
VIS-NIR-SWIR spectroscopy in sugarcane (Saccharum officinarum L.) cultivation for phytosanitary purposes.

Ciência Rural, v.55, n.3, 2025.

1

VIS-NIR-SWIR spectroscopy in sugarcane (Saccharum officinarum L.)
cultivation for phytosanitary purposes

Espectroscopia  VIS-NIR-SWIR  na  cultura  da  cana-de-açúcar  (Saccharum officinarum L.)
para  fins  fitossanitários

Natália  Correr  Ré1*    Carlos  Augusto  Alves  Cardoso  Silva1

Ana  Karla  da  Silva  Oliveira1    Matheus  Luís  Caron1

Matheus  Sterzo  Nilsson1    Daniel  Garbellini  Duft1    Peterson  Ricardo  Fiorio1

ISSNe 1678-4596
Ciência Rural, Santa Maria, v.55:3, e20230484, 2025                                                        

Received 09.07.23      Approved 07.01.24      Returned by the author 08.31.24
CR-2023-0484.R2

Editors:  Alessandro Dal’Col Lúcio    Jeronimo de Araujo Filho

 http://doi.org/10.1590/0103-8478cr20230484

INTRODUCTION

The sugarcane production chain has been 
gaining ground in Brazilian agribusiness along with 
increased demand for renewable energy (MEDINA & 
POKORNY, 2022). In a more current scenario, global 
sugarcane cultivation in 2017 was recorded with a 
production of 1841 million tons (Mt), with Brazil 
holding the position of main producer, with almost 
41% of this production, followed by India and China 
(SILALERTRUKSA & GHEEWALA, 2020). Thus, 
sugar cane is considered one of the great alternatives 

for the biofuels sector (TURDERA, 2013). This topic 
has greater importance and engagement, especially 
as concern about global warming and dependence on 
fossil fuels grows (CANABARRO et al., 2023).

Concurrent with the expansion of areas 
with sugarcane cultivars, problems related to pest 
attacks can cause losses to the sector. One of the 
main pests responsible for part of this economic loss 
is the species Diatraea saccharalis, also known as 
sugarcane borer (FOGLIATA et al., 2022; OLIVEIRA 
et al., 2022). The borer D. saccharalisis an insect 
that presents holometabolic development, that is, 
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ABSTRACT: One of the causes of productivity loss in sugarcane cultivation has been associated with the species Diatraea saccharalis, also 
known as the sugarcane borer. Therefore, this study evaluated the feasibility of using hyperspectral sensors to obtain the leaf spectral response 
of sugarcane in different periods of infestation at leaf and canopy levels to diagnose D. saccharalis damage in advance. The study included 
three varieties of sugarcane: CTC9003BT, CTC4, and RB966928. The insecticide Altacor® was used to control pestsin half of the plots. Data 
collection occurred at the following stages: sprouting, tillering, stalke longation, and early maturation. Data regarding relative water content 
(RWC), leaf spectral signature in the laboratory and canopy, vegetation indices (NDVI and MCARI), productivity, purity, and total recoverable 
sugar (TRS) were collected to evaluate the borer effects on the sugarcane crop. The highest RWC was observed for CTC9003BT (60.15%) 
without insecticide and 59.0% with insecticide. The visible (400-680 nm) and near-infrared (750-1300 nm) spectral bands identified spectral 
variations in plants with and without sugarcane borer. The percentage of sugarcane borer showed high and negative correlations between 
productivity, NDVI, and TRS, with coefficients of -0.68, -0.76, and -0.76, respectively. The NDVI and MCARI indices effectively detect plants 
under stress, but their variation is influenced by multiple factors, making it difficult to associate them with a single problem (sugarcane borer).
Key words: sensing, spectroscopy, Diatraea saccharalis.

