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Abstract: The identification of multivariable systems is of extreme importance in
practice. This paper deals with the use of subspace identification methods, to obtain
a multivariable linear dynamic model in state-space form of an activated sludge
process, around an operating point (a LTI model with lumped parameters).
Different subspace algorithms (such as CVA, N4SID, MOESP, DSR) are used and
compared, based on performance quality criteria. The selected model is cross-
validated. It is a very low-order model and describes well the complex dynamics of
the process. This model is asymptotically stable and it can be used specifically for

control and also for monitoring purposes.

Keywords: Subspace methods, Multivariable identification, State-space models,

Water pollution. Environment engineering.

‘ A conference version of this paper was presented at the 6" IFAC Symposium on Dynamics and Control
of Process Systems (DYCOPS-6). Chejude Island. Korea, 2001.
' Author to whom all correspondence should be addressed.




1. INTRODUCTION

Advanced engineering applications require suitable mathematical models. System identification deals
with the problem of obtaining (approximate) models of dynamic systems from measured input-output
data. This issue is of interest in a variety of applications, ranging from chemical process simulation
and control to identification of vibrational modes in flexible structures. The most traditional system
identification techniques are the prediction error method (PEM) and the instrumental variable method
(IVM). These methods are primarily used with the so-called black-box model structures (Viberg,

1993).

The field of linear system identification is by now quite advanced and it has been studied for more
than 25 years in the mathematical engineering literature. While at first sight, the linear identification
techniques seems to be rather restricted, it turns out that the input-output behavior of many real-world
problems. for most practical purposes (such as simulation. prediction, optimization. monitoring or
control system design), can be approximated very well by a linear-time invariant (LTI) model.
However, several important problems remain to be solved. The PEM has excellent statistical
properties provided the “true” PEM estimate can be found. Nevertheless, computing the PEM model
can sometimes be overwhelmingly difficult. In general. a multi-dimensional non-linear optimization
problem must be solved. On the other hand, the IVM attempts to deliver parameter estimates by only
solving linear systems of equations. However, the use of these models is quite cumbersome in the
general multivariable case, and the numerical reliability may be unacceptably high for complex cases
involving large system orders and many outputs (Viberg, 2000). The preferred model structure for

complex problems is therefore a state-space model.

Subspace identification method is a branch that has been recently developed in system identification
(around 10 years old by now), which has attracted much attention, owing to its computational
simplicity and effectiveness in identifying dynamic state-space linear multivariable systems. These
algorithms are numerically robust and do not involve nonlinear optimization techniques, i.e., they are

fast (non-iterative) and accurate (since no problems with local minima occur). The computational



complexity is modest compared to PEM., particularly when the number of inputs and outputs is large.
Because applications of large dimensions are commonly found in the process industry, subspace
identification methods are very promising in this field. As a result, a large number of successful
applications of subspace identification methods for simulated and real processes have been reported in

the literature.

In this paper, a low-order LTI state-space multivariable model that describes the nitrate concentrations
in the anoxic and aerobic zones of an activated sludge process is estimated around an operating point.
Several subspace identification methods are applied and their performances are compared in order to
select the best obtained model. It can be used to control the process. e.g., as in Lindberg (1997). where
a multivariable control algorithm based on a subspace model is used to regulate an activated sludge
process. Previous performance comparisons of several subspace methods, applied to other processes,
can be found in Abdelghani et al. (1998), Katayama et al. (1998), Favoreel et al. (1999) and Juricek er

al. (2000).

In this work, the ASWWTP-USP (Activated Sludge Wastewater Treatment Plant — University of Sio
Paulo) benchmark (Sotomayor er al., 2001a) is used as a data generator. This benchmark simulates the

biological. chemical and physical interactions that occur in a complex activated sludge plant.

2. SUBSPACE IDENTIFICATION METHODS

The subspace identification methods refer to a class of algorithms whose main characteristic is the
approximation of subspaces generated by the row spaces of block-Hankel matrices of the input/output

data, to calculate a reliable discrete-time state-space model of the following form:

Xy = Ax, +Bu, +w, 0

¥y =Cx; + Duy + v,




where w; is called the process noise and v, is called the measurement noise. They are assumed to be

unmeasurable gaussian-distributed zero-mean white noise vector sequences. In this formula, x

represents the model state vector, « is the manipulated input vector and y is the process output

vector. 4 is the system (state transition) matrix, B is the input matrix, C is the output matrix and D is

the direct input to output matrix. The time index & denotes a discrete (sampled) system.

