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many important classes of algebras, including the simple finite-dimensional associative,
Lie, and Jordan algebras (see the monograph [5] and the references therein).

Advancements in the classification of group gradings on non-simple algebras have
also been made, as seen in the articles [2,4,7]. In particular, the complete classification
of isomorphism classes of group gradings on the algebra of upper triangular matrices
is given in the works [3,11]. As a generalization of these algebras, the description of
group gradings on incidence algebras is provided in the paper [9], and their isomorphism
classes are described when the grading group is abelian. Their main result states that
every group grading on a finite-dimensional incidence algebra is graded isomorphic to
a graded upper triangular algebra. Although the authors characterize the structure of
graded bimodules, there is no description of the algebra structure of the upper triangular
algebra.

In this paper, we complete the work initiated in [9] and, in particular, answer the
last question of the paper. We provide a complete description of group gradings on a
given incidence algebra. Moreover, we classify the finite-dimensional graded algebras that
can be realized as an incidence algebra endowed with a group grading. As a byproduct,
we investigate the structure of graded bimodules and elucidate a connection between
Yetter-Drinfel’d modules and graded bimodules.

This paper is organized as follows. In Section 2, we give the basic definitions concerning
group gradings, incidence algebras, and the description of group gradings on incidence
algebras given in [9]. In Section 3, we investigate the structure of graded bimodules,
proposing a new approach to the theory. The following section is devoted to classifying
the graded triangular algebras that can be realized as an incidence algebra endowed with
a group grading (Proposition 4.2). An explicit construction of the poset is also provided
(Theorem 4.1). The last section is dedicated to studying the product of bimodules that
occurs in an incidence algebra. We prove that the characters appearing in a product of
bimodules should be extensions of the product of the characters (Theorem 5.6). Finally,
in the last section, we summarize the results obtained, characterizing the graded algebras
that can be realized as graded incidence algebras (Theorem 6.1).

2. Preliminaries
2.1. Group gradings

Let G be a group and A an F-algebra. We will use the multiplicative notation for
the group G and denote its neutral element by 1. A G-grading on A is a vector space
decomposition

A=P A,
geG

such that Ay A, C Ay, for all g,h € G. If A has a fixed G-grading, we say that A is
G-graded. The component A, is called the homogeneous component of degree g, and its
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nonzero elements are said to be homogeneous of degree g. Given z € A4, with x # 0, we
denote degg @ = g. A subspace S C A is called graded if S = @ ;S NAy. A graded
subalgebra (or ideal) is a subalgebra (or ideal) that is a graded subspace. The support
of the graded algebra A is Supp A= {g € G | A,y # 0}.

If B is another G-graded algebra, then a homomorphism of G-graded algebras is a
homomorphism of algebras ¢ : A — B such that ¢(A,) C By for all g € G. If ¢ is
an algebra isomorphism, then A and B are said to be G-graded isomorphic, denoted by
A = B. A complete reference on the subject of graded algebras is the monograph [5].

Let A and B be G-graded algebras. Let M be an (A, B)-bimodule, and assume that
M has a G-grading, say M = D .o My. We say that M is a G-graded (A, B)-bimodule
if AnMgB C Mpgi for all h,g,k € G. If N is another G-graded (A, B)-bimodule, a
G-graded homomorphism of bimodules is a bimodule homomorphism f : M — N such
that f(M,) C N, for all g € G. If f is bijective, we say that M and N are G-graded
isomorphic and denote M =4 N.

A graded triangular algebra is an algebra of the form

A M
B
where A and B are G-graded algebras, and M is a G-graded (A, B)-bimodule.

2.2. Incidence algebras

We provide the definition of an incidence algebra over a field F. Let (X, <) be any
partially ordered set (poset, for short). Assume that (X, <) is locally finite, i.e., for all
x,y € X, there exists a finite number of z € X such that x < z < y. Define I(X) = {f :
XxX —F| f(z,y) =0,Vz £ y}. Then I(X) has a natural sum (point-wise sum) and
natural scalar multiplication, which give I(X) the structure of an F-vector space. For
f,9 € I(X), we define h = f-g as the function h such that h(z,y) = > .y f(z,2)g(2,y).
Note that the only possibly nonzero elements in the previous sum are the z € X such
that < z < y; hence, since X is locally finite, the sum is well-defined. So h € I(X).
It is straightforward to prove that I(X), with the defined operations, is an associative
algebra. The algebra I(X) is called an incidence algebra.

