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ABSTRACT: One of the causes of productivity loss in sugarcane cultivation has been associated with the species Diatraea saccharalis, also
known as the sugarcane borer. Therefore, this study evaluated the feasibility of using hyperspectral sensors to obtain the leaf spectral response
of sugarcane in different periods of infestation at leaf and canopy levels to diagnose D. saccharalis damage in advance. The study included
three varieties of sugarcane: CTC9003BT, CTC4, and RB966928. The insecticide Altacor® was used to control pestsin half of the plots. Data
collection occurred at the following stages: sprouting, tillering, stalke longation, and early maturation. Data regarding relative water content
(RWCQ), leaf spectral signature in the laboratory and canopy, vegetation indices (NDVI and MCARI), productivity, purity, and total recoverable
sugar (TRS) were collected to evaluate the borer effects on the sugarcane crop. The highest RWC was observed for CTC9003BT (60.15%)
without insecticide and 59.0% with insecticide. The visible (400-680 nm) and near-infrared (750-1300 nm) spectral bands identified spectral
variations in plants with and without sugarcane borer. The percentage of sugarcane borer showed high and negative correlations between
productivity, NDVI, and TRS, with coefficients of -0.68, -0.76, and -0.76, respectively. The NDVI and MCARI indices effectively detect plants
under stress, but their variation is influenced by multiple factors, making it difficult to associate them with a single problem (sugarcane borer).
Key words: sensing, spectroscopy, Diatraea saccharalis.

Espectroscopia VIS-NIR-SWIR na cultura da cana-de-agticar (Saccharum officinarum L.)
para fins fitossanitarios

RESUMO: Uma das causas de perda de produtividade em lavouras de cana esta associada a espécie Diatraea saccharalis, também conhecida
por broca da cana. Portanto, este estudo avaliou a viabilidade do uso de sensores hiperespectrais para obter a resposta espectral foliar da cana-
de-agucar em diferentes periodos de infestagdes, tanto a nivel foliar quanto dossel, a fim de diagnosticar antecipadamente os danos da Diatraea
saccharalis. O estudo contou com trés variedades de cana-de-agticar: CTC9003BT, CTC4 ¢ RB966928. Em metade das parcelas foi utilizado
o inseticida Altacor” para o controle de pragas. As coletas de dados ocorreram nas fases: brotagéo, perfilhamento, crescimento de colmos e
inicio da maturagdo. Para avaliar os efeitos da broca na cana foi coletado os dados referentes ao conteudo relativo de agua (CRA), assinatura
espectral foliar em laboratorio e dossel, indices de vegetacdo (NDVI e MCARI), produtividade, pureza e ATR (Agucar Total Recuperavel). O
maior CRA encontrado foi para a CTC9003BT (60,15%) sem inseticida e 59,0% com inseticida. As faixas espectrais do visivel (400-680 nm)
e infravermelho proximo (750-1300 nm) identificaram variagdes espectrais nas plantas com e sem broca. O percentual de broca apresentou
correlagdes altas e negativas entre a produtividade, NDVI e ATR, com coeficientes de -0,68, -0,76 e -0,76, respectivamente. Os indices NDVI e
MCARI foram eficazes na detecgdo de plantas sob estresse, contudo, sua variagdo ¢ influenciada por multiplos fatores, sendo dificil associa-los
a um Unico problema (broca).

Palavras-chave: sensoriamento, espectroscopia, Diatraea saccharalis.

INTRODUCTION

The sugarcane production chain has been
gaining ground in Brazilian agribusiness along with
increased demand for renewable energy (MEDINA &
POKORNY, 2022). In a more current scenario, global
sugarcane cultivation in 2017 was recorded with a
production of 1841 million tons (Mt), with Brazil
holding the position of main producer, with almost
41% of this production, followed by India and China
(SILALERTRUKSA & GHEEWALA, 2020). Thus,
sugar cane is considered one of the great alternatives
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for the biofuels sector (TURDERA, 2013). This topic
has greater importance and engagement, especially
as concern about global warming and dependence on
fossil fuels grows (CANABARRO et al., 2023).
Concurrent with the expansion of areas
with sugarcane cultivars, problems related to pest
attacks can cause losses to the sector. One of the
main pests responsible for part of this economic loss
is the species Diatraea saccharalis, also known as
sugarcane borer (FOGLIATA etal., 2022; OLIVEIRA
et al., 2022). The borer D. saccharalisis an insect
that presents holometabolic development, that is,
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it undergoes complete metamorphosis during its
development, as it goes through the stages of egg (4
to 9 days), larva (40 to 60 days), pupa (9 to 14 days),
and adult (5 to 7 days), with the total cycle reaching
59 to 90 days (CARBOGNIN et al., 2023). The attack
by this species occurs during the larval phase, which
results in a reduction in stalk weight, a decrease in
sucrose content, an increase in tillers, stalk breakage
by the wind, and aerial rooting (CARBOGNIN, 2019;
CTC, 2017). Overall, losses caused by the sugarcane
borer reach 5 billion reais per year due to the reduction
in agricultural and industrial productivity and sugar
quality and insecticide costs (CTC, 2017).