The following assumptions have been considered related to equation (1):

e the system is asymptotically stable;
® the pair (A.C) is observable; and

e the pair (A4.B) is controllable.

It is common practice to distinguish among the three possible situations regarding the inputs acting on

the system:

® the purely deterministic case (w, =v, =0):
e the purely stochastic case (¢, =0) ; and

e the combined deterministic/stochastic case.

Subspace-based methods for state-space modeling have their origin in state-space realization, as
developed by Ho and Kalman (1966). These techniques determine a state-space model from a given
impulse response. which received a tremendous attention in the signal processing area in the late
seventies. In system identification area, one usually has available input-output data rather than

measured impulse response. In this context. subspace methods were developed in the late eighties.

The term “subspace identification method™ was first introduced by Verhaegen and Deprettere (1991).
There are now many different versions of subspace algorithms. These include an early version of

subspace algorithm presented in the paper by Moonen et al. (1989), Canonical Variate Analysis



(CVA) by Larimore (1990), Multivariable Output-Error State-sPace mode! identification (MOESP) by
Verhaegen and Dewilde (1992), Instrumental Variable Subspace-based State-Space System
[Dentification (IV-4SID) by Viberg er al. (1993). Numerical algorithm for Subspace State Space
System [Dentification (N4SID) by Van Overschee and De Moor (1993) and Deterministic and

Stochastic subspace system identification and Realization (DSR) by Di Ruscio (1997).

All subspace identification methods consists of three main step: estimating the predictable subspace
for multiple future steps. then extracting state variables from this subspace and finally fitting the
estimated states to a state-space model (see Appendix). Nevertheless, each subspace identification
method looks quite different from other in concept. computation tools and interpretation. The major
differences among these subspace identification methods lie in the regression or projection methods
used in the fist step to remove the effect of the future inputs on the future outputs and thereby estimate
the predictable subspace. and in the latent variable methods used in the second step to extract estimates
of the states. A general overview of the state-of-the-art in subspace identification methods is presented

in De Moor er al. (1999), Favoreel (1999) and Favoreel ef al. (2000).

The major advantages of these algorithms are that they only need input-output data and very little prior
knowledge about the system. In addition, these algorithms are based on system theory, geometry and
numerically stable non-iterative linear algebra operations, such as QR (or LQ)-factorization, SVD
(singular value decomposition) and its generalizations, for which good numerical tools are well-known
(Golub and VanLoan, 1996). A drawback against subspace identification approach is that the physical
insight of the process. in the obtained model, is lost, which is a characteristic of black-box models. For
example, the states are “artificial™ and it is not possible to understand how a process variable, which is
not directly included in the model. affects the process. Furthermore, a large amount of data is required
to obtain accurate models. Actually, generating and collecting data of some processes can be too
expensive. Important issues involved in developing a model through subspace identification methods

can be found in Amirthalingam and Lee (1999).




Subspace identification methods have recently reached a certain level of maturity. The subspace

identification algorithms considered in this paper are:

CVA: Canonical Correlation Analysis (CCA) technique - uCCA (unconstrained version) and cCCA

(constrained version). both in Peternell et al. (1996).

MOESP: Past Output (PO) variant of the MOESP algorithm in the SMI Toolbox by Haverkamp and

Verhaegen (1997).

N4SID: N4SID function (ndsid.m) in MATLAB System Identification Toolbox v.4.0.4 (Ljung, 1997),
that implements the “standard™ N4SID algorithm from Van Overschee and De Moor (1994) and the

“robust™ N4SI1D algorithm from Van Overschee and De Moor (1996).

DSR: DSR algorithm in the D-SR Toolbox by Di Ruscio (1997).