RESUMO: Uma das causas de perda de produtividade em lavouras de cana está associada à espécie Diatraea saccharalis, também conhecida 
por broca da cana. Portanto, este estudo avaliou a viabilidade do uso de sensores hiperespectrais para obter a resposta espectral foliar da cana-
de-açúcar em diferentes períodos de infestações, tanto a nível foliar quanto dossel, a fim de diagnosticar antecipadamente os danos da Diatraea 
saccharalis. O estudo contou com três variedades de cana-de-açúcar: CTC9003BT, CTC4 e RB966928. Em metade das parcelas foi utilizado 
o inseticida Altacor® para o controle de pragas. As coletas de dados ocorreram nas fases: brotação, perfilhamento, crescimento de colmos e 
início da maturação. Para avaliar os efeitos da broca na cana foi coletado os dados referentes ao conteúdo relativo de água (CRA), assinatura 
espectral foliar em laboratório e dossel, índices de vegetação (NDVI e MCARI), produtividade, pureza e ATR (Açúcar Total Recuperável). O 
maior CRA encontrado foi para a CTC9003BT (60,15%) sem inseticida e 59,0% com inseticida. As faixas espectrais do visível (400-680 nm) 
e infravermelho próximo (750-1300 nm) identificaram variações espectrais nas plantas com e sem broca. O percentual de broca apresentou 
correlações altas e negativas entre a produtividade, NDVI e ATR, com coeficientes de -0,68, -0,76 e -0,76, respectivamente. Os índices NDVI e 
MCARI foram eficazes na detecção de plantas sob estresse, contudo, sua variação é influenciada por múltiplos fatores, sendo difícil associá-los 
a um único problema (broca).
Palavras-chave: sensoriamento, espectroscopia, Diatraea saccharalis.
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it undergoes complete metamorphosis during its 
development, as it goes through the stages of egg (4 
to 9 days), larva (40 to 60 days), pupa (9 to 14 days), 
and adult (5 to 7 days), with the total cycle reaching 
59 to 90 days (CARBOGNIN et al., 2023). The attack 
by this species occurs during the larval phase, which 
results in a reduction in stalk weight, a decrease in 
sucrose content, an increase in tillers, stalk breakage 
by the wind, and aerial rooting (CARBOGNIN, 2019; 
CTC, 2017). Overall, losses caused by the sugarcane 
borer reach 5 billion reais per year due to the reduction 
in agricultural and industrial productivity and sugar 
quality and insecticide costs (CTC, 2017).

Investments in genetic improvement have 
grown in recent years, mainly with the dissemination 
of Bt (Bacillus thuringiensis) technology, aiming to 
maximize sugarcane productivity and guarantee food 
security. This technology aims to reduce production 
costs, preserve biodiversity in treated areas, and obtain 
resistance to insect pests in agricultural systems. 
The Bt gene has already been used in the Center-
South region of Brazilto contain D. saccharalis. In 
addition to the Bt gene, the sugarcane borer control 
involves strategies for monitoring and predicting the 
occurrence of target stages (CTC, 2021). However, 
there are difficulties in sampling newly hatched 
eggs and larvae, in addition to adversities in field 
monitoring (CARBOGNIN, 2019). In this case, 
hyperspectral VIS–NIR–SWIR sensing represents 
a strategy that can help identify D. saccharalis 
infestations in sugarcane fields through changes in 
leaf spectral reflectance. This technique has shown 
potential when used to assess damage caused by 
Bemisia tabaci (Gennadius) on soybean (BARROS 
et al., 2021), Nilaparvata lugens (brown planthopper) 
on rice (LIU & SUN, 2016; PRASANNAKUMAR 
et al., 2014), and Aphis gossypii (aphid) on cotton 
(CHEN et al., 2018). Most of these studies could 
identify variations in the leaf spectra of plants that 
were infected.

The study of the spectral behavior of targets 
is conducted in laboratory and field experiments, and 
the radiometric quantity used to express this behavior 
is given by a measurement capable of estimating their 
reflectance. In the case of vegetation, the average curve 
of photosynthetically active vegetation is separated 
into three spectral regions: visible–VIS (350-720 
nm), near-infrared-NIR (720-1300 nm), and short-
wave infrared-SWIR (1300-2500 nm), depending on 
the factors that condition their behavior (MORAES 
NOVO, 2010). In this sense, the use of VIS-NIR-
SWIR hyperspectral data in the search for more 
detailed answers beyond the simple categorization of 

infestation versus non-infestation has been promising 
(BARROS et al., 2021). It occurs because the capture 
of electromagnetic energy reflected by vegetation 
at the leaf or canopy level helps identify changes 
in the physiological behavior of the plant, chemical 
composition, and physical properties of plant 
tissues (BAUER, 1985), consequently analyzing the 
vegetation vigor (FIORIO et al., 2024).

In this context, would it be possible to use a 
hyperspectral sensor in sugarcane cultivation to assess 
the discriminatory capacity of the spectral response 
between healthy varieties and those infected by D. 
saccharalis? Based on this question, this research 
analyzed the spectral response of the sugarcane 
varieties CTC9003BT (genetically modified), CTC4, 
and RB966928 in different periods of D. saccharalis 
infestations in the leaves and canopy to diagnose 
borer damage to sugarcanein advance.