Investments in genetic improvement have
grown in recent years, mainly with the dissemination
of Bt (Bacillus thuringiensis) technology, aiming to
maximize sugarcane productivity and guarantee food
security. This technology aims to reduce production
costs, preserve biodiversity in treated areas, and obtain
resistance to insect pests in agricultural systems.
The Bt gene has already been used in the Center-
South region of Brazilto contain D. saccharalis. In
addition to the Bt gene, the sugarcane borer control
involves strategies for monitoring and predicting the
occurrence of target stages (CTC, 2021). However,
there are difficulties in sampling newly hatched
eggs and larvae, in addition to adversities in field
monitoring (CARBOGNIN, 2019). In this case,
hyperspectral VIS-NIR-SWIR sensing represents
a strategy that can help identify D. saccharalis
infestations in sugarcane fields through changes in
leaf spectral reflectance. This technique has shown
potential when used to assess damage caused by
Bemisia tabaci (Gennadius) on soybean (BARROS
etal., 2021), Nilaparvata lugens (brown planthopper)
on rice (LIU & SUN, 2016; PRASANNAKUMAR
et al., 2014), and Aphis gossypii (aphid) on cotton
(CHEN et al., 2018). Most of these studies could
identify variations in the leaf spectra of plants that
were infected.

The study of the spectral behavior of targets
is conducted in laboratory and field experiments, and
the radiometric quantity used to express this behavior
is given by a measurement capable of estimating their
reflectance. In the case of vegetation, the average curve
of photosynthetically active vegetation is separated
into three spectral regions: visible-VIS (350-720
nm), near-infrared-NIR (720-1300 nm), and short-
wave infrared-SWIR (1300-2500 nm), depending on
the factors that condition their behavior (MORAES
NOVO, 2010). In this sense, the use of VIS-NIR-
SWIR hyperspectral data in the search for more
detailed answers beyond the simple categorization of

infestation versus non-infestation has been promising
(BARROS et al., 2021). It occurs because the capture
of electromagnetic energy reflected by vegetation
at the leaf or canopy level helps identify changes
in the physiological behavior of the plant, chemical
composition, and physical properties of plant
tissues (BAUER, 1985), consequently analyzing the
vegetation vigor (FIORIO et al., 2024).

In this context, would it be possible to use a
hyperspectral sensor in sugarcane cultivation to assess
the discriminatory capacity of the spectral response
between healthy varieties and those infected by D.
saccharalis? Based on this question, this research
analyzed the spectral response of the sugarcane
varieties CTC9003BT (genetically modified), CTC4,
and RB966928 in different periods of D. saccharalis
infestations in the leaves and canopy to diagnose
borer damage to sugarcanein advance.

MATERIALS AND METHODS

Location and characterization of the study area

This study was conducted with the support
of the Sugarcane Technology Center (CTC) in one
of its experimental areas on the Santa Maria farm,
located in the municipality of Cesario Lange-SP,
Brazil, between the geographic coordinates 23°11'20"
south latitude and 47°51'34" west longitude. The
local climate is Cwa, according to the Koppen
climate classification (ALVARES et al., 2013;
ASSUMPCAO et al., 2020). The experiment was
set up in November 2021 with plots differentiated
by varieties. Each plot consisted of six rows 12 m
long and 6 m wide. The insecticide Altacor® was
also used in half of the plots to control pests. This
study was conducted in the 2021/2022 growing
season, with the first harvest of the trial in October
2022. Three varieties of sugarcane were included
in the study: CTC9003BT (genetically modified),
CTC4, and RB966928. Data collections were chosen
to cover the following sugarcane developmental
stages: sprouting (December 2021), tillering (January
2022), stalk elongation (March 2022), and early
maturation (April 2022), as shown in figure 1.