Given z <y, we let ey be the element such that

eny(w,2) = 1, ifz=wandy=z,
PRI 0, otherwise

Note that eyyew, = dywes.. We will denote e, := eyy.
Note that the defined multiplication on [(X) is similar to the product of matri-
ces. Moreover, if X is totally ordered and contains n elements, then I(X) = UT,,, the
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algebra of upper triangular matrices. In connection, if (X, <x) is arbitrary (not nec-
essarily totally ordered) and finite with n elements, then we can rename the elements
of X ={1,2,...,n} in such a way that ¢« <x j implies ¢ < j in the usual ordering of
the integers. With this identification, we see that I(X) C UT,, is a subalgebra. Thus,
finite-dimensional incidence algebras are subalgebras of UT,, containing all the diagonal
matrices. As we are interested in finite-dimensional incidence algebras, we will assume
from now on that I(X) C UT,,.

The incidence algebras are very interesting on their own, and moreover, they are re-
lated to other branches of Mathematics. They also give rise to interesting and challenging
combinatorial problems. For an extensive theory on incidence algebras, see, for instance,
the book [10].

2.8. Group gradings on incidence algebras

In this subsection, we recall the main results of [9]. It describes the group gradings on
finite-dimensional incidence algebras. More precisely, they prove:

Theorem 2.1 (9, Theorem 1]). LetF be a field, X a finite poset, and let I(X) be endowed
with a G-grading. Assume at least one of the following conditions: charF = 0, charF >
dim I(X), or G is abelian. Then, up to a graded isomorphism, there exist finite abelian
subgroups Hy,...,H; C G, such that: for each i = 1,...,t, charF does not divide |H,|
and F contains a primitive exp H;-root of 1, and

FH, M, ... My,

I(X) =g i ;
M1,
FH,

where each M; ; is a G-graded (F H;,F H;)-bimodule.

An isomorphism condition of group gradings is also provided [9, Proposition 31], and
a complete answer is given when the grading group is finite ([9, Theorem 34]). Moreover,
the authors provide a description of the graded bimodules (see the section below as well).
However, they do not describe the algebra structure on the triangular algebra, nor do
they specify which triangular algebras can be realized as incidence algebras endowed
with a group grading. In this paper, we answer these questions.

3. Graded bimodules

In this section, we investigate graded bimodules. The results presented here are known
(see [9, Section 4] and also [6]). However, we propose a new approach that may shed light
on the case where the grading group is non-abelian. In this section, we assume that the
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base field is a splitting field for the finite abelian groups involved, so that every irreducible
representation is 1-dimensional.

Definition 3.1. Let G be an arbitrary group, H C G a finite subgroup, V a F-vector
space, p : H — GL(V) a representation of H on V, and I" : V = @QGG V, a G-grading
on V. We say that p and I" are compatible if p(h)(Vy) € Vygp-1 forall h € H and g € G.

Remark 3.2. The previous definition is equivalent to the following. The vector space V
is a left F H-module and a right FG-comodule, and these structures satisfy the com-
patibility condition of a Yetter-Drinfel’d module. Denote by gy YDFY the category in
which the objects are Yetter-Drinfel’d left F H modules and right FG-comodules, and
the morphisms are homomorphisms of F H-modules and F G-comodules. Therefore, from
now on, we will simply say that V € g u VDY instead of saying that V has a pair of
compatible G-grading and representation of H.

The following results are known:

Lemma 3.3. Let V € ]FH;))D]FG. Then:

(i) V is completely reducible.
(ii) For any g € SuppV, the restriction py : Cr(g) — GL(V,) is a representation and
V = IndgH(g)pg.
(iii) V is drreducible (as Yetter-Drinfel’d module) if, and only if, pg is irreducible.

Given two subgroups Hy, Ha, let Hio = Hy N Ha. Then, F(H; x Hs) is a right F H;o-
module via (hi,hs2) - h = (hih,h™'hy). The Yetter-Drinfel’d modules relate to graded
bimodules in the following way.

Proposition 3.4. Let G be a finite group, Hi, Ho C G be finite groups, Hyo = H1 N Ho
and V € g, YD¥C. Then

V= F(Hl X Hg) QF Hy o 1%

is a G-graded (F Hy,TF Hy)-bimodule via:

(1) h- ((hl,hg) ®’U> -k = (hhl,hzk) ®’U, h e Hl, ke HQ, (hhhg) KU e VT
(2) deg((h1,hs) ® v) = hi(degv)hs.