As previously mentioned. the purpose of the present paper is to compare the performance of these
methods and not to analyze their implementational differences. As for the detailed algorithms, the
difference between these subspace identification methods seems so large that it is hard to find the
similarities between them. Nevertheless. Van Overschee and De Moor (1995a) showed that the
subspace algorithms CVA, MOESP and N4SID are actually related to each other and that they differ
only in the choice of weighting functions in a minimization problem. Di Ruscio (2000) reports the

main differences and similarities among the algorithms CVA, MOESP., N4SID and DSR.

3. DESCRIPTION OF THE PROCESS

The ASWWTP-USP benchmark is a dynamic model, developed to simulate the processes that occur in

a biological wastewater treatment plant (WWTP). The benchmark represents a continuous-flow pre-

denitrifving activated sludge process (ASP). a frequently applied system for removal of organic matter



and nitrogen from municipal effluents, predominantly domestic, operating at a constant temperature of

15°C and neutral pH. The layout of the process is shown in figure 1.
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Fig. 1. Layout of the ASWWTP-USP benchmark

The process configuration is formed by a bioreactor composed of an anoxic zone (zone | with 13 m’),

two aerobic zones (zone 2 and zone 3 with 18 m* and 20 m®, respectively) and a secondary settler (20
m’). In nominal steady-state conditions, the influent rate of raw wastewater is O, =4.17 m’/h. with

an average proportion of 224 mg COD/I of biodegradable organic matter and 44.88 mg N/I of total

Kjeldahl nitrogen (TKN) and a hydraulic retention time of 17.0 hours (based on total volume, i.e.

bioreactor + secondary settler). The internal recycle flow rate is O, =1.30,,, the external sludge

recycle flow rate is O, =0.50, . the wastage flow rate is O, =258 I/h and the external carbon

=in

flow rate is O, , = 0.0 I/h. In this case, an external carbon source is available, constituted by pure

methanol. in a 33%-solution with a concentration of 80.000 mg COD/I. In the aerobic zones. the
dissolved oxygen (DO) concentration is controlled in 2.0 mg O,/ by simple PI controllers and in the

anoxic zone it is assumed zero DO concentration.

For a reliable simulation of an ASP, the ASWWTP-USP benchmark is based on models widely
accepted by the international community. Each bioreactor zone is modeled by IAWQ Activated Sludge
Model ASM1 (Henze er al.. 1987) and the secondary settler is modeled by the double-exponential
settling velocity model of Takacs er al. (1991). The complete plant model includes 52 large, complex.
coupled non-linear differential equations, which were implemented in Matlab/Simulink v.5.3. The

values of the process parameters are here omitted, but they can be found in Sotomayor et al. (2001a).




For more realistic simulations, a white noise. with zero-mean and standard deviation 0.05. was added

to the outputs produced by the benchmark.
4. IDENTIFICATION OF A SUBSPACE MODEL FOR THE ASP
4.1 Generation and pre-treatment of dara set

It is not very easy to select either the input or the output variables of the process. In this work, the

nitrate concentrations in the anoxic zone Sno, (mg N/I) and in the last aerobic zone Sno; (mg N/I)

are selected as outputs. The internal recirculation rate O, (m’/h) and the external carbon dosage O,

=t

(1/h) are considered as inputs. However, to improve the model influent flow rate O (m’/h). influent

=i

readily biodegradable substrate Ss

i

=

(mg COD/l) and influent ammonium concentration Snh, (mg

N/1) are assumed as measurable disturbances, while influent nitrate concentration Sko, (mg N/I) is

m

assumed as an unmeasurable disturbance. The signals used in the identification procedure are

summarized in figure 2. Note that all disturbances are considered as inputs.
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Fig. 2- Signals for subspace identification

Pseudo-random binary sequences (PRBS) are widely used in the identification of linear systems. The
advantages of the PRBS input include ease implementation and an autocorrelation function similar to

white noise. However. since the PRBS consists of only two levels. the resulting data may not provide



sufficient information to excite nonlinear dynamics. Additionally, a PRBS signal of a too large
magnitude may bias the estimation of the linear kernel. Multi-level (m-level) sequences, in contrast,
allow the user to highlight nonlinear system behavior while manipulating the harmonic content of the
signal, reducing the effect of nonlinearities in the resulting linear model (Godfrey, 1993). On the other
hand. the ill-conditioning of probing inputs may lead to a substantial deterioration of performance of
the subspace algorithms. This possible cause of ill-conditioning has to do with wide variations in the
amplitude of the input spectrum and with frequency bands where the spectrum is nearly zero causing

“insufficient excitation™ (Chiuso and Picci. 2000).

