜g,

such that 𝒜g𝒜h ⊆ 𝒜gh for all g, h ∈ G. If 𝒜 has a fixed G-grading, we say that 𝒜 is 
G-graded. The component 𝒜g is called the homogeneous component of degree g, and its 
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nonzero elements are said to be homogeneous of degree g. Given x ∈ 𝒜g with x ̸= 0, we 
denote degG x = g. A subspace 𝒮 ⊆ 𝒜 is called graded if 𝒮 =

⨁︁
g∈G 𝒮 ∩ 𝒜g. A graded 

subalgebra (or ideal) is a subalgebra (or ideal) that is a graded subspace. The support 
of the graded algebra 𝒜 is Supp𝒜 = {g ∈ G | 𝒜g ̸= 0}.

If ℬ is another G-graded algebra, then a homomorphism of G-graded algebras is a 
homomorphism of algebras φ : 𝒜 → ℬ such that φ(𝒜g) ⊆ ℬg for all g ∈ G. If φ is 
an algebra isomorphism, then 𝒜 and ℬ are said to be G-graded isomorphic, denoted by 
𝒜 ∼ = G ℬ. A complete reference on the subject of graded algebras is the monograph [5].

Let 𝒜 and ℬ be G-graded algebras. Let M be an (𝒜,ℬ)-bimodule, and assume that 
M has a G-grading, say M =

⨁︁
g∈G Mg. We say that M is a G-graded (𝒜,ℬ)-bimodule 

if 𝒜hMgℬk ⊆ Mhgk for all h, g, k ∈ G. If N is another G-graded (𝒜,ℬ)-bimodule, a 
G-graded homomorphism of bimodules is a bimodule homomorphism f : M → N such 
that f(Mg) ⊆ Ng for all g ∈ G. If f is bijective, we say that M and N are G-graded 
isomorphic and denote M ∼ = G N .

A graded triangular algebra is an algebra of the form

(︄
𝒜 M

ℬ

)︄

where 𝒜 and ℬ are G-graded algebras, and M is a G-graded (𝒜,ℬ)-bimodule.

2.2. Incidence algebras

We provide the definition of an incidence algebra over a field F . Let (X,≤) be any 
partially ordered set (poset, for short). Assume that (X,≤) is locally finite, i.e., for all 
x, y ∈ X, there exists a finite number of z ∈ X such that x ≤ z ≤ y. Define I(X) = {f :
X ×X → F | f(x, y) = 0,∀x ̸≤ y}. Then I(X) has a natural sum (point-wise sum) and 
natural scalar multiplication, which give I(X) the structure of an F -vector space. For 
f, g ∈ I(X), we define h = f ·g as the function h such that h(x, y) =

∑︁
z∈X f(x, z)g(z, y). 

Note that the only possibly nonzero elements in the previous sum are the z ∈ X such 
that x ≤ z ≤ y; hence, since X is locally finite, the sum is well-defined. So h ∈ I(X). 
It is straightforward to prove that I(X), with the defined operations, is an associative 
algebra. The algebra I(X) is called an incidence algebra.

Given x ≤ y, we let exy be the element such that

ex,y(w, z) =
{︄

1, if x = w and y = z,

0, otherwise

Note that exyewz = δywexz. We will denote ex := exx.
Note that the defined multiplication on I(X) is similar to the product of matri

ces. Moreover, if X is totally ordered and contains n elements, then I(X) ∼ = UTn, the 
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algebra of upper triangular matrices. In connection, if (X,≤X) is arbitrary (not nec
essarily totally ordered) and finite with n elements, then we can rename the elements 
of X = {1, 2, . . . , n} in such a way that i ≤X j implies i ≤ j in the usual ordering of 
the integers. With this identification, we see that I(X) ⊂ UTn is a subalgebra. Thus, 
finite-dimensional incidence algebras are subalgebras of UTn containing all the diagonal 
matrices. As we are interested in finite-dimensional incidence algebras, we will assume 
from now on that I(X) ⊂ UTn.

The incidence algebras are very interesting on their own, and moreover, they are re
lated to other branches of Mathematics. They also give rise to interesting and challenging 
combinatorial problems. For an extensive theory on incidence algebras, see, for instance, 
the book [10].

2.3. Group gradings on incidence algebras

In this subsection, we recall the main results of [9]. It describes the group gradings on 
finite-dimensional incidence algebras. More precisely, they prove:

Theorem 2.1 ([9, Theorem   1]). Let F be a field, X a finite poset, and let I(X) be endowed 
with a G-grading. Assume at least one of the following conditions: charF = 0, charF >

dim I(X), or G is abelian. Then, up to a graded isomorphism, there exist finite abelian 
subgroups H1, . . . , Ht ⊆ G, such that: for each i = 1, . . . , t, charF does not divide |Hi|
and F contains a primitive expHi-root of 1, and

I(X) ∼ = G

⎛⎜⎜⎜⎜⎝
FH1 M1,2 . . . M1,t

FH2
. . .

...
. . . Mt−1,t

FHt

⎞⎟⎟⎟⎟⎠ ,

where each Mi,j is a G-graded (FHi,FHj)-bimodule.