Proof. Given h € Hy, define
LhZ]F(Hl XHQ) XV—)VT

via Lp((h1, ha),v) = (hhi, he) ® v. We need to prove that Lj is F Hys-balanced. Given
t € Hys, one has
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Li((h1,ho) - t,v) = L ((hit,t " hy),v) = (hhit,t ‘hy) @ v = (hhy, hy) @t -v
= Lh((hl, hg), t- ’U).

Thus, we obtain a left multiplication by h, Ly, : V1— V1 as in the statement. Similarly,
we obtain a right multiplication by k € Hj. It is clear that the defined operations give a
structure of bimodule on V1.

We will prove that the given degree is well-defined. For this, it is enough to show that
deg(((h1, ho) - h) ®v)) = deg((h1,h2) ® h - v). The first one equals deg((hih, h" hy) ®
v) = hih(degv)h~thy. On the other hand, the second one equals hi(deg(h - v))hy =
hih(degv)h~1hy. Hence, the degree is well-defined. From the definition of the bimodule
action, it is clear that V1 is a graded bimodule. O

Note that we can identify V = (1,1)®V C V1. Moreover, we can recover the structure
of F His-module in terms of the bimodule structure: given h € His, one has h - v =
h-((1,1)®@wv)-h L

It would be interesting to prove that V1 is irreducible whenever V is irreducible. We
can prove this fact if we impose some extra conditions. The converse is trivially valid.

Lemma 3.5. Let G be a group, H1, Hy C G finite subgroups, and V, W € Fley'D]FG.
Then

i) Vew)t=vtaewt.
(ii) If V71 is irreducible, then so is V.
(iii) Any morphism V — W extends to a unique G-graded bimodule homomorphism

V1— W1.

Proof. The first statement follows from the property of the tensor product. Hence, if V
is reducible, then the same is true for V1, so we obtain the second statement.

For the third statement, given a morphism fy : V — W, then f = 1® fj is a G-graded
homomorphism of bimodules. It is unique since V1 is generated by V as a bimodule. O

Denote by g, Mod§ 1, the category of G-graded (FH;,F Hy)-bimodules. Then,
Proposition 3.4 proves that we can associate a given V € ]FHIZL)J’D]FG to V1€ Fm, ModgHQ.
A morphism f:V — W is associated to 1 ® f : V1— W1, It is not hard to see that it is
a functor, which we will denote by 1. Moreover, Lemma 3.5(iii) shows that the functor
is faithful.

Next, we aim to prove that, given certain conditions on the grading group, the functor
is essentially surjective. For this purpose, we need:

Lemma 3.6. Assume that Hio C Z(QG), the center of G, and Hy (or Hy) is normal in G.
Then V1 is an irreducible graded bimodule if, and only if, V is irreducible.
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Proof. Assume that V is irreducible. From Lemma 3.3(iii), we can find an irreducible
representation from a subgroup of the form Cp,,(g) that induces V. Since Hyg is central,
it means that Cp,,(g) = Hio. Thus, V is an irreducible representation, so dimV = 1.
Denote by x : Hi2 — GL(V) the action of Hy5 on V.

Let v € V71 be a nonzero homogeneous element of degree g € G. We will prove that v
generates V1 as a bimodule. Write

t
U:Z(hi;ki)®via hiEHl,kiGHQ,'UiGV.

i=1
Note that g = h;(degv;)k;, for each i = 1,...,t. Since dim ¥V = 1, we can write v; = A\;v1,
for each ¢ = 1,...,¢. In addition, since v is homogeneous, hi(degvi)k; = h;(degv)k;.
Then,

hith; = (degvy)kik;(degvy) ™t € Hy N ((degvy)Ha(degva) ™) = Hia,

since Hj is normal in G. So, we can write h; = hih}, for some h] € Hyo. Thus, we have

t t
v=> (hi,k) @vi =Y (hah}, hi" hik;) @(Aivy)

i— S

i=1 i=1 (hu,hlko)-h,

t t

= (h1, ki) @ (Ni hf - 01) = <h1, ZA,-X(h;)h;ki> ® vy
i=1 —~ i—1
x(h})v1

Since v is homogeneous, one has hy(degvi)hik; = hi(degvy)hik;, for each i = 1,... ¢

So hlk; = hiky, for each i. Therefore,

t t
V= <h1, (Z AiX(%)) hi/ﬁ) Qv = (Z AiX(%)) (h1, hik1) @ vi.
i=1 i=1
Hence, F HivF Hy = V1. So, V1 is irreducible. O

As a consequence, if the group G is abelian, then V is irreducible if, and only if, V1
is irreducible. From this, we can derive the following description of graded bimodules.