According to the Technical Leaflet,
CTC9003BT is recommended for planting in type
A, B, and C production environments and is usually
harvested between April and September. Resistance
to D. saccharalis, adaptability to mechanized
harvesting, rare flowering, high values of tons of
sugarcane per hectare (TSH) and total recoverable
sugar (TRS), and long industrial processing period
(IPP) stand out for this variety. The CTC4 variety
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Figure 1 - Experimental area at the following stages: A) sprouting/December 2021, B) tillering/January 2022, C) stalk elongation/
March 2022, and D) early maturation/April 2022; E) sketch of the trial (plot number in red).

is recommended for type A, B, C, and D production
environments, standing out high TSH, adaptability
to mechanized harvesting, and high tillering. Greater
tolerance to sugarcane rust in plant cane is achieved
by avoiding planting in January and February, while it
is suggested not to extend the harvest from September
for ratoon cane (CTC, 2021). The RB966928 variety
presents excellent germination in plant cane, very
good sprouting in ratoon cane, high tillering with
excellent inter-row closure, high agricultural
production, medium IPP, and early to medium
maturity (RIDESA, 2010).

Acquisition of hyperspectral data (leaf and canopy)

The spectral curves were obtained using
20 leaves collected per plot for each variety. This
procedure was repeated at the sprouting, tillering, stalk
elongation, and early maturation stages. For collection
standardization purposes, the leaves chosen for analysis
were the “+1” described in the literature as a diagnostic
leaf for sugarcane, which is the first leaf with the
separation point between the leaf blade and the sheath
(FIORIO et al., 2024). After collection, the leaves were
packed in plastic bags with their respective identification
and placed in a thermal box with ice to maintain their
turgidity until they were taken to the laboratory of
geoprocessing. The journey from the experimental area
to the laboratory lasted, on average, one hour.

The spectral reading of the leaves was
obtained in the laboratory using the Fieldspec®
spectroradiometer (ASD - Analytical Spectral Devices

Inc., Boulder, CO, USA), which measures reflectance
between 350 and 2500 nm, with a spectral resolution
of Inmfrom 350 to 1000 nm and 2 nm from 1000 to
2500 nm, with a 25° field of view. The spectrometer
was turned on for 30 minutes before readings to
warm up and stabilize the halogen lamp present in the
equipment. Furthermore, calibration was performed
with the Lambertian plate present in the sensor’s leaf
clip. The calibration procedure was repeated every
five readings to ensure data uniformity.

After reading all 240 leaves, the spectral
data were exported to the software ViewSpec Pro
(ASD - Analytical Spectral Devices Inc., Boulder,
CO, USA), responsible for converting them into
reflectance. Furthermore, the data were pre-processed
in Microsoft Excel® and the wavelengths from 350 to
449 nm and 2450 to 2500 were removed aiming to
suppress noise. Therefore, the final curve covered the
lengths from 450 to 2450 nm.

A Hand Held 2 spectroradiometer (ASD -
Analytical Spectral Devices, Boulder, USA), which
is a portable passive hyperspectral sensor that works
with wavelengths from the visible to near-infrared
spectrum (325 to 1075 nm), with a 3-nmspectral
resolution, was used in the field at the end of the
experiment and only in the fourth collection (April
2022) for sensing the plant canopy. The instrument
was attached to a ruler to reach the vegetation canopy.
The sensor was calibrated after every five readings
with the white barium sulfate (BaSO,) plate, which
corresponds to 100% reflectance.
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Similar to the data obtained from
Fieldspec®, all 240 readings were exported to the
software ViewSpec Pro (ASD - Analytical Spectral
Devices Inc., Boulder, CO, USA) and converted into
reflectance. The data was pre-processed in Microsoft
Excel® and wavelengths from 325 to 399 nm and post-
800nm were removed to reduce noise. Therefore, the
final curve included lengths from 400 to 800 nm.

Determination of relative water content (RWC)

Water availability is a determining factor
in plant productivity (LASSALLE, 2021) and
relative water content (RWC) can be one of the
parameters used to estimate the amount of water
in a leaf (STRABELI et al., 2023). Therefore, all
leaves were cut before weighing the samples using
a 25-mm diameter circular scrapbook hole punch
to standardize the process. The fresh weight of leaf
samples (FW in grams) was measured to determine
RWC. Subsequently, the leaves were stored in a
plastic bag containing distilled water for 24 hours and
their turgid weight (TW in grams) was measuredat the
end of the process. Finally, the last step consisted of
drying all the samples inside a previously perforated
paper bag at a temperature of 70 °C in an oven for
72 hours and weighing them again to obtain the dry
weight (DW in grams).