An isomorphism condition of group gradings is also provided [9, Proposition 31], and 
a complete answer is given when the grading group is finite ([9, Theorem 34]). Moreover, 
the authors provide a description of the graded bimodules (see the section below as well). 
However, they do not describe the algebra structure on the triangular algebra, nor do 
they specify which triangular algebras can be realized as incidence algebras endowed 
with a group grading. In this paper, we answer these questions.

3. Graded bimodules

In this section, we investigate graded bimodules. The results presented here are known 
(see [9, Section 4] and also [6]). However, we propose a new approach that may shed light 
on the case where the grading group is non-abelian. In this section, we assume that the 
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base field is a splitting field for the finite abelian groups involved, so that every irreducible 
representation is 1-dimensional.

Definition 3.1. Let G be an arbitrary group, H ⊆ G a finite subgroup, 𝒱 a F -vector 
space, ρ : H → GL(𝒱) a representation of H on 𝒱, and Γ : 𝒱 =

⨁︁
g∈G 𝒱g a G-grading 

on 𝒱. We say that ρ and Γ are compatible if ρ(h)(𝒱g) ⊆ 𝒱hgh−1 for all h ∈ H and g ∈ G.

Remark 3.2. The previous definition is equivalent to the following. The vector space 𝒱
is a left FH-module and a right FG-comodule, and these structures satisfy the com
patibility condition of a Yetter-Drinfel’d module. Denote by FH𝒴𝒟FG the category in 
which the objects are Yetter-Drinfel’d left FH modules and right FG-comodules, and 
the morphisms are homomorphisms of FH-modules and FG-comodules. Therefore, from 
now on, we will simply say that 𝒱 ∈ FH𝒴𝒟FG instead of saying that 𝒱 has a pair of 
compatible G-grading and representation of H.

The following results are known:

Lemma 3.3. Let 𝒱 ∈ FH𝒴𝒟FG. Then:

(i) 𝒱 is completely reducible.
(ii) For any g ∈ Supp𝒱, the restriction ρg : CH(g) → GL(𝒱g) is a representation and 

𝒱 = IndH
CH(g)ρg.

(iii) 𝒱 is irreducible (as Yetter-Drinfel’d module) if, and only if, ρg is irreducible.

Given two subgroups H1, H2, let H12 = H1 ∩H2. Then, F(H1 ×H2) is a right FH12
module via (h1, h2) · h = (h1h, h

−1h2). The Yetter-Drinfel’d modules relate to graded 
bimodules in the following way.

Proposition 3.4. Let G be a finite group, H1, H2 ⊆ G be finite groups, H12 = H1 ∩H2
and 𝒱 ∈ FH12𝒴𝒟FG. Then

𝒱 ↑:= F(H1 ×H2) ⊗FH12 𝒱

is a G-graded (FH1,FH2)-bimodule via:

(1) h · ((h1, h2) ⊗ v) · k = (hh1, h2k) ⊗ v, h ∈ H1, k ∈ H2, (h1, h2) ⊗ v ∈ 𝒱 ↑.
(2) deg((h1, h2) ⊗ v) = h1(deg v)h2.

Proof. Given h ∈ H1, define

Lh : F(H1 ×H2) × 𝒱 → 𝒱 ↑

via Lh((h1, h2), v) = (hh1, h2) ⊗ v. We need to prove that Lh is FH12-balanced. Given 
t ∈ H12, one has
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Lh((h1, h2) · t, v) = Lh((h1t, t
−1h2), v) = (hh1t, t

−1h2) ⊗ v = (hh1, h2) ⊗ t · v
= Lh((h1, h2), t · v).

Thus, we obtain a left multiplication by h, Lh : 𝒱 ↑→ 𝒱 ↑ as in the statement. Similarly, 
we obtain a right multiplication by k ∈ H2. It is clear that the defined operations give a 
structure of bimodule on 𝒱 ↑.

We will prove that the given degree is well-defined. For this, it is enough to show that 
deg(((h1, h2) · h) ⊗ v)) = deg((h1, h2) ⊗ h · v). The first one equals deg((h1h, h

−1h2) ⊗
v) = h1h(deg v)h−1h2. On the other hand, the second one equals h1(deg(h · v))h2 =
h1h(deg v)h−1h2. Hence, the degree is well-defined. From the definition of the bimodule 
action, it is clear that 𝒱 ↑ is a graded bimodule. □

Note that we can identify 𝒱 = (1, 1)⊗𝒱 ⊆ 𝒱 ↑. Moreover, we can recover the structure 
of FH12-module in terms of the bimodule structure: given h ∈ H12, one has h · v =
h · ((1, 1) ⊗ v) · h−1.

It would be interesting to prove that 𝒱 ↑ is irreducible whenever 𝒱 is irreducible. We 
can prove this fact if we impose some extra conditions. The converse is trivially valid.

Lemma 3.5. Let G be a group, H1, H2 ⊆ G finite subgroups, and 𝒱, 𝒲 ∈ FH12𝒴𝒟FG. 
Then

(i) (𝒱 ⊕𝒲) ↑= 𝒱 ↑ ⊕𝒲 ↑.
(ii) If 𝒱 ↑ is irreducible, then so is 𝒱.
(iii) Any morphism 𝒱 → 𝒲 extends to a unique G-graded bimodule homomorphism 

𝒱 ↑→ 𝒲 ↑.