In the present paper. the data signals correspond to m-level uniformly distributed random sequences.
Their amplitudes and frequencies were chosen so as to adequately excite the system, without deviating
too much from the normal operating point and, therefore, enabling the identification of a suitable

linear model. All data signals are stored at a sampling rate of 0.16 hours to obtain 1400 samples.

For a better identification result, the raw data set is pre-processed. As the data set is generated from a
simulation model. no data pre-filtering is necessary. However, since the system is running at an
operating point different from zero and hence introducing some D.C. offsets, subtraction of the sample
mean from data set is done in order to remove these offsets. This operation is common in system
identification (Soderstrom and Stoica, 1989). As pointed out by Chui (1997). it is important to make
sure that the scales of the input-output data are of comparable sizes. Therefore, all data signals are
normalized aiming to be equally weighted. Finally, the data set is detrended in order to remove linear
trends from input-output data. This step is usual in signal processing. Asymptotic properties of
subspace procedures. when the data set is pre-processed by removing trends and periodic components.

are presented in (Bauer. 2000a). The pre-processed signals are shown in figures 3 and 4.
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Fig. 3. Data sequences of the process: (a) inputs and (b) disturbances
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Fig. 4. Output signals of the process

The identification process was carried out off-line in batch form by using the first 1000 points of the
data set. whereas the remaining 400 points were applied for model validation. In the identification

procedure is done in open loop and the purely deterministic case is considered.

4.2 Order estimation

There is an extensive literature for order estimation algorithms for linear, dynamical, state-space
systems. Nevertheless, there exist only few references dealing with the estimation of the order in the

context of subspace identification methods (Bauer, 2001).

The determination of the system order » is very subtle. Normally. this information is obtained by
detecting a gap in the spectrum of the singular values of the orthogonal (or oblique) projections of the
row spaces of data block-Hankel matrices. In the present case, the gap is not easy to determine, as it is
seen in figure 5, and hence the application of this strategy becomes subjective and the decision

regarding the order of the model is an arbitrary one.
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According to Bastogne er al. (1998). a more practical procedure is to choose the value » that
minimizes the estimation errors. For instance, subspace identification methods do not involve error
minimization schemes. These techniques are exclusive of the “classical” PEMs and they require a
larger computational effort. The determination of the theoretical order. in the sense of minimization of
the estimation error. is shown in figure 6. which was generated using the “robust™ N4SID algorithm.
Comparing the relative estimation error indexes, it can be noticed that the 3rd, 6th and 7th-order model
have practically the same mean error index. but for #n = 6 it is slightly lower. Nevertheless. the choice
of 6th or 7th-order does not bring enough improvement in comparison with a reduced order given by
the 3rd-order model. which is the selected order estimation. For n =3 the relative square error was

34.60% for the case of Sno, and 35.07% for the case of Sno,, with a mean error of 34.84%. This

order of the model corresponds to the number of states or poles of the model.
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4.3 Performance quality eriteria

In Favoreel et al. (1999), three subspace algorithms (CVA, MOESP and “robust” N4SID) were
applied to 15 different data sets from real-life systems. They evaluated the algorithms according to
computational complexity and prediction/simulation error and concluded that their performance is

very similar.

In the present paper. two performance indicators are proposed to measure identification/validation

error. in order to obtain the best 3rd-order state-space model. The performance indicators are:

Mean relative square error (MRSE):

Mf

|{ S (v, ()= 5, ()’
— x100 @)
> (v, ()

% MRSE =

~ | —

,;,\




Mean variance-accounted-for (MVAF):

YoMVAF =

5 [1 SO V=V J %100 3)

1
! variance(y, )

being N the number of identification data points, / the number of outputs, ¥, the i-zh real output and

¥, the i~th simulated output produced by the model. The MRSE index is widely used in the literature,

while the MVAF index is specifically used by the SMI Toolbox. Both performance indexes are used to

evaluate the adequacy of the model produced by each algorithm.