MATERIALS   AND   METHODS

Location and characterization of the study area
This study was conducted with the support 

of the Sugarcane Technology Center (CTC) in one 
of its experimental areas on the Santa Maria farm, 
located in the municipality of Cesário Lange-SP, 
Brazil, between the geographic coordinates 23º11′20″ 
south latitude and 47º51′34″ west longitude. The 
local climate is Cwa, according to the Köppen 
climate classification (ALVARES et al., 2013; 
ASSUMPÇÃO et al., 2020). The experiment was 
set up in November 2021 with plots differentiated 
by varieties. Each plot consisted of six rows 12 m 
long and 6 m wide. The insecticide Altacor® was 
also used in half of the plots to control pests. This 
study was conducted in the 2021/2022 growing 
season, with the first harvest of the trial in October 
2022. Three varieties of sugarcane were included 
in the study: CTC9003BT (genetically modified), 
CTC4, and RB966928. Data collections were chosen 
to cover the following sugarcane developmental 
stages: sprouting (December 2021), tillering (January 
2022), stalk elongation (March 2022), and early 
maturation (April 2022), as shown in figure 1.

According to the Technical Leaflet, 
CTC9003BT is recommended for planting in type 
A, B, and C production environments and is usually 
harvested between April and September. Resistance 
to D. saccharalis, adaptability to mechanized 
harvesting, rare flowering, high values of tons of 
sugarcane per hectare (TSH) and total recoverable 
sugar (TRS), and long industrial processing period 
(IPP) stand out for this variety. The CTC4 variety 
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is recommended for type A, B, C, and D production 
environments, standing out high TSH, adaptability 
to mechanized harvesting, and high tillering. Greater 
tolerance to sugarcane rust in plant cane is achieved 
by avoiding planting in January and February, while it 
is suggested not to extend the harvest from September 
for ratoon cane (CTC, 2021). The RB966928 variety 
presents excellent germination in plant cane, very 
good sprouting in ratoon cane, high tillering with 
excellent inter-row closure, high agricultural 
production, medium IPP, and early to medium 
maturity (RIDESA, 2010).

Acquisition of hyperspectral data (leaf and canopy)
The spectral curves were obtained using 

20 leaves collected per plot for each variety. This 
procedure was repeated at the sprouting, tillering, stalk 
elongation, and early maturation stages. For collection 
standardization purposes, the leaves chosen for analysis 
were the “+1” described in the literature as a diagnostic 
leaf for sugarcane, which is the first leaf with the 
separation point between the leaf blade and the sheath 
(FIORIO et al., 2024). After collection, the leaves were 
packed in plastic bags with their respective identification 
and placed in a thermal box with ice to maintain their 
turgidity until they were taken to the laboratory of 
geoprocessing. The journey from the experimental area 
to the laboratory lasted, on average, one hour.

The spectral reading of the leaves was 
obtained in the laboratory using the Fieldspec® 
spectroradiometer (ASD - Analytical Spectral Devices 

Inc., Boulder, CO, USA), which measures reflectance 
between 350 and 2500 nm, with a spectral resolution 
of 1nmfrom 350 to 1000 nm and 2 nm from 1000 to 
2500 nm, with a 25° field of view. The spectrometer 
was turned on for 30 minutes before readings to 
warm up and stabilize the halogen lamp present in the 
equipment. Furthermore, calibration was performed 
with the Lambertian plate present in the sensor’s leaf 
clip. The calibration procedure was repeated every 
five readings to ensure data uniformity.

After reading all 240 leaves, the spectral 
data were exported to the software ViewSpec Pro 
(ASD - Analytical Spectral Devices Inc., Boulder, 
CO, USA), responsible for converting them into 
reflectance. Furthermore, the data were pre-processed 
in Microsoft Excel® and the wavelengths from 350 to 
449 nm and 2450 to 2500 were removed aiming to 
suppress noise. Therefore, the final curve covered the 
lengths from 450 to 2450 nm.

A Hand Held 2 spectroradiometer (ASD - 
Analytical Spectral Devices, Boulder, USA), which 
is a portable passive hyperspectral sensor that works 
with wavelengths from the visible to near-infrared 
spectrum (325 to 1075 nm), with a 3-nmspectral 
resolution, was used in the field at the end of the 
experiment and only in the fourth collection (April 
2022) for sensing the plant canopy. The instrument 
was attached to a ruler to reach the vegetation canopy. 
The sensor was calibrated after every five readings 
with the white barium sulfate (BaSO4) plate, which 
corresponds to 100% reflectance.

Figure 1 - Experimental area at the following stages: A) sprouting/December 2021, B) tillering/January 2022, C) stalk elongation/
March 2022, and D) early maturation/April 2022; E) sketch of the trial (plot number in red).
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Similar to the data obtained from 
Fieldspec®, all 240 readings were exported to the 
software ViewSpec Pro (ASD - Analytical Spectral 
Devices Inc., Boulder, CO, USA) and converted into 
reflectance. The data was pre-processed in Microsoft 
Excel® and wavelengths from 325 to 399 nm and post-
800nm were removed to reduce noise. Therefore, the 
final curve included lengths from 400 to 800 nm.