Proof. The first statement follows from the property of the tensor product. Hence, if 𝒱
is reducible, then the same is true for 𝒱 ↑, so we obtain the second statement.

For the third statement, given a morphism f0 : 𝒱 → 𝒲, then f = 1⊗f0 is a G-graded 
homomorphism of bimodules. It is unique since 𝒱 ↑ is generated by 𝒱 as a bimodule. □

Denote by FH1ModG
FH2

the category of G-graded (FH1,FH2)-bimodules. Then, 
Proposition 3.4 proves that we can associate a given 𝒱 ∈ FH12𝒴𝒟FG to 𝒱 ↑∈ FH1ModG

FH2
. 

A morphism f : 𝒱 → 𝒲 is associated to 1⊗ f : 𝒱 ↑→ 𝒲 ↑. It is not hard to see that it is 
a functor, which we will denote by ↑. Moreover, Lemma 3.5(iii) shows that the functor 
is faithful.

Next, we aim to prove that, given certain conditions on the grading group, the functor 
is essentially surjective. For this purpose, we need:

Lemma 3.6. Assume that H12 ⊆ Z(G), the center of G, and H2 (or H1) is normal in G. 
Then 𝒱 ↑ is an irreducible graded bimodule if, and only if, 𝒱 is irreducible.
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Proof. Assume that 𝒱 is irreducible. From Lemma 3.3(iii), we can find an irreducible 
representation from a subgroup of the form CH12(g) that induces 𝒱. Since H12 is central, 
it means that CH12(g) = H12. Thus, 𝒱 is an irreducible representation, so dim𝒱 = 1. 
Denote by χ : H12 → GL(𝒱) the action of H12 on 𝒱.

Let v ∈ 𝒱 ↑ be a nonzero homogeneous element of degree g ∈ G. We will prove that v
generates 𝒱 ↑ as a bimodule. Write

v =
t ∑︂

i=1 
(hi, ki) ⊗ vi, hi ∈ H1, ki ∈ H2, vi ∈ 𝒱.

Note that g = hi(deg vi)ki, for each i = 1, . . . , t. Since dim𝒱 = 1, we can write vi = λiv1, 
for each i = 1, . . . , t. In addition, since v is homogeneous, h1(deg v1)k1 = hi(deg v)ki. 
Then,

h−1
1 hi = (deg v1)k1ki(deg v1)−1 ∈ H1 ∩ ((deg v1)H2(deg v2)−1) = H12,

since H2 is normal in G. So, we can write hi = h1h
′
i, for some h′

i ∈ H12. Thus, we have

v =
t ∑︂

i=1 
(hi, ki) ⊗ vi =

t ∑︂
i=1 

(h1h
′
i, h

′−1
i h′

iki)⏞ ⏟⏟ ⏞
(h1,h′

iki)·h′
i

⊗(λiv1)

=
t ∑︂

i=1 
(h1, h

′
iki) ⊗ (λi h

′
i · v1⏞ ⏟⏟ ⏞

χ(h′
i)v1

) =
(︄
h1,

t ∑︂
i=1 

λiχ(h′
i)h′

iki

)︄
⊗ v1.

Since v is homogeneous, one has h1(deg v1)h′
1k1 = h1(deg v1)h′

iki, for each i = 1, . . . , t. 
So h′

iki = h′
1k1, for each i. Therefore,

v =
(︄
h1,

(︄
t ∑︂

i=1 
λiχ(h′

i)
)︄
h′

1k1

)︄
⊗ v1 =

(︄
t ∑︂

i=1 
λiχ(h′

i)
)︄

(h1, h
′
1k1) ⊗ v1.

Hence, FH1vFH2 = 𝒱 ↑. So, 𝒱 ↑ is irreducible. □
As a consequence, if the group G is abelian, then 𝒱 is irreducible if, and only if, 𝒱 ↑

is irreducible. From this, we can derive the following description of graded bimodules.

Theorem 3.7. Let G be an abelian group, H1, H2 ⊆ G finite subgroups, and M a G-graded 
(FH1,FH2)-bimodule. Then, there exists a unique, up to isomorphism, Yetter-Drinfel’d 
left FH12-module and right FG-comodule 𝒱 such that M ∼ = G 𝒱 ↑ (see Proposition 3.4). 
Furthermore, 𝒱 is irreducible if, and only if, 𝒱 ↑ is.

Proof. Let M be a G-graded (FH1,FH2)-bimodule. Denote by Lh and Rk the left 
multiplication by h ∈ H1 and right multiplication by k ∈ H2, respectively. Then, we 
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obtain a representation of H12 on M via h ↦→ Lh ◦ Rh−1 . Hence, M ∈ FH12𝒴𝒟FG. 
From Lemma 3.3(i), we can write M =

⨁︁
i∈I 𝒱i, where each 𝒱i is irreducible. We let 

FH1𝒱iFH2 be the graded bimodule generated by 𝒱i. Note that

F(H1 ×H2) × 𝒱i → FH1𝒱iFH2,

given by ((h1, h2), v) ↦→ h1 · v · h2 is a surjective FH12-balanced map, left FH1-linear 
and right FH2-linear. Hence, it induces a surjective G-graded bimodule homomorphism 
𝒱i ↑→ FH1𝒱iFH2. From Lemma 3.6, 𝒱i ↑ is graded-irreducible, so we obtain a G-graded 
isomorphism of (FH1,FH2)-bimodules 𝒱i ↑→ FH1𝒱iFH2. In particular, each FH1𝒱iFH2
is graded-simple. Now, it is clear that M =