Theorem 3.7. Let G be an abelian group, Hy, Hy C G finite subgroups, and M a G-graded
(F H,,F Hs)-bimodule. Then, there exists a unique, up to isomorphism, Yetter-Drinfel’d
left F Hio-module and right FG-comodule V such that M =g V1 (see Proposition 3./).
Furthermore, V is irreducible if, and only if, V71 is.

Proof. Let M be a G-graded (FH;,F Hy)-bimodule. Denote by L; and Ry the left
multiplication by h € H; and right multiplication by k € Hs, respectively. Then, we
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obtain a representation of Hio on M via h — Lj o R;-1. Hence, M € ]FHIZJJ’D]FG.
From Lemma 3.3(i), we can write M = &,.; Vs, where each V; is irreducible. We let
IFH,V;F Hy be the graded bimodule generated by V;. Note that

]F(Hl X HQ) xV; - FHV;FHs,

given by ((h1,h2),v) — hy - v - he is a surjective F His-balanced map, left F H;-linear
and right IF Ho-linear. Hence, it induces a surjective G-graded bimodule homomorphism
V;t— FH1V;F Hs. From Lemma 3.6, V;1 is graded-irreducible, so we obtain a G-graded
isomorphism of (F Hy,F Hs)-bimodules V; T— F H1 V,;F Hs. In particular, each F H; V;F Hy
is graded-simple. Now, it is clear that M = Ziel FH,V;F Hy. Since an intersection
(FHV;F Hy) N (F H,V;F Hy) is a graded sub-bimodule of a graded-simple bimodule, we
see that either F H,V;F Hy = FH;V;F Hy or their intersection is 0. Hence, we can find a
subset J of I such that M = P, ; FH1V;F H,. Therefore, if we define V = @, ; V;,
one has V € ]FHHJJD]FG and M =4 V7T.

The uniqueness, up to isomorphism, is due to the functor leyD]FG — F, Modg Hy
being faithful (Lemma 3.5(iii)). The last statement is proved in Lemma 3.6. O

The discussion presented in this section proves the following.

Corollary 3.8. Let G be an abelian group, Hy, Hy C G be finite subgroups, and Hyo =
Hy N Hy. Then, the functor 1: FHH)}DFG — ]FHlMod]BCfH2 s faithful and essentially
surjective on objects. 0O

Question. Is the statement of the previous corollary true if G is not necessarily an abelian
group?

As a final remark, assume that G is an abelian group, let Hy, Hy C G be finite
subgroups, and Hyo = Hy N Ha. Then, His is a central subgroup of G. Recall that we
assume that [ is a splitting field for H; and Hs. Hence, every irreducible V € g HmyDFG
has dimension 1 (see the beginning of the proof of Lemma 3.6). This means that V
is described by a choice of a character xy € f/Il\Q and an element g € G. Thus, a G-
graded irreducible (F Hy, F Hs)-bimodule is parameterized by a pair (x, g), where x € Hys
and ¢ € G. Given a finite-dimensional G-graded (FH;,[FHj)-bimodule M, it has a
decomposition as a sum of graded-irreducible bimodules, each of which is parameterized
by a pair (x, g). Hence, we will denote

M =¢ [(x1,91),- -5 (Xt, 9¢)]-

Given a character x € ﬁ\u, we will denote x € [M] if x = x; for some i € {1,2,...,t}.
In this case, we write deg x = g;.

Proposition 3.9. Let G be an abelian group, Hy, Ho C G be finite groups, His =
Hi N Hy, and assume that F is a splitting field for Hy and Hs. Let M and M’ be
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G-graded (F Hq,F Hy)-bimodules, and denote M =g [(x1,691),---,(Xt,9¢)] and M' =g
(X1 90)s s (Xhygi)]. Then M =g M’ (as G-graded bimodules) if, and only if, t =,
and there exists a permutation o € Sy such that x; = X:,(j) and g; € ng;(j)Hg, for each
j=1,2,...,t.