Determination of relative water content (RWC)
Water availability is a determining factor 

in plant productivity (LASSALLE, 2021) and 
relative water content (RWC) can be one of the 
parameters used to estimate the amount of water 
in a leaf (STRABELI et al., 2023). Therefore, all 
leaves were cut before weighing the samples using 
a 25-mm diameter circular scrapbook hole punch 
to standardize the process. The fresh weight of leaf 
samples (FW in grams) was measured to determine 
RWC. Subsequently, the leaves were stored in a 
plastic bag containing distilled water for 24 hours and 
their turgid weight (TW in grams) was measuredat the 
end of the process. Finally, the last step consisted of 
drying all the samples inside a previously perforated 
paper bag at a temperature of 70 °C in an oven for 
72 hours and weighing them again to obtain the dry 
weight (DW in grams).

                                                 (1)
where RWC is the relative water content (%), FWis 
the leaf fresh weight (g), TW is the turgid weight (g), 
and DW is the dry weight (g).

Red-edge normalized difference vegetation index - 
NDVI(705)

The red-edge normalized difference 
vegetation index (NDVI 705), calculated as a linear 
combination of spectral reflectance at 750 and 705 nm, 
is designed for hyperspectral data. NDVI utilizes the 
bands along the red edge and is sensitive to changes in 
chlorophyll content and leaf structure. Furthermore, 
NDVI detects subtle variations in bio-optical 
responses caused by the diseased canopy (KUNDU 
et al., 2021). The most common applications include 
precision agriculture, forest monitoring, forest fires, 
and plant stress detection (CUNDILL et al., 2015). 
The NDVI was determined by Equation (2). The 
index value varies from −1 to 1. This step was only 
applied to canopy hyperspectral data referring to the 
fourth collection.

                                            (2)
in which R(750) and R(705) represent the spectral 

reflectance in the bands of 750 nm (near infrared) and 
705 nm (red edge), respectively.

Modified chlorophyll absorption ratio index (MCARI)
The modified chlorophyll absorption ratio 

index (MCARI) (DAUGHTRY, 2000) quantifies 
small canopy-scale changes in chlorophyll for 
different stress levels and damage sites (Equation 3) 
(MULLA, 2013; ZHAO et al., 2023). Low MCARI 
values are attributed to high leaf chlorophyll 
concentration (WU et al., 2008). This step was only 
applied to canopy hyperspectral data from the fourth 
collection.

 

                          (3)
where R(700), R(670), and R(550) represent the 
spectral reflectance in the bands of 700 nm (near 
infrared), 670 nm (red), and 550 nm (green), 
respectively.

Assessment of Diatraea saccharalis infestation and 
harvest

The final assessment of D. saccharalis 
infestation was performed by the CTC team. The 
sugarcane borer infestation intensity was estimated 
by collecting and evaluating 100 stalks (or more) per 
plot to measure the number of borer internodes and 
total internodes (GALLO et al., 2002).

                    (4)
The occurrence of infestation was 

recognized visually throughout the four collections, 
and, in these cases, a blue ribbon was tied to the stalk 
to facilitate identification. The mechanized harvest 
was performed on October 19, 2022, and TSH and 
TRS data were obtained.

Pearson’scorrelation (r) and principal component 
analysis (PCA)

Pearson’s correlation was calculated 
between the variables of productivity, purity, 
TRS, vegetation indices (NDVI and MCARI), and 
percentage of infestation. The coefficient r is a 
statistical measure of linear correlation between two 
quantitative variables, which ranges from -1 to 1. 
The closer to 1, the correlation is positive, and the 
variables increase together linearly; when close to 
-1, the correlation is negative. While one variable 
increases, the other decreases, and a coefficient equal 
to or close to 0 (zero) indicates no correlation.
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Qualitative analyses are conducted to 
detect nuances across the electromagnetic spectrum. 
It covers aspects such as variations in reflectance 
intensities (albedo) and detection of absorption 
patterns. Principal component analysis is among the 
most common ones for hyperspectral data (BARROS 
et al., 2021; SILVA et al., 2023). PCA is a linear 
orthogonal transformation, which modifies the original 
dataset into a compressed dataset of uncorrelated 
variables, known as principal components (PCs) 
(SILVA JUNIOR; PACHECO, 2021). Therefore, PCA 
is a technique used to reduce the dimensionality of 
datasets and increase interpretability without losing 
information. Analyses using boxplot and Pearson’s 
correlation were conducted using the software 
RStudio.

RESULTS   AND   DISCUSSION

Principal component analysis (PCA)
Principal components (PCs) 1, 2, and 3 

represented at least 97% of the reflectance variance 
of the hyperspectral data. PC1 presented values of 
73.10%, 71.00%, 74.40%, 84.00%, and 85.80%, PC2 
of 16.34%, 19.50%, 17.10%, 9.60%, and 12.20%, 
and PC3 of 7.90%, 7.10%, 6.40%, 4.30%, and 0.76% 
for the first (leaf), second (leaf), third (leaf), fourth 
(leaf), and fourth (canopy) collection, respectively 
(Figure 2).