(1
where RWC is the relative water content (%), FWis
the leaf fresh weight (g), TW is the turgid weight (g),
and DW is the dry weight (g).

Red-edge normalized difference vegetation index -
NDVI

The red-edge normalized difference
vegetation index (NDVI _ ), calculated as a linear
combination of spectral reflectance at 750 and 705 nm,
is designed for hyperspectral data. NDVI utilizes the
bands along the red edge and is sensitive to changes in
chlorophyll content and leaf structure. Furthermore,
NDVI detects subtle variations in bio-optical
responses caused by the diseased canopy (KUNDU
et al., 2021). The most common applications include
precision agriculture, forest monitoring, forest fires,
and plant stress detection (CUNDILL et al., 2015).
The NDVI was determined by Equation (2). The
index value varies from —1 to 1. This step was only
applied to canopy hyperspectral data referring to the
fourth collection.

)
in which R(750) and R(705) represent the spectral

reflectance in the bands of 750 nm (near infrared) and
705 nm (red edge), respectively.

Modified chlorophyll absorption ratio index (MCARI)

The modified chlorophyll absorption ratio
index (MCARI) (DAUGHTRY, 2000) quantifies
small canopy-scale changes in chlorophyll for
different stress levels and damage sites (Equation 3)
(MULLA, 2013; ZHAO et al., 2023). Low MCARI
values are attributed to high leaf chlorophyll
concentration (WU et al., 2008). This step was only
applied to canopy hyperspectral data from the fourth
collection.

3)
where R(700), R(670), and R(550) represent the
spectral reflectance in the bands of 700 nm (near
infrared), 670 nm (red), and 550 nm (green),
respectively.

Assessment of Diatraea saccharalis infestation and
harvest

The final assessment of D. saccharalis
infestation was performed by the CTC team. The
sugarcane borer infestation intensity was estimated
by collecting and evaluating 100 stalks (or more) per
plot to measure the number of borer internodes and
total internodes (GALLO et al., 2002).

“)

The occurrence of infestation was

recognized visually throughout the four collections,

and, in these cases, a blue ribbon was tied to the stalk

to facilitate identification. The mechanized harvest

was performed on October 19, 2022, and TSH and
TRS data were obtained.

Pearson scorrelation (rv) and principal component
analysis (PCA)

Pearson’s correlation was calculated
between the variables of productivity, purity,
TRS, vegetation indices (NDVI and MCARI), and
percentage of infestation. The coefficient » is a
statistical measure of linear correlation between two
quantitative variables, which ranges from -1 to 1.
The closer to 1, the correlation is positive, and the
variables increase together linearly; when close to
-1, the correlation is negative. While one variable
increases, the other decreases, and a coefficient equal
to or close to 0 (zero) indicates no correlation.

Ciéncia Rural, v.55, n.3, 2025.
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Qualitative analyses are conducted to
detect nuances across the electromagnetic spectrum.
It covers aspects such as variations in reflectance
intensities (albedo) and detection of absorption
patterns. Principal component analysis is among the
most common ones for hyperspectral data (BARROS
et al.,, 2021; SILVA et al., 2023). PCA is a linear
orthogonal transformation, which modifies the original
dataset into a compressed dataset of uncorrelated
variables, known as principal components (PCs)
(SILVA JUNIOR; PACHECO, 2021). Therefore, PCA
is a technique used to reduce the dimensionality of
datasets and increase interpretability without losing
information. Analyses using boxplot and Pearson’s
correlation were conducted using the software
RStudio.

RESULTS AND DISCUSSION

Principal component analysis (PCA)

Principal components (PCs) 1, 2, and 3
represented at least 97% of the reflectance variance
of the hyperspectral data. PC1 presented values of
73.10%, 71.00%, 74.40%, 84.00%, and 85.80%, PC2
of 16.34%, 19.50%, 17.10%, 9.60%, and 12.20%,
and PC3 of 7.90%, 7.10%, 6.40%, 4.30%, and 0.76%
for the first (leaf), second (leaf), third (leaf), fourth
(leaf), and fourth (canopy) collection, respectively
(Figure 2).