Proof. First, we will classify the isomorphism condition for a graded-simple bimodule.
Assume that g € G and x € Hys. From definition, [(x,9)] =2 V1, where V is the one-
dimensional representation space of y, and it is homogeneous of degree g. We can write
V1= @._, Wk, sum of graded and irreducible Hjs-representations. From the proof of
Lemma 3.6, one obtains V1= F Hy Wi Hy, for each k = 1,2,...,r. The degree of each
subspace W, corresponds to some degree of [(x, g)], which coincides with hy ghs, for some
hi € Hy and he € Hy. Hence, [(x,9)] Za [(x, higha)], for any hy € Hy, hy € Hy. In
particular, the character of each Wy is x.

Conversely, assume that [(x, )] =g [(X', ¢’)]. First, we decompose each of the spaces as
a sum of irreducible Hps-representations. From the reasoning of the previous paragraph,
we get ¥ = x'. A G-graded isomorphism between the graded bimodules implies that
g € Supp((x’, ¢')]- Thus, g € Hig'H>. Hence, [(x,9)] = [(X',¢")] if, and only if, x = x’
and g € H1g'H,.

Now, let M and M’ be as in the statement, and assume we have a G-graded isomor-
phism of bimodules M — M’. A standard argument shows that ¢t = ¢’ and there exists
o € & such that [(x;,95)] Zc [(Xo(j)s 9o())]s for each j = 1,2,...,t. Hence, from the
previous paragraph, x; = X,(;) and g; € ng('j(j)Hg, foreach j =1,2,...,t. O

4. Realization of graded triangular algebra

In this section, we will construct a realization of graded triangular algebras. More
precisely, we prove the following result.

Theorem 4.1. Let G be an abelian group, Hi, Hy C G be finite subgroups, and denote
Hiyy = HiNHy. Let x1, ..., Xt € Hia, where x; # xj fori # j, and g1, ..., g € G.
Then, there exists a poset X and a G-grading on I(X) such that

FH M
I(X) =g ( ' IFH2>’

where M Z¢ [(x1,91), - -5 (X, 9¢)] if and only if F is a splitting field for Hy and Hs.

Proof. Assume that F is a splitting field for H; and Hs. Since Hyo — H;, we have
pi: ﬁl — ﬁlg\ R R R

Let X = H1UH,, and, for each j = 1,2,....¢t, define ny Z; ne if y1 € Hy, n2 € Ho
and p1(m) = x;p2(n2). We define 11 3 g if either 11 =1 or n1 3; 12 for some j. Then
(X, 3) is a poset. Write
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M=FHmFHy ®--- ®FH;mF Hy,

where each m; is homogeneous of degree g;, and hm; = x;(h)m;h, for all h € Hy5. We

denote A = (FHl Fj\é ), and define ¢ : A — I(X) via
2

¢<h1 h2> = Z nl(hl)em + Z 772(h2)€n2 )

77167'1\1 ?726;1\2

and Y(hm;k) = Zn1'<j772 m(h)n2(k)en n,, h € Hq, k € Hy. We need to show that ¢ is
well-defined. For, it is enough to show that

h O 0 0
{0 ( 0) P(my) = x;(h)y(m;)y ( h) ,

for each h € H15. We have

() <h 8) w(mj) = Z Ul(h)em Z Eninz

meH; UINTLZ

= 20 (m®) X e | = 30 3 m) enm

. < T =
meH; nin2 ni€H, MIN2 (x;12)(R)

> Xj(h)’h(h)emnz=xj<h>w<mj>¢<0 2)

na€Hay M 3572

Finally, we claim that 1 is an algebra isomorphism. It is clear that 1) is an algebra iso-
morphism when restricted to the diagonal part of A. Moreover, the product of two strict
upper elements of A is zero. By construction, ¢ satisfies ¢¥(hm k) = ¥ (h)y(m;)(k).
Hence, v is an isomorphism, and it induces a G-grading on I(X) isomorphic to the
grading on A.

The converse is proven in [9, Theorem 1]. O

As a consequence, we obtain a complete classification of the graded triangular algebras
that can be realized as a graded incidence algebra.

Proposition 4.2. Let F be a field, G an abelian group, Hi, Hy C G be finite subgroups,
M a G-graded (F Hy,F Hs)-bimodule, and denote M = V1 (see Theorem 3.7), for some

Ve gy, VDY, Then
FH, M
F H,



H.S. Dos Santos, F.Y. Yasumura / Linear Algebra and its Applications 726 (2025) 275-290 283

is realized as an incidence algebra endowed with a G-grading if, and only if, V is a
F H5-submodule of the reqular module F Hy5 and F is a splitting field for Hy and Hs.