Similarly, RIBEIRO (2022) worked with 
the varieties IACSP 01-3127 and IACSP 95-5094, 
used components 1 and 2 (98.57% and 0.72% of 
the observed variance, respectively), and separated 

the varieties, but the materials overlapped each 
other. SILVA et al. (2023) worked with nutritional 
K stress in sugarcane and found in the principal 
component analysis that PC1 and PC2 explained 
97% of the reflectance variance. TAVARES (2017) 
studied reflectance spectroscopy in response to 
nitrogen fertilization in sugarcane and obtained at 
least 99% variation in PCA with just PC1 and PC2. 
FRANCESCHINI et al. (2013) obtained a result 
of 75.8% of the spectral variability in PC1 for the 
evaluation of soil texture by reflectance spectroscopy, 
and part of the radiometric data was strongly related 
to clay and sand contents.

Figure 3 (A, B, C, and D) shows the 
scatterplots of the scores and the behavior of loadings 
in components 1, 2, and 3 obtained from the spectral 
curves for the four collections of hyperspectral data 
from the leaves. Considering the phenological stage 
of the first collection (sprouting and emergence) and 
that the leaf area was still very narrow, the loadings 
in PC1 showed influence across the entire spectrum, 
with peaks close to 1400 nm in the first maximum 
of absorption by water in the mid-infrared. PC2 also 
showed peaks close to the mid-infrared and close to 
the water absorption bands in the mid-infrared (1950 
and 2450 nm). For CP3, the most influential loadings 
occurred in the visible region (450-700 nm), with 
peaks close to 670 and 680 nm, the beginning of the 
red-edge region, as well as participation in the three 
absorption maxima by water (1400, 1950, and 2450 
nm) (Figure 3A).

In the second collection (Figure 3B), PC1 
behaved similarly to the previous one, as the loadings 

Figure 2 - Percentages of principal components (PC) 1, 2, and 3, in the collections conducted 
on 12/3/2021 (leaf), 1/21/2022 (leaf), 3/22/2022 (leaf), 4/28/2022 (leaf), and 
4/28/2022 (canopy).
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also showed predominance throughout the spectrum, 
with ends close to 1400 nm and around 1700 nm, 
and at 1450 and 1950 (in the water absorption bands) 
practically throughout the mid-infrared, with the least 
influential bands being observed in the visible (450-
700 nm). PC2 showed maximum values close to 900 
nm in the near-infrared and around 2000 nm in the 
mid-infrared. The behavior in PC3 was the same as that 
identified in the first collection, but with a little more 
influence on the three maxima of absorption by water 
(1400, 1950, and 2450 nm) and influential loadings in 
the visible region (450-700 nm), with peaks near 670 
and 680, the beginning of the red-edge region.

The third collection showed once again the 
PC1 trend across the entire spectrum. PC2 manifested 
a little more, albeit minimally, in the visible region, 
with peaks around 900 nm in the near-infrared and 
1400 nm in one of the water absorption bands. 
However, it reappeared close to 2000 nm in the mid-
infrared. The PC3 trend was practically identical to 
the second collection in the visible region (450-700 
nm), with peaks in loadings close to 670 and 680, 
the beginning of the red-edge region, but with a low 
influence on the first water absorption band at 1400 
nm (Figure 3C).

Finally, the PC1 loadings for the fourth 
collection - leaf (Figure 3D) showed an even more 
regular influence across the entire spectrum when 
compared to the other collections. This time, PC2 
had peaks in the red-edge region (750 nm), located 
between the visible and near-infrared regions, in 
addition to a certain influence on the first water 
absorption band at 1400 nm. Furthermore, PC3 
presented valleys at 450 nm and 670, while there was 
a jump in the red edge, specifically at 710 nm, and a 
higher influence in the near-infrared compared to the 
other collections.

The behavior of the loadings in the 
canopy data (Figure 4) was studied separately, as 
the wavelength at which the sensor works is shorter, 
and the range analyzed was from 400 to 900 nm. As 
observed, the loadings of PC1 and PC2 had a regular 
influence on the entire spectrum, corresponding to 
98% of the spectral variability. A certain peak of PC1 
was observed around 730 nm in the red-edge range 
as PC2 presented a valley in this same near-infrared 
region. Furthermore, the highest influence for PC3, 
equivalent to only 0.76% variation, was in the visible 
region (with peaks at 400nm) and around 670 nm 
(near infrared).