∑︁
i∈I FH1𝒱iFH2. Since an intersection 

(FH1𝒱iFH2) ∩ (FH1𝒱jFH2) is a graded sub-bimodule of a graded-simple bimodule, we 
see that either FH1𝒱iFH2 = FH1𝒱jFH2 or their intersection is 0. Hence, we can find a 
subset J of I such that M =

⨁︁
j∈J FH1𝒱jFH2. Therefore, if we define 𝒱 =

⨁︁
j∈J 𝒱j , 

one has 𝒱 ∈ FH12𝒴𝒟FG and M ∼ = G 𝒱 ↑.
The uniqueness, up to isomorphism, is due to the functor FH12𝒴𝒟FG → FH1ModG

FH2

being faithful (Lemma 3.5(iii)). The last statement is proved in Lemma 3.6. □
The discussion presented in this section proves the following.

Corollary 3.8. Let G be an abelian group, H1, H2 ⊆ G be finite subgroups, and H12 =
H1 ∩ H2. Then, the functor ↑: FH12𝒴𝒟FG → FH1ModG

FH2
is faithful and essentially 

surjective on objects. □
Question. Is the statement of the previous corollary true if G is not necessarily an abelian 
group?

As a final remark, assume that G is an abelian group, let H1, H2 ⊆ G be finite 
subgroups, and H12 = H1 ∩ H2. Then, H12 is a central subgroup of G. Recall that we 
assume that F is a splitting field for H1 and H2. Hence, every irreducible 𝒱 ∈ FH12𝒴𝒟FG

has dimension 1 (see the beginning of the proof of Lemma 3.6). This means that 𝒱
is described by a choice of a character χ ∈ ˆ︃H12 and an element g ∈ G. Thus, a G
graded irreducible (FH1,FH2)-bimodule is parameterized by a pair (χ, g), where χ ∈ ˆ︃H12
and g ∈ G. Given a finite-dimensional G-graded (FH1,FH2)-bimodule M , it has a 
decomposition as a sum of graded-irreducible bimodules, each of which is parameterized 
by a pair (χ, g). Hence, we will denote

M ∼ = G [(χ1, g1), . . . , (χt, gt)].

Given a character χ ∈ ˆ︃H12, we will denote χ ∈ [M ] if χ = χi for some i ∈ {1, 2, . . . , t}. 
In this case, we write degχ = gi.

Proposition 3.9. Let G be an abelian group, H1, H2 ⊆ G be finite groups, H12 =
H1 ∩ H2, and assume that F is a splitting field for H1 and H2. Let M and M ′ be 
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G-graded (FH1,FH2)-bimodules, and denote M ∼ = G [(χ1, g1), . . . , (χt, gt)] and M ′ ∼ = G
[(χ′

1, g
′
1), . . . , (χ′

t′ , g
′
t′)]. Then M ∼ = G M ′ (as G-graded bimodules) if, and only if, t = t′, 

and there exists a permutation σ ∈ 𝒮t such that χj = χ′
σ(j) and gj ∈ H1g

′
σ(j)H2, for each 

j = 1, 2, . . . , t.

Proof. First, we will classify the isomorphism condition for a graded-simple bimodule. 
Assume that g ∈ G and χ ∈ ˆ︃H12. From definition, [(χ, g)] ∼ = 𝒱 ↑, where 𝒱 is the one
dimensional representation space of χ, and it is homogeneous of degree g. We can write 
𝒱 ↑= ⨁︁r

i=k 𝒲k, sum of graded and irreducible H12-representations. From the proof of 
Lemma 3.6, one obtains 𝒱 ↑= FH1𝒲kFH2, for each k = 1, 2, . . . , r. The degree of each 
subspace 𝒲k corresponds to some degree of [(χ, g)], which coincides with h1gh2, for some 
h1 ∈ H1 and h2 ∈ H2. Hence, [(χ, g)] ∼ = G [(χ, h1gh2)], for any h1 ∈ H1, h2 ∈ H2. In 
particular, the character of each 𝒲k is χ.

Conversely, assume that [(χ, g)] ∼ = G [(χ′, g′)]. First, we decompose each of the spaces as 
a sum of irreducible H12-representations. From the reasoning of the previous paragraph, 
we get χ = χ′. A G-graded isomorphism between the graded bimodules implies that 
g ∈ Supp[(χ′, g′)]. Thus, g ∈ H1g

′H2. Hence, [(χ, g)] ∼ = G [(χ′, g′)] if, and only if, χ = χ′

and g ∈ H1g
′H2.

Now, let M and M ′ be as in the statement, and assume we have a G-graded isomor
phism of bimodules M → M ′. A standard argument shows that t = t′ and there exists 
σ ∈ 𝒮t such that [(χj , gj)] ∼ = G [(χσ(j), gσ(j))], for each j = 1, 2, . . . , t. Hence, from the 
previous paragraph, χj = χσ(j) and gj ∈ H1g

′
σ(j)H2, for each j = 1, 2, . . . , t. □

4. Realization of graded triangular algebra

In this section, we will construct a realization of graded triangular algebras. More 
precisely, we prove the following result.