Proof. One direction is the previous theorem, and the other direction is proved in [9,
Theorems 1 and 2]. O

5. Product of bimodules

Throughout this section, let G be an abelian group, and let H;, Hs, and Hs be
finite subgroups of G. We assume that F is a splitting field for Hy, Hy and Hs. Define
Hip3 = Hy N HyN Hs, and for 1 <i < j <3, define H;; = H; N H;. We assume that X
is a poset and consider a G-grading on I(X) such that

FHl M12 MlS
I(X) 2 FHy Mo |,
F Hs

where M;; # 0 is a G-graded (F H;,F H;)-bimodule. Let J(I(X)) denote the Jacobson
radical of the algebra I(X). It is easy to see that

0 My M3
J(I(X)) = 0 Moy
0

Furthermore, the powers of the Jacobson radical give a filtration on I(X). The graded
filtered algebra is isomorphic to the original one; that is, I(X) g I(X)/J(I(X)) &
J(I(X))/J(I(X))?®J(I(X))?. Moreover, it is not hard to see that J(I(X))/J(I(X))? =
Mo @ Mas and J(I(X))? = M3. The product of the algebra gives a surjective map

JI(X))/TUI(X))? x J(I(X))/I(I(X))* = J(I(X)).

Since Mf2 = M223 = 0, one obtains a surjective F Ha-balanced bilinear map M5 x Mag —
Mi3. Hence, the structure of M3 is totally determined by the structures of Mjs and
Ms3. This discussion is another interpretation of [9, Corollary 30]. In this section, we
will describe the structure of M3 in terms of Mo and Ms3. As a consequence, we will
be able to determine which graded algebras of the above kind are realized as a graded
incidence algebra.

Lemma 5.1. For i = 1,2, assume that M; ;11 Z¢ [(Xi,i+1, Gii+1)], and denote Mi3z =g
[(Xk,gk) | kK =1,...,t]. Then Xk|H,0s = X12|H12s X23|Hyas, for each k=1,... t.

Proof. Consider the following commutative diagram, given by the restriction maps:
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P13 b3 Db23
—— M — D32 —~
Hios Hos Hs
2
P P31
Hys

Let x; € [My3] and ny € I/{\l Let n3 € ]/{?3 be such that p13(n1) = xips1(n3). Then
m 3 1. Let ne € Hy be such that 11 3 12 and 72 3 n3. It means that one has

plz(Th) = X12p21(772), P23(772) = X23P32(T)3)-

Applying ps to the first equation, we obtain

ps3 o p12(7h) = p3(X12p21(772)) = p3(X12)p3 o p21(772) = p3(X12)p1(X23)p1 0p32(773)-
N———— N—————

p20p13(N1) p1op23(n2)
Since pa 0 p13(m) = p2(Xip31(13)), We get Xilm,,s = (X12]Hins) (X23|H12s). O

We use the construction of the poset given in Theorem 4.1. So X = EUI/{\QUE), As
in [9], given n € X, we denote
C(Hi,m) = {ni € Hi [ mi I n}l,
€(n, Hy) = {n; € H; [ n T n;}l,
U(H;, Hy) = [{(ni,ny) | mi € Hyymy € Hy, mi 35
Note that, if ¢ < j, then dimg M;; = K(fl\l,f[\]) Moreover, [9, Lemma 16] proves that,
for any n; € H; and n; € Hj, one has
U(H;, Hy) = |H;|(n;, Hy) = [H;[(Hy,ny5). (1)

In addition, if M;; is irreducible, then dimg M;; = Fl%l ([9, Theorem 2)).

We start proving the result by imposing a particular restriction.
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Lemma 5.2. For i = 1,2, assume that M; ;11 Z¢ [(Xii+1, 9ii+1)]- If

[ H || Hs|

O(Hy, Hy) > ,
( 1 3)_ ‘nggl

then
Mz =¢ [(Xv912923) | X‘Hua = X12|H123X23|H123]'

Proof. As remarked above, and from the hypothesis, one has

|Hy|[Hs|

dimg My3 = ((H,, H3) > :
| H123]

On the other hand, we can decompose M3 = My & --- & My, as a sum of graded-

irreducible bimodules. From [9, Theorem 2|, one has dimg M; = |7}{H153|, for each 1.
Hence,
[Hq||Hs| _ | H1||Hs)
——— < dimp M3 =t—————.
| H123] ! | H3]
It means that ¢ > 2L On the other hand, from Lemma 5.1, each X € [Mis] belongs
[Hi23]

to the set {X € His | X‘Hna = (X12|H123)(X23|H123)}’ so t < ‘{X € His ‘ X|H123 =
(X12|H105) (X23|H,05) }|. However, the above set is a translation of the kernel of the re-
striction map Hy3 — H23. Hence,