Figure 3 - Behavior of loadings in the A) first, B) second, C) third, and D) fourth collections. Prin 1, 2, and 3 represent the 
loadings for the principal components PC1, PC2, and PC3, respectively, indicating the contribution of each original 
variable to the respective component.
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Descriptive analysis of spectral curves
Figure 5 (A, B, C, and D) shows the 

leaf spectral behavior of the four collections. The 
reflectance values in the visible region (400 to 700 nm) 
for the first collection (December 3, 2021) (Figure 5A) 
did not differ much and were more subtle, whereas 
the range of 700 to 1300 nm (near infrared) showed 
the highest discrepancy between plots. However, the 
leaves in this first collection were still narrow and the 
central vein made readings difficult, which may have 
influenced the lack of uniformity of the data, as the 
plants were at the sprouting/emergence stage under 
the same water conditions and without the presence 
of the sugarcane borer in the crop.

The reflectance values in the visible 
region (400 to 700 nm) in the second collection 
(January 1, 2022) (Figure 5B) were more disparate 
when compared to the first collection. Plots 1 and 2 
(both CTC9003BT) were those that reflected least 
in the visible region, signs of healthier leaves, as the 
amount of radiation reflected by plants is inversely 
related to the radiation absorbed by plant pigments 
and varies with the wavelength of the incident 
radiation (MULLA, 2013). Plant pigments, such as 
chlorophyll, strongly absorb radiation in the visible 
spectrum from 400 to 700 nm (PINTER et al., 2003). 
Moreover, plot 2 recorded a lower reflectance factor 
at the wavelength of 1950 nm, that is, as water absorbs 
electromagnetic radiation, plants with higher water 

content in the leaf show a lower reflectance factor at 
this length (STRABELI et al., 2020, 2023).

For the third collection (March 22, 2022) 
(Figure 5C), plots 1 and 2 (CTC9003BT) absorbed more 
than the other plots in the visible region. Conversely, 
plot 6 (CTC4) reflected the most in the same region. 
The near-infrared range (700 to 1300 nm), a region 
influenced by the internal leaf structure (SINCLAIR et 
al., 1971), showed changes in the reflectance intensity 
between plots. For plots 4 and 11, the decrease in 
absorption of electromagnetic energy at 970 and 1200 
nm is noticeable, being associated with leaf water 
content (ZHANG et al., 2010). Plots 3 and 9 showed 
the highest absorbance in the mid-infrared, specifically 
in the region where the maximum absorption by water 
is found (1400 and 1950 nm), indicating a higher 
water concentration in the leaf. It occurred because a 
strong increase of reflectance around 1450 and 1950 
nm symbolizes a modification in the water status of 
stressed plants (JONG et al., 2012).

The plots in the fourth and final collection 
of leaves (Figure 5D) behaved similarly in the 
visible region (400 to 700 nm) compared to the other 
collections. In the near-infrared region, plots 1 and 2 
(CTC9003BT), 3 and 4 (CTC9003BT Altacor), and 
6 (CTC4) presented reflectance rates close to 50%. 
As for the mid-infrared, the leaves were collected 
in the morning at around 9:00 am, while the canopy 
reading was conducted on the same day at noon to 

Figure 4 - Behavior of loadings in the fourth collection (canopy). Prin 1, 2, and 3 represent the loadings for the 
principal components PC1, PC2, and PC3, respectively, indicating the contribution of each original 
variable to the respective component.
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reduce the incidence of shadow on the sensor. Under 
these conditions, the leaves spent a long time in the 
thermal box and were probably unable to maintain 
full moisture until arrival at the laboratory.

Canopy data (Figure 6) in the red-edge 
range (680-750 nm), a transition region of rapid change 
in leaf reflectance caused by the strong absorption of 
pigments in the red spectrum and leaf scattering in the 
near-infrared, described as sensitive to chlorophyll in 
the crop canopy (CLEVERS et al., 2002; HATFIELD 
et al., 2008), showed that plots 1 and 2 (CTC9003BT) 
and 3 and 4 (CTC9003BT Altacor) moved most 
towards on the right, that is, they possibly have higher 
concentrations of chlorophyll and, consequently, 
higher energy absorption and less stress. The absence 
of chlorophyll leads to a decrease in energy in the 
visible spectral region, with higher reflectance in green 
and red, giving it a yellowish or chlorotic appearance 

(CARTER, 1991; CHO & SKIDMORE, 2006), and 
the curve tends to shift to the left.

Similarly, MARTINS & GALO (2015) 
spectrally characterized healthy sugarcane and 
those infected by nematodes and Migdolus fryanus. 
Spectroradiometric measurements were conducted 
in situ and the analysis of spectral curves allowed 
the evaluation of the potential for determining 
the red edge position determination (REPD) and 
different indices such as NDVI and MCARI (derived 
from hyperspectral data), sensitive to chlorophyll 
variation in discriminating between healthy and 
infected crops.