Theorem 4.1. Let G be an abelian group, H1, H2 ⊆ G be finite subgroups, and denote 
H12 = H1 ∩H2. Let χ1, . . . , χt ∈ ˆ︃H12, where χi ̸= χj for i ̸= j, and g1, . . . , gt ∈ G. 
Then, there exists a poset X and a G-grading on I(X) such that

I(X) ∼ = G

(︄
FH1 M

FH2

)︄
,

where M ∼ = G [(χ1, g1), . . . , (χt, gt)] if and only if F is a splitting field for H1 and H2.

Proof. Assume that F is a splitting field for H1 and H2. Since H12 ↪→ Hi, we have 
pi : ˆ︁Hi → ˆ︁H12.

Let X = ˆ︁H1∪̇ ˆ︁H2, and, for each j = 1, 2, . . . , t, define η1 ≾j η2 if η1 ∈ ˆ︁H1, η2 ∈ ˆ︁H2
and p1(η1) = χjp2(η2). We define η1 ≾ η2 if either η1 = η2 or η1 ≾j η2 for some j. Then 
(X,≾) is a poset. Write
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M = FH1m1FH2 ⊕ · · · ⊕ FH1mtFH2,

where each mi is homogeneous of degree gi, and hmi = χi(h)mih, for all h ∈ H12. We 

denote 𝒜 =
(︄
FH1 M

FH2

)︄
, and define ψ : 𝒜 → I(X) via

ψ

(︄
h1

h2

)︄
=

⎛⎝ ∑︂
η1∈ˆ︂H1

η1(h1)eη1

⎞⎠ +

⎛⎝ ∑︂
η2∈ˆ︂H2

η2(h2)eη2

⎞⎠ ,

and ψ(hmjk) =
∑︁

η1≾jη2
η1(h)η2(k)eη1η2 , h ∈ H1, k ∈ H2. We need to show that ψ is 

well-defined. For, it is enough to show that

ψ

(︄
h 0

0

)︄
ψ(mj) = χj(h)ψ(mj)ψ

(︄
0 0

h

)︄
,

for each h ∈ H12. We have

ψ

(︄
h 0

0

)︄
ψ(mj) =

⎛⎝ ∑︂
η1∈ˆ︂H1

η1(h)eη1

⎞⎠⎛⎝ ∑︂
η1≾jη2

eη1η2

⎞⎠
=

∑︂
η1∈ˆ︂H1

⎛⎝η1(h)
∑︂

η1≾η2

eη1η2

⎞⎠ =
∑︂

η1∈ˆ︂H1

∑︂
η1≾η2

η1(h)⏞ ⏟⏟ ⏞
(χjη2)(h)

eη1η2

=
∑︂

η2∈ˆ︂H2

∑︂
η1≾jη2

χj(h)η2(h)eη1η2 = χj(h)ψ(mj)ψ
(︄

0 0
h

)︄
.

Finally, we claim that ψ is an algebra isomorphism. It is clear that ψ is an algebra iso
morphism when restricted to the diagonal part of 𝒜. Moreover, the product of two strict 
upper elements of 𝒜 is zero. By construction, ψ satisfies ψ(hmjk) = ψ(h)ψ(mj)ψ(k). 
Hence, ψ is an isomorphism, and it induces a G-grading on I(X) isomorphic to the 
grading on 𝒜.

The converse is proven in [9, Theorem 1]. □
As a consequence, we obtain a complete classification of the graded triangular algebras 

that can be realized as a graded incidence algebra.

Proposition 4.2. Let F be a field, G an abelian group, H1, H2 ⊆ G be finite subgroups, 
M a G-graded (FH1,FH2)-bimodule, and denote M = 𝒱 ↑ (see Theorem 3.7), for some 
𝒱 ∈ FH12𝒴𝒟FG. Then (︄

FH1 M

FH2

)︄
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is realized as an incidence algebra endowed with a G-grading if, and only if, 𝒱 is a 
FH12-submodule of the regular module FH12 and F is a splitting field for H1 and H2.

Proof. One direction is the previous theorem, and the other direction is proved in [9, 
Theorems 1 and 2]. □
5. Product of bimodules

Throughout this section, let G be an abelian group, and let H1, H2, and H3 be 
finite subgroups of G. We assume that F is a splitting field for H1, H2 and H3. Define 
H123 = H1 ∩H2 ∩H3, and for 1 ≤ i < j ≤ 3, define Hij = Hi ∩Hj . We assume that X
is a poset and consider a G-grading on I(X) such that

I(X) ∼ = G

⎛⎜⎝ FH1 M12 M13
FH2 M23

FH3

⎞⎟⎠ ,

where Mij ̸= 0 is a G-graded (FHi,FHj)-bimodule. Let J(I(X)) denote the Jacobson 
radical of the algebra I(X). It is easy to see that

J(I(X)) =

⎛⎜⎝ 0 M12 M13
0 M23

0

⎞⎟⎠ .