Similarly, RIBEIRO (2022) worked with
the varieties JACSP 01-3127 and IACSP 95-5094,
used components 1 and 2 (98.57% and 0.72% of
the observed variance, respectively), and separated

the varieties, but the materials overlapped each
other. SILVA et al. (2023) worked with nutritional
K stress in sugarcane and found in the principal
component analysis that PC1 and PC2 explained
97% of the reflectance variance. TAVARES (2017)
studied reflectance spectroscopy in response to
nitrogen fertilization in sugarcane and obtained at
least 99% variation in PCA with just PC1 and PC2.
FRANCESCHINI et al. (2013) obtained a result
of 75.8% of the spectral variability in PC1 for the
evaluation of soil texture by reflectance spectroscopy,
and part of the radiometric data was strongly related
to clay and sand contents.

Figure 3 (A, B, C, and D) shows the
scatterplots of the scores and the behavior of loadings
in components 1, 2, and 3 obtained from the spectral
curves for the four collections of hyperspectral data
from the leaves. Considering the phenological stage
of the first collection (sprouting and emergence) and
that the leaf area was still very narrow, the loadings
in PC1 showed influence across the entire spectrum,
with peaks close to 1400 nm in the first maximum
of absorption by water in the mid-infrared. PC2 also
showed peaks close to the mid-infrared and close to
the water absorption bands in the mid-infrared (1950
and 2450 nm). For CP3, the most influential loadings
occurred in the visible region (450-700 nm), with
peaks close to 670 and 680 nm, the beginning of the
red-edge region, as well as participation in the three
absorption maxima by water (1400, 1950, and 2450
nm) (Figure 3A).

In the second collection (Figure 3B), PC1
behaved similarly to the previous one, as the loadings

4/28/2022 (canopy).

Figure 2 - Percentages of principal components (PC) 1, 2, and 3, in the collections conducted
on 12/3/2021 (leaf), 1/21/2022 (leaf), 3/22/2022 (leaf), 4/28/2022 (leaf), and
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variable to the respective component.

Figure 3 - Behavior of loadings in the A) first, B) second, C) third, and D) fourth collections. Prin 1, 2, and 3 represent the
loadings for the principal components PC1, PC2, and PC3, respectively, indicating the contribution of each original

also showed predominance throughout the spectrum,
with ends close to 1400 nm and around 1700 nm,
and at 1450 and 1950 (in the water absorption bands)
practically throughout the mid-infrared, with the least
influential bands being observed in the visible (450-
700 nm). PC2 showed maximum values close to 900
nm in the near-infrared and around 2000 nm in the
mid-infrared. The behavior in PC3 was the same as that
identified in the first collection, but with a little more
influence on the three maxima of absorption by water
(1400, 1950, and 2450 nm) and influential loadings in
the visible region (450-700 nm), with peaks near 670
and 680, the beginning of the red-edge region.

The third collection showed once again the
PCI1 trend across the entire spectrum. PC2 manifested
a little more, albeit minimally, in the visible region,
with peaks around 900 nm in the near-infrared and
1400 nm in one of the water absorption bands.
However, it reappeared close to 2000 nm in the mid-
infrared. The PC3 trend was practically identical to
the second collection in the visible region (450-700
nm), with peaks in loadings close to 670 and 680,
the beginning of the red-edge region, but with a low
influence on the first water absorption band at 1400
nm (Figure 3C).

Finally, the PC1 loadings for the fourth
collection - leaf (Figure 3D) showed an even more
regular influence across the entire spectrum when
compared to the other collections. This time, PC2
had peaks in the red-edge region (750 nm), located
between the visible and near-infrared regions, in
addition to a certain influence on the first water
absorption band at 1400 nm. Furthermore, PC3
presented valleys at 450 nm and 670, while there was
a jump in the red edge, specifically at 710 nm, and a
higher influence in the near-infrared compared to the
other collections.

The behavior of the loadings in the
canopy data (Figure 4) was studied separately, as
the wavelength at which the sensor works is shorter,
and the range analyzed was from 400 to 900 nm. As
observed, the loadings of PC1 and PC2 had a regular
influence on the entire spectrum, corresponding to
98% of the spectral variability. A certain peak of PC1
was observed around 730 nm in the red-edge range
as PC2 presented a valley in this same near-infrared
region. Furthermore, the highest influence for PC3,
equivalent to only 0.76% variation, was in the visible
region (with peaks at 400nm) and around 670 nm
(near infrared).

Ciéncia Rural, v.55, n.3, 2025.
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variable to the respective component.