ABDEL-RAHMAN et al. (2010) studied 
two popular sugarcane varieties grown in South 
Africa (N19 and N12) at different damage levels of 
thesugarcane thrips Fulmekiola serrata (Kobus). The 
spectral readings revealed significant differences in 

Figure 5 - Fieldspec spectroradiometer signatures (leaf): A) first collection (12/3/2021), B) second collection 
(1/21/2022), C) third collection (3/22/22), and D) fourth collection (4/28/2022).
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the red-edge region, allowing the different damage 
levels to be discriminated.

Red-edge normalized difference vegetation index 
(NDVI) and modified chlorophyll absorption ratio 
index (MCARI)

The representation of NDVI data using a 
box plot enabled better visualization and interpretation 
of the dataset (Figure 7). NDVI can vary due to several 
factors, making it difficult to associate it with a single 

problem. Therefore, in this study, the varieties CTC, 
CTC9003BT, and RB966928 were placed in the same 
experimental environment, being exposed to the 
same contamination conditions by D. saccharalis and 
the insecticideAltacor, according to the treatment. In 
this sense, the variety with the highest mean NDVI 
was CTC9003BT, with a mean of 0.66, a minimum 
value of 0.63, and a maximum value of 0.75. The first 
quartile of collected information is 0.63 and the third 
quartile is 0.69.

Figure 6 - Signatures of the Hand Held 2 spectroradiometer (canopy) in the fourth collection (4/28/2022).

Figure 7 - Mean index values: A) NDVI and B) MCARI, calculated from 
hyperspectral data.
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The variety CTC9003BT with the 
insecticide Altacor was the second-best variety 
according to NDVI, with a mean and median of 
0.64, first quartile of 0.60, third quartile of 0.67, 
and maximum of 0.72. The varieties CTC4 and 
CTC4 (with Altacor) presented the same behavior 
regarding the index, with a mean and median of 0.61, 
first quartile of 0.58, and third quartile of 0.63. The 
varieties RB966928 and RB966928 with Altacor also 
performed close to the median (0.60), but the mean 
for the former was lower, 0.59 compared to 0.60. 
However, the minimum information for the variety 
RB966928 was 0.42, while for the variety RB966928 
Altacor was 0.50, with a maximum of 0.70 compared 
to 0.66 for the former.

KUNDU et al. (2021) monitored 
the severity of potato late blight disease using 
hyperspectral data and observed a decrease in NDVI 
from 0.61 in healthy plants to 0.3 as disease severity 
reached its highest level. Thus, the use of NDVI 
detected subtle variations in bio-optical responses 
caused by the diseased canopy.

Regarding MCARI, figure 7B shows the 
hyperspectral indices calculated for the varieties 

with and without the application of the insecticide 
Altacor. The variety CTC9003BT had the lowest 
MCARI index. According to WU et al. (2008), 
lower values of this index are attributed to the high 
concentration of leaf chlorophyll. Consequently, the 
NDVI values were the highest for the same variety, 
meaning healthier plants. MARTINS & GALO 
(2015) observed lower MCARI values in healthy 
sugarcane compared to those infested with M. fryanus 
and nematodes, whereas lower NDVI values were 
found in the vegetation parasitized by the larva of the 
M. fryanus. Therefore, MARTINS & GALO (2015) 
suggested working on the indices together (NDVI 
and MCARI).

Scatterplots (NDVI x MCARI) were 
created to facilitate data visualization. Figure 8A (R2 
= 0.58) shows that the higher the NDVI, the lower 
the MCARI value. Figure 8B shows the analysis by 
variety separately and in detail. The plots containing 
CTC9003BT presented an R2 = 0.70, while the plots 
with CTC9003BT Altacor generated an R2 = 0.72. 
Plots with CTC4 had an R2 of 0.64, while CTC4 
Altacor showed an R2 = 0.47. Finally, RB966928 
generated an R2 = 0.31 and RB966928 Altacor an R2 = 

Figure 8 - Scatterplot (NDVI x MCARI) with a) all data and b) varieties.
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0.46. Therefore, the use of both indices was important 
to better understand the obtained values, as the variety 
CTC9003BT (with or without Altacor) presented 
satisfactory results, while the variety RB966928 (with 
or without Altacor) resulted in a lower correlation 
coefficient. In general, the information obtained 
using the two indices allowed us to predict, even if 
insignificantly, which plots would provide better or 
worse results in terms of productivity or intensity of 
infestation, for example.