Furthermore, the powers of the Jacobson radical give a filtration on I(X). The graded 
filtered algebra is isomorphic to the original one; that is, I(X) ∼ = G I(X)/J(I(X)) ⊕
J(I(X))/J(I(X))2⊕J(I(X))2. Moreover, it is not hard to see that J(I(X))/J(I(X))2 ∼ = 
M12 ⊕M23 and J(I(X))2 ∼ = M13. The product of the algebra gives a surjective map

J(I(X))/J(I(X))2 × J(I(X))/J(I(X))2 → J(I(X))2.

Since M2
12 = M2

23 = 0, one obtains a surjective FH2-balanced bilinear map M12×M23 →
M13. Hence, the structure of M13 is totally determined by the structures of M12 and 
M23. This discussion is another interpretation of [9, Corollary 30]. In this section, we 
will describe the structure of M13 in terms of M12 and M23. As a consequence, we will 
be able to determine which graded algebras of the above kind are realized as a graded 
incidence algebra.

Lemma 5.1. For i = 1, 2, assume that Mi,i+1 ∼ = G [(χi,i+1, gi,i+1)], and denote M13 ∼ = G
[(χk, gk) | k = 1, . . . , t]. Then χk|H123 = χ12|H123χ23|H123 , for each k = 1, . . . , t.

Proof. Consider the following commutative diagram, given by the restriction maps:
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ˆ︂H1

ˆ︃H12 ˆ︂H2

ˆ︃H23 ˆ︂H3ˆ︁H123

ˆ︃H13

p12

p21

p23

p32p1

p3p13

p31
p2

Let χi ∈ [M13] and η1 ∈ ˆ︂H1. Let η3 ∈ ˆ︂H3 be such that p13(η1) = χip31(η3). Then 
η1 ≾ η3. Let η2 ∈ ˆ︂H2 be such that η1 ≾ η2 and η2 ≾ η3. It means that one has

p12(η1) = χ12p21(η2), p23(η2) = χ23p32(η3).

Applying p3 to the first equation, we obtain

p3 ◦ p12(η1)⏞ ⏟⏟ ⏞
p2◦p13(η1) 

= p3(χ12p21(η2)) = p3(χ12) p3 ◦ p21(η2)⏞ ⏟⏟ ⏞
p1◦p23(η2) 

= p3(χ12)p1(χ23)p1 ◦ p32(η3).

Since p2 ◦ p13(η1) = p2(χip31(η3)), we get χi|H123 = (χ12|H123)(χ23|H123). □
We use the construction of the poset given in Theorem 4.1. So X = ˆ︂H1∪̇ˆ︂H2∪̇ˆ︂H3. As 

in [9], given η ∈ X, we denote

ℓ(ˆ︂Hi, η) = |{ηi ∈ ˆ︂Hi | ηi ≾ η}|,
ℓ(η, ˆ︂Hj) = |{ηj ∈ ˆ︂Hj | η ≾ ηj}|,

ℓ(ˆ︂Hi, ˆ︂Hj) = |{(ηi, ηj) | ηi ∈ ˆ︂Hi, ηj ∈ ˆ︂Hj , ηi ≾ ηj}|.

Note that, if i < j, then dimF Mij = ℓ(ˆ︂Hi, ˆ︂Hj). Moreover, [9, Lemma 16] proves that, 
for any ηi ∈ ˆ︂Hi and ηj ∈ ˆ︂Hj , one has

ℓ(ˆ︂Hi, ˆ︂Hj) = |Hi|ℓ(ηi, ˆ︂Hj) = |Hj |ℓ(ˆ︂Hi, ηj). (1)

In addition, if Mij is irreducible, then dimF Mij = |Hi||Hj |
|Hij | ([9, Theorem 2]).

We start proving the result by imposing a particular restriction.
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Lemma 5.2. For i = 1, 2, assume that Mi,i+1 ∼ = G [(χi,i+1, gi,i+1)]. If

ℓ(ˆ︂H1, ˆ︂H3) ≥ |H1||H3|
|H123| ,

then

M13 ∼ = G [(χ, g12g23) | χ|H123 = χ12|H123χ23|H123 ].

Proof. As remarked above, and from the hypothesis, one has

dimF M13 = ℓ(ˆ︂H1, ˆ︂H3) ≥ |H1||H3|
|H123| .

On the other hand, we can decompose M13 = M1 ⊕ · · · ⊕ Mt, as a sum of graded
irreducible bimodules. From [9, Theorem 2], one has dimF Mi = |H1||H3|

|H13| , for each i. 
Hence,

|H1||H3|
|H123| ≤ dimF M13 = t

|H1||H3|
|H13| .

It means that t ≥ |H13| 
|H123| . On the other hand, from Lemma 5.1, each χ ∈ [M13] belongs 

to the set {χ ∈ ˆ︃H13 | χ|H123 = (χ12|H123) (χ23|H123)}, so t ≤ |{χ ∈ ˆ︃H13 | χ|H123 =
(χ12|H123) (χ23|H123)}|. However, the above set is a translation of the kernel of the re
striction map ˆ︃H13 → ˆ︁H123. Hence,

|{χ ∈ ˆ︃H13 | χ|H123 = (χ12|H123) (χ23|H123)}| = |H13| 
|H123| ≤ t.