— |H13|
‘{X € His ‘ X|H123 = (XlQ‘H123) (X23|H123)}| = <t
| H123]
Thus, the above is an equality, and every element of {x € I/J\lg | X|H1os

(X12‘H123) (X23|H123)} should appear in [M13]' ]

As a consequence, we obtain:

Lemma 5.3. If H3 C Hs, then

M3 =¢ [(Xa (degX12)(deg X23)) ‘X|H123 = (X12|H123)(X23|H123),
X12 € [Mia], xo3 € [Ma3]].

Proof. From the bilinearity of the product and Lemma 5.1, we may assume that

Miiv1 =a [(Xiit1,gijit1)], for @ = 1,2, Since H3 C Hj, one has Hip3 = Hys. Let

M C M3 be a graded-irreducible bimodule. From the previous discussion, we obtain
|H1||Hs| _ |Hi||Hs|

dim]p M13 Z dim]p M = = .
|H13| |H123|
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Hence, the result follows from Lemma 5.2. 0O
Now, we will investigate another situation where the result is valid.

Lemma 5.4. If H, C Hj, then

M3 =¢ [(Xv (degX12)<degX23)> |X‘H123 = (X12|H123)(X23‘H123>7
X12 € [Mia], X253 € [Mas]].

Proof. Since Hy C Hj, one has Hys = Hys3. Again, we c ay assume that M, ;11 Z¢
[(X4,i+15 Gi,i+1)], for i = 1,2. For i = 2, 3 denote by p; : H — H23 the restriction map.
Since Hgz C H27 one has Hoz = HQ, SO H2 H23 Then, ps is the identity map. If n3 € H3
and 19, 0} € H2 are such that 7y < 73 and 0} 3 73, then

n2 = p2(n2) = x23p3(n3) = P2(n3) = 75

It means that E(I/{\g,ng) = 1. Thus, (1) gives £(n2, ;I\g,) = |Hs|/|Hz2|. Now, for each ;1 3 13
(n; € H;), there exists a unique 72 € Hy such that 1, 3 12 3 n3. Hence,

((Hy, H) = > 0(Hy,m2)l(n2, H) = ((Hy, Hy){(no, H)
7]267{—;
| Ha||He| |Hs| | Hl|Hs

|Hia| [Hol | H 23]

The result follows from Lemma 5.2. O
Next, we need to construct an auxiliary result.

Lemma 5.5. Let G be an abelian group, H1, Hy C G finite subgroups, and M a G-graded
(F Hy,F Hs)-bimodule, where the characters that appear in the parametrization of M are
pairwise distinct. Then, there exists a poset X' and a G-grading on X' such that

FH, M M
I(X'") =g FHi, 1T |,
F H,

where M’ is the G-graded (F Hy,F Hys)-bimodule having the same characters as M, and
1 =¢ [(1,1)] as G-graded (F Hya,F Ha)-bimodules, where the first 1 : Hia — F* denotes
the trivial character.

Proof. We let X' = I/{\luﬁl\gul/{\g Let I/(\l = f/l\l, [/(\2 = 1?1\2 and K3 = I/{\g For i < j, we
will denote



H.S. Dos Santos, F.Y. Yasumura / Linear Algebra and its Applications 726 (2025) 2753-290 287
M;j = Span{ey,n, | ni € Ki,n; € Kj, n; T n;}.

We give the G-grading on I(X’) in such a way that the diagonal part of I(X') is FH; &
FHys & F Hy. Applying Theorem 4.1 twice we can construct the poset structure on X'
in such a way that Mis = M’ and Ms3 = 1, as G-graded bimodules. Now, Lemma 5.4
guarantees that we can impose a structure of G-graded bimodule on Mi3 so that it
coincides with M. Again, from Lemma 5.4, the given G-grading on I(X') is a well-
defined structure of G-graded algebra. 0O

Now, we are in a position to state the main result of this section.

Theorem 5.6. Let G be an abelian group, and let Hi, Ho, H3 C G finite subgroups, and
fori <j, let H; = H; N H; and M;; be a G-graded (FH;,F H;)-bimodule. Let X be a
poset and consider a G-grading on I(X) such that

FHy My M3
I(X) =¢ FHy Moas
F H,

Then x € [Mis] if, and only if, there exist x12 € [Mi2] and x23 € [Mag] such that
X|Hyas = (X12|Hins) (X23| 8,05 ) - In €ach of these cases, one has deg x = (deg x12)(deg x23).