Response of production, technology, water content 
(RWC), and infestation intensity parameters

The variety CTC9003BT without insecticide 
application presented the highest productivity (121.4 
t ha-1), followed by CTC9003BT (112.40 t ha-1), 
CTC4 with Altacor (105.95 t ha-1), and CTC4 without 
insecticide (102.26 t ha-1). Except for CTC9003BT, 
the other varieties (CTC4 and RB966928) showed 
higher productivity when the insecticide was applied 

(Figure 9A). Following the same productivity pattern, 
the TRS, TSH, and RWC values were higher for the 
variety CTC9003BT, in addition to presenting the 
lowest percentage of borer (0.0%). The water status 
of the studied varieties was assessed through water 
content (RWC), and the variety CTC9003BT without 
insecticide application had the highest percentage of 
RWC (60.15%), while RB966928 without insecticide 
application had the lowest value (54%) (Figure 9F). 
In contrast, RB966928 without insecticide application 
recorded the lowest RWC (54.9%) and productivity 
(94.6 t ha-1) but the highest percentage of sugarcane 
borer (6.86%) (Figure 9E).

According to ROSSATO et al. (2013), 
high infestation levels (19.01 and 25.77%) negatively 
impact the raw material quality, as the borer increases 
sugarcane fiber and the contents of phenolic 
compounds in the extracted juice. In this sense, GALO 
et al. (2002) reported that borer control should begin as 
soon as final infestation intensity rates are above 3%.

Figure 9 - Boxplot with values for A) productivity, B) juice purity; C) total recoverable sugar - TRS; D) tons of TRS per hectare 
- TSH; E) percentage of sugarcane borer; and F) relative water content - RWC.
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Pearson’s correlation (r)
Figure 10 shows Pearson’s correlation 

between productivity parameters, percentage of 
sugarcane borer, vegetation indices (NDVI and 
MCARI), TRS, and purity. The highest correlation 
coefficients were observed between productivity and 
NDVI and MCARI, with values of 0.98 and -0.99, 
respectively. NDVI had a positive linear correlation, 
indicating that increases in NDVI values are associated 
with increased productivity. This strong correlation 
between NDVI and sugarcane productivity has 
already been identified in other studies (AKBARIAN 
et al., 2022; BÉGUÉ et al., 2010; KAVATS et al., 
2020; PINHEIRO LISBOA et al., 2018). Sugarcane is 
a dense cover crop with high reflectance in the near-
infrared spectrum, the band used to calculate NDVI, 
and hence these characteristics are related to the plant 
health and the ability to carry out photosynthesis, 
factors that contribute to the final crop productivity. 
However, the correlation between MCARI and 
productivity was high, but negative, suggesting 
that an increase in one variable is associated with a 
decrease in the other. This is consistent with the values 
of the MCARI index, as lower values of this index are 
attributed to a high concentration of leaf chlorophyll 
(WU et al., 2008). In other words, as MCARI values 
decrease, the chlorophyll concentration increases and, 
consequently, productivity increases, considering that 

the other factors limiting productivity are in balance.
The percentage of sugarcane borer also 

showed high and negative correlations between 
productivity, NDVI, and TRS, with coefficients of 
-0.68, -0.76, and -0.76, respectively. Although the 
coefficients are acceptable, they were all negative, 
suggesting that an increase in one variable is 
associated with a decrease in the other. Therefore, an 
increase in the percentage of sugarcane borer leads to 
a reduction in productivity, NDVI, and TRS. This fact 
was already expected, as the attack by the sugarcane 
borer leads to a reduction in stalk weight, a decrease 
in the sucrose content, breakage of the stalk by the 
wind, and aerial rooting (CARBOGNIN, 2019).

CONCLUSION

The principal component analysis (PCA) 
for the fourth collection - canopy (April 28, 2022) 
performed best relative to the others, corresponding 
to 98% of the spectral variability. The data uniformity 
of this collection allowed for choosing the vegetation 
indices that were used throughout the study, in 
addition to highlighting the influence and importance 
of the red-edge region.

The descriptive analysis of the spectral 
curves showed that the first collection (December 
3, 2021) was not significant, as the leaves were 

Figure 10 - Pearson’s correlation of productivity values, percentage of sugarcane borer, 
vegetation indices (NDVI and MCARI), TRS, and purity.
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young, and the central vein made readings difficult. 
Therefore, the choice of sugarcane development 
stages is essential for the precision of readings. The 
indices extracted from the canopy hyperspectral data 
(NDVI and MCARI) allowed the separation of more 
and less vigorous plots and varieties.

The influence of the red-edge region was 
mainly due to the feasibility of detecting structural 
or physiological changes in plants. Moreover, there 
was difficulty in diagnosing the occurrence of D. 
saccharalis or other pests in advance. The indices 
(NDVI and MCARI) also demonstrated sensitivity 
in identifying when the crop was undergoing some 
stress, but they can vary due to several factors, making 
it difficult to associate them with a single problem.
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