Thus, the above is an equality, and every element of {χ ∈ ˆ︃H13 | χ|H123 =
(χ12|H123) (χ23|H123)} should appear in [M13]. □

As a consequence, we obtain:

Lemma 5.3. If H3 ⊆ H2, then

M13 ∼ = G [(χ, (degχ12)(degχ23)) | χ|H123 = (χ12|H123)(χ23|H123),

χ12 ∈ [M12], χ23 ∈ [M23]].

Proof. From the bilinearity of the product and Lemma 5.1, we may assume that 
Mi,i+1 ∼ = G [(χi,i+1, gi,i+1)], for i = 1, 2. Since H3 ⊆ H2, one has H123 = H13. Let 
M ⊆ M13 be a graded-irreducible bimodule. From the previous discussion, we obtain

dimF M13 ≥ dimF M = |H1||H3|
|H13| = |H1||H3|

|H123| .
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Hence, the result follows from Lemma 5.2. □
Now, we will investigate another situation where the result is valid.

Lemma 5.4. If H2 ⊆ H3, then

M13 ∼ = G [(χ, (degχ12)(degχ23)) |χ|H123 = (χ12|H123)(χ23|H123),

χ12 ∈ [M12], χ23 ∈ [M23]].

Proof. Since H2 ⊆ H3, one has H12 = H123. Again, we may assume that Mi,i+1 ∼ = G
[(χi,i+1, gi,i+1)], for i = 1, 2. For i = 2, 3, denote by pi : ˆ︂Hi → ˆ︃H23 the restriction map. 
Since H3 ⊆ H2, one has H23 = H2; so ˆ︂H2 = ˆ︃H23. Then, p2 is the identity map. If η3 ∈ ˆ︂H3
and η2, η′2 ∈ ˆ︂H2 are such that η2 ≾ η3 and η′2 ≾ η3, then

η2 = p2(η2) = χ23p3(η3) = p2(η′2) = η′2.

It means that ℓ(ˆ︂H2, η3) = 1. Thus, (1) gives ℓ(η2, ˆ︂H3) = |H3|/|H2|. Now, for each η1 ≾ η3
(ηi ∈ ˆ︂Hi), there exists a unique η2 ∈ ˆ︂H2 such that η1 ≾ η2 ≾ η3. Hence,

ℓ(ˆ︂H1, ˆ︂H3) =
∑︂

η2∈ˆ︃H2

ℓ(ˆ︂H1, η2)ℓ(η2, ˆ︂H3) = ℓ(ˆ︂H1, ˆ︂H2)ℓ(η2, ˆ︂H3)

= |H1||H2|
|H12| 

|H3|
|H2| = |H1||H3|

|H123| 

The result follows from Lemma 5.2. □
Next, we need to construct an auxiliary result.

Lemma 5.5. Let G be an abelian group, H1, H2 ⊆ G finite subgroups, and M a G-graded 
(FH1,FH2)-bimodule, where the characters that appear in the parametrization of M are 
pairwise distinct. Then, there exists a poset X ′ and a G-grading on X ′ such that

I(X ′) ∼ = G

⎛⎜⎝ FH1 M ′ M

FH12 1

FH2

⎞⎟⎠ ,

where M ′ is the G-graded (FH1,FH12)-bimodule having the same characters as M , and 
1 ∼ = G [(1, 1)] as G-graded (FH12,FH2)-bimodules, where the first 1 : H12 → F× denotes 
the trivial character.

Proof. We let X ′ = ˆ︂H1∪̇ˆ︃H12∪̇ˆ︂H2. Let ˆ︂K1 = ˆ︂H1, ˆ︂K2 = ˆ︃H12 and ˆ︁K3 = ˆ︂H2. For i < j, we 
will denote
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Mij = Span{eηiηj
| ηi ∈ ˆ︂Ki, ηj ∈ ˆ︂Kj , ηi ≾ ηj}.

We give the G-grading on I(X ′) in such a way that the diagonal part of I(X ′) is FH1 ⊕
FH12 ⊕ FH2. Applying Theorem 4.1 twice we can construct the poset structure on X ′

in such a way that M12 = M ′ and M23 = 1, as G-graded bimodules. Now, Lemma 5.4
guarantees that we can impose a structure of G-graded bimodule on M13 so that it 
coincides with M . Again, from Lemma 5.4, the given G-grading on I(X ′) is a well
defined structure of G-graded algebra. □

Now, we are in a position to state the main result of this section.

Theorem 5.6. Let G be an abelian group, and let H1, H2, H3 ⊆ G finite subgroups, and 
for i ≤ j, let Hij = Hi ∩Hj and Mij be a G-graded (FHi,FHj)-bimodule. Let X be a 
poset and consider a G-grading on I(X) such that

I(X) ∼ = G

⎛⎜⎝ FH1 M12 M13
FH2 M23

FH3

⎞⎟⎠ .

Then χ ∈ [M13] if, and only if, there exist χ12 ∈ [M12] and χ23 ∈ [M23] such that 
χ|H123 = (χ12|H123) (χ23|H123). In each of these cases, one has degχ = (degχ12)(degχ23).