Figure 4 - Behavior of loadings in the fourth collection (canopy). Prin 1, 2, and 3 represent the loadings for the
principal components PC1, PC2, and PC3, respectively, indicating the contribution of each original

Descriptive analysis of spectral curves

Figure 5 (A, B, C, and D) shows the
leaf spectral behavior of the four collections. The
reflectance values in the visible region (400 to 700 nm)
for the first collection (December 3, 2021) (Figure 5A)
did not differ much and were more subtle, whereas
the range of 700 to 1300 nm (near infrared) showed
the highest discrepancy between plots. However, the
leaves in this first collection were still narrow and the
central vein made readings difficult, which may have
influenced the lack of uniformity of the data, as the
plants were at the sprouting/emergence stage under
the same water conditions and without the presence
of the sugarcane borer in the crop.

The reflectance values in the visible
region (400 to 700 nm) in the second collection
(January 1, 2022) (Figure 5B) were more disparate
when compared to the first collection. Plots 1 and 2
(both CTC9003BT) were those that reflected least
in the visible region, signs of healthier leaves, as the
amount of radiation reflected by plants is inversely
related to the radiation absorbed by plant pigments
and varies with the wavelength of the incident
radiation (MULLA, 2013). Plant pigments, such as
chlorophyll, strongly absorb radiation in the visible
spectrum from 400 to 700 nm (PINTER et al., 2003).
Moreover, plot 2 recorded a lower reflectance factor
at the wavelength of 1950 nm, that is, as water absorbs
electromagnetic radiation, plants with higher water

content in the leaf show a lower reflectance factor at
this length (STRABELI et al., 2020, 2023).

For the third collection (March 22, 2022)
(Figure 5C), plots 1 and 2 (CTC9003BT) absorbed more
than the other plots in the visible region. Conversely,
plot 6 (CTC4) reflected the most in the same region.
The near-infrared range (700 to 1300 nm), a region
influenced by the internal leaf structure (SINCLAIR et
al., 1971), showed changes in the reflectance intensity
between plots. For plots 4 and 11, the decrease in
absorption of electromagnetic energy at 970 and 1200
nm is noticeable, being associated with leaf water
content (ZHANG et al., 2010). Plots 3 and 9 showed
the highest absorbance in the mid-infrared, specifically
in the region where the maximum absorption by water
is found (1400 and 1950 nm), indicating a higher
water concentration in the leaf. It occurred because a
strong increase of reflectance around 1450 and 1950
nm symbolizes a modification in the water status of
stressed plants (JONG et al., 2012).

The plots in the fourth and final collection
of leaves (Figure 5D) behaved similarly in the
visible region (400 to 700 nm) compared to the other
collections. In the near-infrared region, plots 1 and 2
(CTC9003BT), 3 and 4 (CTC9003BT Altacor), and
6 (CTC4) presented reflectance rates close to 50%.
As for the mid-infrared, the leaves were collected
in the morning at around 9:00 am, while the canopy
reading was conducted on the same day at noon to
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Figure 5 - Fieldspec spectroradiometer signatures (leaf): A) first collection (12/3/2021), B) second collection
(1/21/2022), C) third collection (3/22/22), and D) fourth collection (4/28/2022).

reduce the incidence of shadow on the sensor. Under
these conditions, the leaves spent a long time in the
thermal box and were probably unable to maintain
full moisture until arrival at the laboratory.

Canopy data (Figure 6) in the red-edge
range (680-750 nm), a transition region of rapid change
in leaf reflectance caused by the strong absorption of
pigments in the red spectrum and leaf scattering in the
near-infrared, described as sensitive to chlorophyll in
the crop canopy (CLEVERS et al., 2002; HATFIELD
et al., 2008), showed that plots 1 and 2 (CTC9003BT)
and 3 and 4 (CTC9003BT Altacor) moved most
towards on the right, that is, they possibly have higher
concentrations of chlorophyll and, consequently,
higher energy absorption and less stress. The absence
of chlorophyll leads to a decrease in energy in the
visible spectral region, with higher reflectance in green
and red, giving it a yellowish or chlorotic appearance

(CARTER, 1991; CHO & SKIDMORE, 2006), and
the curve tends to shift to the left.

Similarly, MARTINS & GALO (2015)
spectrally characterized healthy sugarcane and
those infected by nematodes and Migdolus fryanus.
Spectroradiometric measurements were conducted
in situ and the analysis of spectral curves allowed
the evaluation of the potential for determining
the red edge position determination (REPD) and
different indices such as NDVI and MCARI (derived
from hyperspectral data), sensitive to chlorophyll
variation in discriminating between healthy and
infected crops.