Proof. As before, we may assume, without loss of generality, that M; ;11 Za [(Xi,i+1,
Gii+1)], for i = 1 and i = 2. We replace the poset X with a larger poset X', as in
Lemma 5.5, in such a way that

FH, M2 N Mg
]FH2 Mé3 M23

]FH23 1
IFHg

I(X') =g

Since Ho3 C Hs, Lemma 5.3 describes the structure of N as the extensions of the product
of the characters of Mj2 and Mj,. Restricting to the graded subalgebra

FH, N M
FHyy 1 |,
FH,

then Lemma 5.4 characterizes the structure of Mi3 as the extensions of the characters
of N. O
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6. Final remarks

We summarize the results obtained so far. Thus, we obtain the following structure of
finite-dimensional graded algebras that may be realized as an incidence algebra endowed
with a group grading.

Theorem 6.1. Let F be a field, G an abelian group, Hy, ..., H, C G finite subgroups, for
i < j, let M;; be a G-graded (F H;, F H;)-bimodule (which can be 0). Denote H;; = H;,NH,
and Hyj, = Hy N H; N Hy, and denote M;; = Vi; T, where Vy; € ]FHiij]FG. Let

FH, My ... My
IF H. :
A= 2
M1,
FH,

Then, there exists a poset X and a G-grading on 1(X) such that I1(X) =g A if and only
if:

(1) Foreachi=1,...,t, charF does not divide |H;| and F contains a primitive exp H;-
root of 1,
(2) Vi; is a F H;j-submodule of the regular module F H;;,
(3) For each i < j <k such that M;; # 0 and M, # 0, one has:
(a) for each x € [M,;], there exists x;j € [M;;] and x;i € [Mji] such that x|u
(Xijl #50) Xk | 1,50 ) and deg x = (deg xi7)(deg X)),
(b) for each x € Hy, such that there exists Xij € [Mi;] and xji € [Mji] satisfying
Xl = (gl ) (G|, one has x € [Mig].

ijk

Proof. Condition (1) is necessary and sufficient for F to be a splitting field for each group
algebra F H;. Condition (2) provides a construction of the graded bimodules above the
diagonal (Proposition 4.2). Condition (3) ensures that the grading is consistent with a
group grading on an incidence algebra (Theorem 5.6).

Conversely, the conditions (1) and (2) are obtained in [9, Theorems 1 and 2]. The
condition (3) is due to Theorem 5.6. O

Given a poset (&, <), recall that we say that y covers v ifx <y, z #y,andz <z <y
implies that either z = z or z = y. In this case, we denote x < y.

We will parameterize a group grading on an incidence algebra by a triple ((&€, <),
{H;}ice, {Mij}i<;), where (£,<) is a poset, each H; is a finite abelian subgroup of G
and M;; is/im G—grad/e\d (FH,,F Hj)-bimodule. The characters of M;; are pairwise distinct.
Let p; € H;, p; € H; and denote M;; =¢ [(x1,91),---, (Xt g¢))]- We define p; M;;p; as
the G-graded (F H;, F H;)-bimodule
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:u’iMijﬂ‘j =a [((/J’i|Hij)X1(/‘Lj|Hij)791)7 cey ((ui'Hij)Xt(luj|Hij)7gt)]'

Although there is no restriction on the characters that may appear, the degrees must
be consistent with condition (3) of Theorem 6.1; ie., if i < j < ¢ and i < k < ¢, then
for each equation xijlmXjel#r = XiklmXkelm, where H = H; N H; N Hy N Hy, one has
deg(x;) deg(x;e) = deg(xir) deg(Xxe)-

The isomorphism classes of group gradings on incidence algebras are known. We state
the result using our terminology for completeness.

Theorem 6.2. Let G be an abelian group, and let T' and TV be G-gradings on finite-
dimensional incidence algebras, parameterized by ((€,<),{H;}ice,{Mi;}i<;j) and
(&, <), {H]}icer, {M;}i<j), respectively. Then T' = TV if, and only if, there exists a
poset isomorphism « : £ — &' and a set of characters (u;)ice, Xi € E, such that:

(1) Hj = Hu, for eachi € &,
(2) Mij Za pi(Magy,ae))ty, for each i < j (see Proposition 3.9).

Proof. This is a restatement of [9, Theorem 34]. O
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