Proof. As before, we may assume, without loss of generality, that Mi,i+1 ∼ = G [(χi,i+1, 
gi,i+1)], for i = 1 and i = 2. We replace the poset X with a larger poset X ′, as in 
Lemma 5.5, in such a way that

I(X ′) ∼ = G

⎛⎜⎜⎜⎝
FH1 M12 N M13

FH2 M ′
23 M23

FH23 1

FH3

⎞⎟⎟⎟⎠ .

Since H23 ⊆ H2, Lemma 5.3 describes the structure of N as the extensions of the product 
of the characters of M12 and M ′

23. Restricting to the graded subalgebra

⎛⎜⎝ FH1 N M13
FH23 1

FH3

⎞⎟⎠ ,

then Lemma 5.4 characterizes the structure of M13 as the extensions of the characters 
of N . □
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6. Final remarks

We summarize the results obtained so far. Thus, we obtain the following structure of 
finite-dimensional graded algebras that may be realized as an incidence algebra endowed 
with a group grading.

Theorem 6.1. Let F be a field, G an abelian group, H1, . . . , Ht ⊆ G finite subgroups, for 
i < j, let Mij be a G-graded (FHi,FHj)-bimodule (which can be 0). Denote Hij = Hi∩Hj

and Hijk = Hi ∩Hj ∩Hk, and denote Mij = 𝒱ij ↑, where 𝒱ij ∈ FHij
𝒴𝒟FG. Let

𝒜 =

⎛⎜⎜⎜⎜⎝
FH1 M12 . . . M1t

FH2
. . .

...
. . . Mt−1,t

FHt

⎞⎟⎟⎟⎟⎠ .

Then, there exists a poset X and a G-grading on I(X) such that I(X) ∼ = G 𝒜 if and only 
if:

(1) For each i = 1, . . . , t, charF does not divide |Hi| and F contains a primitive expHi
root of 1,

(2) 𝒱ij is a FHij-submodule of the regular module FHij,
(3) For each i < j < k such that Mij ̸= 0 and Mjk ̸= 0, one has:

(a) for each χ ∈ [Mik], there exists χij ∈ [Mij ] and χjk ∈ [Mjk] such that χ|Hijk
=

(χij |Hijk
)(χjk|Hijk

) and degχ = (degχij)(degχjk),
(b) for each χ ∈ ˆ︃Hik such that there exists χij ∈ [Mij ] and χjk ∈ [Mjk] satisfying 

χ|Hijk
= (χij |Hijk

)(χjk|Hijk
), one has χ ∈ [Mik].

Proof. Condition (1) is necessary and sufficient for F to be a splitting field for each group 
algebra FHi. Condition (2) provides a construction of the graded bimodules above the 
diagonal (Proposition 4.2). Condition (3) ensures that the grading is consistent with a 
group grading on an incidence algebra (Theorem 5.6).

Conversely, the conditions (1) and (2) are obtained in [9, Theorems 1 and 2]. The 
condition (3) is due to Theorem 5.6. □

Given a poset (ℰ ,≤), recall that we say that y covers x if x ≤ y, x ̸= y, and x ≤ z ≤ y

implies that either x = z or z = y. In this case, we denote x⋖ y.
We will parameterize a group grading on an incidence algebra by a triple ((ℰ ,≤), 

{Hi}i∈ℰ , {Mij}i⋖j), where (ℰ ,≤) is a poset, each Hi is a finite abelian subgroup of G
and Mij is a G-graded (FHi,FHj)-bimodule. The characters of Mij are pairwise distinct. 
Let μi ∈ ˆ︂Hi, μj ∈ ˆ︂Hj and denote Mij

∼ = G [(χ1, g1), . . . , (χt, gt))]. We define μiMijμj as 
the G-graded (FHi,FHj)-bimodule
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μiMijμj
∼ = G [((μi|Hij

)χ1(μj |Hij
), g1), . . . , ((μi|Hij

)χt(μj |Hij
), gt)].

Although there is no restriction on the characters that may appear, the degrees must 
be consistent with condition (3) of Theorem 6.1; i.e., if i ⋖ j ⋖ ℓ and i ⋖ k ⋖ ℓ, then 
for each equation χij |Hχjℓ|H = χik|Hχkℓ|H , where H = Hi ∩ Hj ∩ Hk ∩ Hℓ, one has 
deg(χij) deg(χjℓ) = deg(χik) deg(χkℓ).

The isomorphism classes of group gradings on incidence algebras are known. We state 
the result using our terminology for completeness.

Theorem 6.2. Let G be an abelian group, and let Γ and Γ′ be G-gradings on finite
dimensional incidence algebras, parameterized by ((ℰ ,≤), {Hi}i∈ℰ , {Mij}i⋖j) and 
((ℰ ′,≤), {H ′

i}i∈ℰ′ , {M ′
ij}i⋖j), respectively. Then Γ ∼ = Γ′ if, and only if, there exists a 

poset isomorphism α : ℰ → ℰ ′ and a set of characters (μi)i∈ℰ , χi ∈ ˆ︂Hi, such that:

(1) H ′
i = Hα(i), for each i ∈ ℰ,

(2) Mij
∼ = G μi(Mα(i),α(j))μj, for each i⋖ j (see Proposition 3.9).

Proof. This is a restatement of [9, Theorem 34]. □
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