ABDEL-RAHMAN et al. (2010) studied
two popular sugarcane varieties grown in South
Africa (N19 and N12) at different damage levels of
thesugarcane thrips Fulmekiola serrata (Kobus). The
spectral readings revealed significant differences in
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Figure 6 - Signatures of the Hand Held 2 spectroradiometer (canopy) in the fourth collection (4/28/2022).

the red-edge region, allowing the different damage
levels to be discriminated.

Red-edge normalized difference vegetation index
(NDVI) and modified chlorophyll absorption ratio
index (MCARI)

The representation of NDVI data using a
box plot enabled better visualization and interpretation
ofthe dataset (Figure 7). NDVI can vary due to several
factors, making it difficult to associate it with a single

problem. Therefore, in this study, the varieties CTC,
CTC9003BT, and RB966928 were placed in the same
experimental environment, being exposed to the
same contamination conditions by D. saccharalis and
the insecticideAltacor, according to the treatment. In
this sense, the variety with the highest mean NDVI
was CTC9003BT, with a mean of 0.66, a minimum
value 0f 0.63, and a maximum value of 0.75. The first
quartile of collected information is 0.63 and the third
quartile is 0.69.

hyperspectral data.

Figure 7 - Mean index values: A) NDVI and B) MCARI, calculated from

Ciéncia Rural, v.55, n.3, 2025.
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The variety CTC9003BT with the
insecticide Altacor was the second-best variety
according to NDVI, with a mean and median of
0.64, first quartile of 0.60, third quartile of 0.67,
and maximum of 0.72. The varieties CTC4 and
CTC4 (with Altacor) presented the same behavior
regarding the index, with a mean and median of 0.61,
first quartile of 0.58, and third quartile of 0.63. The
varieties RB966928 and RB966928 with Altacor also
performed close to the median (0.60), but the mean
for the former was lower, 0.59 compared to 0.60.
However, the minimum information for the variety
RB966928 was 0.42, while for the variety RB966928
Altacor was 0.50, with a maximum of 0.70 compared
to 0.66 for the former.

KUNDU et al. (2021) monitored
the severity of potato late blight disease using
hyperspectral data and observed a decrease in NDVI
from 0.61 in healthy plants to 0.3 as disease severity
reached its highest level. Thus, the use of NDVI
detected subtle variations in bio-optical responses
caused by the diseased canopy.

Regarding MCARLI, figure 7B shows the
hyperspectral indices calculated for the varieties

with and without the application of the insecticide
Altacor. The variety CTC9003BT had the lowest
MCARI index. According to WU et al. (2008),
lower values of this index are attributed to the high
concentration of leaf chlorophyll. Consequently, the
NDVI values were the highest for the same variety,
meaning healthier plants. MARTINS & GALO
(2015) observed lower MCARI values in healthy
sugarcane compared to those infested with M. frryanus
and nematodes, whereas lower NDVI values were
found in the vegetation parasitized by the larva of the
M. fryanus. Therefore, MARTINS & GALO (2015)
suggested working on the indices together (NDVI
and MCARI).

Scatterplots (NDVI x MCARI) were
created to facilitate data visualization. Figure 8A (R?
= 0.58) shows that the higher the NDVI, the lower
the MCARI value. Figure 8B shows the analysis by
variety separately and in detail. The plots containing
CTC9003BT presented an R? = 0.70, while the plots
with CTC9003BT Altacor generated an R2 = 0.72.
Plots with CTC4 had an R? of 0.64, while CTC4
Altacor showed an R? = 0.47. Finally, RB966928
generated an R2=0.31 and RB966928 Altacor an R?=

Figure 8 - Scatterplot (NDVI x MCARI) with a) all data and b) varieties.
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0.46. Therefore, the use of both indices was important
to better understand the obtained values, as the variety
CTC9003BT (with or without Altacor) presented
satisfactory results, while the variety RB966928 (with
or without Altacor) resulted in a lower correlation
coefficient. In general, the information obtained
using the two indices allowed us to predict, even if
insignificantly, which plots would provide better or
worse results in terms of productivity or intensity of
infestation, for example.

Response of production, technology, water content
(RWC), and infestation intensity parameters

The variety CTC9003BT without insecticide
application presented the highest productivity (121.4
t ha'), followed by CTC9003BT (112.40 t ha'),
CTC4 with Altacor (105.95 t ha!), and CTC4 without
insecticide (102.26 t ha'). Except for CTC9003BT,
the other varieties (CTC4 and RB966928) showed
higher productivity when the insecticide was applied

(Figure 9A). Following the same productivity pattern,
the TRS, TSH, and RWC values were higher for the
variety CTC9003BT, in addition to presenting the
lowest percentage of borer (0.0%). The water status
of the studied varieties was assessed through water
content (RWC), and the variety CTC9003BT without
insecticide application had the highest percentage of
RWC (60.15%), while RB966928 without insecticide
application had the lowest value (54%) (Figure 9F).
In contrast, RB966928 without insecticide application
recorded the lowest RWC (54.9%) and productivity
(94.6 t ha') but the highest percentage of sugarcane
borer (6.86%) (Figure 9E).

According to ROSSATO et al. (2013),
high infestation levels (19.01 and 25.77%) negatively
impact the raw material quality, as the borer increases
sugarcane fiber and the contents of phenolic
compounds in the extracted juice. In this sense, GALO
etal. (2002) reported that borer control should begin as
soon as final infestation intensity rates are above 3%.

Figure 9 - Boxplot with values for A) productivity, B) juice purity; C) total recoverable sugar - TRS; D) tons of TRS per hectare
- TSH; E) percentage of sugarcane borer; and F) relative water content - RWC.
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Pearson's correlation ()

Figure 10 shows Pearson’s correlation
between productivity parameters, percentage of
sugarcane borer, vegetation indices (NDVI and
MCARI), TRS, and purity. The highest correlation
coefficients were observed between productivity and
NDVI and MCARI, with values of 0.98 and -0.99,
respectively. NDVI had a positive linear correlation,
indicating that increases in ND VI values are associated
with increased productivity. This strong correlation
between NDVI and sugarcane productivity has
already been identified in other studies (AKBARIAN
et al., 2022; BEGUE et al., 2010; KAVATS et al.,
2020; PINHEIRO LISBOA et al., 2018). Sugarcane is
a dense cover crop with high reflectance in the near-
infrared spectrum, the band used to calculate NDVI,
and hence these characteristics are related to the plant
health and the ability to carry out photosynthesis,
factors that contribute to the final crop productivity.
However, the correlation between MCARI and
productivity was high, but negative, suggesting
that an increase in one variable is associated with a
decrease in the other. This is consistent with the values
of the MCARI index, as lower values of this index are
attributed to a high concentration of leaf chlorophyll
(WU et al., 2008). In other words, as MCARI values
decrease, the chlorophyll concentration increases and,
consequently, productivity increases, considering that

the other factors limiting productivity are in balance.
The percentage of sugarcane borer also
showed high and negative correlations between
productivity, NDVI, and TRS, with coefficients of
-0.68, -0.76, and -0.76, respectively. Although the
coefficients are acceptable, they were all negative,
suggesting that an increase in one variable is
associated with a decrease in the other. Therefore, an
increase in the percentage of sugarcane borer leads to
areduction in productivity, NDVI, and TRS. This fact
was already expected, as the attack by the sugarcane
borer leads to a reduction in stalk weight, a decrease
in the sucrose content, breakage of the stalk by the
wind, and aerial rooting (CARBOGNIN, 2019).

CONCLUSION

The principal component analysis (PCA)
for the fourth collection - canopy (April 28, 2022)
performed best relative to the others, corresponding
to 98% of the spectral variability. The data uniformity
of this collection allowed for choosing the vegetation
indices that were used throughout the study, in
addition to highlighting the influence and importance
of the red-edge region.

The descriptive analysis of the spectral
curves showed that the first collection (December
3, 2021) was not significant, as the leaves were

Figure 10 - Pearson’s correlation of productivity values, percentage of sugarcane borer,
vegetation indices (NDVI and MCARI), TRS, and purity.
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young, and the central vein made readings difficult.
Therefore, the choice of sugarcane development
stages is essential for the precision of readings. The
indices extracted from the canopy hyperspectral data
(NDVI and MCARI) allowed the separation of more
and less vigorous plots and varieties.

The influence of the red-edge region was
mainly due to the feasibility of detecting structural
or physiological changes in plants. Moreover, there
was difficulty in diagnosing the occurrence of D.
saccharalis or other pests in advance. The indices
(NDVI and MCARI) also demonstrated sensitivity
in identifying when the crop was undergoing some
stress, but they can vary due to several factors, making
it difficult to associate them with a single problem.
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