Table 1. Numerical results of the performance of the subspace-based algorithms

Algorithm 7MRSE “%MVAF

) Identification | Validation |Identification| Validation
uCCA 40.4417 69.9404 83.5750 73.5628
cCCA 40.1652 69.2404 83.7998 73.9129
MOESP 31.8091 57.5806 89.9037 79.3096
N4SID 44.4914 72.9242 80.0546 74.2431
“robust™ N4SID 34.8394 57.7508 87.8739 81.2475
DSR 34.2450 50.9904 88.2237 84.4274

Analyzing the values in table 1. the MOESP model seems to produce a better model in terms of
identification. while the DSR model seems to produce a better model in terms of validation. Hence. in
this work. the 3rd-order DSR model was chosen to describe the process.

4.4 Identification results

The selected deterministic model (proper model) is described by the following matrices:



[ 0.9763 0.0194 03268
A=| 0.0061 0.8815 0.0893
—0.0023 0.0071 0.9763

[ 0.0238  —0.0459 —0.1488 —0.0403 0.0002
B=|-0.1295 0.0299 0.0230 0.0185 —=0.0052 (4)
0.0097 —-0.0082 -0.0082 0.0004  0.0036

-_[02253 —04052 -0.1823
102668 0.2880 —0.4626
p_| 01292 -0.0193 -0.0651 —0.0312 0.0053
[-0.0387 0.0086 0.0126 0.0105 —0.0026

A strictly proper model (i.e. with D = 0) is also identified, and it is described by:

[ 09763 0.0199 0.3263
A=| 0.0062 0.8818 0.0907
| —0.0024 0.0072 0.9758

[ 0.0368 —0.0434 —0.1537 —0.0431 —0.0045
B=[-=0.1505 0.0234 0.0357 0.0283 —0.0044 (5)
| 0.0167 —0.0100 —0.0091 0.0003  0.0039

[02259 -0.4026 -0.1810
1 0.2664 02876  —0.4633

The poles (eigenvalues of 4) of the proper model (denoted by the +) and the poles of the strictly proper
model (denoted by A) are shown in figure 7. The poles closer to the unit circle are related to the
slower system dynamics. The poles close to 1. show that the data set seems to contain a phenomenon
known as “co-integration™ in econometrics. Based on this observation, it is possible to obtain models

which produce a one-step-ahead prediction error much smaller (Bauer, 2000b).
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Figures 8 and 9 show the outputs generated by the identified strictly proper model (dotted line). As it
can be observed, the identified model for a given operating points correctly reproduces the main
dynamic characteristics of the activated sludge process. In these graphics. either the identification or
the validation data were introduced in the obtained model. In both cases the simulation started at zero

initial conditions.
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Given that low-order state-space models sufficiently representative of the nominal system behavior are
a prerequisite to the systematic design of control systems, the strictly proper model (5) derived above
has been successfully used in the implementation of an infinite-horizon optimal controller. For more

details see Sotomayvor e al. (2001b).

5. CONCLUSIONS

The use of subspace identification methods has proved to be a valuable tool in the estimation of LTI
state-space models for the activated sludge process. The performance of different identification
algorithms (CVA. MOESP, N4SID and DSR) was compared. Although the used simulation
benchmark consists of 52 complex differential equations (3 IAWQ and the settler models). the 3rd-
order obtained one (a very reduced order model) manages to describe sufficiently well the process. It
is well suited for model-based control (not just for Model Predictive Control) and also for monitoring

applications.
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APPENDIX
In this section, we introduce the state-space identification problem and review the main issues related
to subspace identification methods and one particular technique (the “standard” N4SID). The text to

follow is taken (with some modifications) from Delgado et al. (2001).

ALl The problem

The objective is to estimate. from measured inputioutput data sequences ({u;} and |y},

respectively), the system described by:

.J'_\‘;\.H =4 xp+Bu,+w,

(A1)

] Ye=C xp+Du+v

E“n(‘rrr)_Qs § 1 50 o
v, Yg Vg - Ss‘T RY TPq (A2)

where:

o de R”X”‘BE Rnxm'CE R}xu De RIX’H,QSE RHX”,SS c Rnxj.Rs c R]x} and Xp € R"

1 g < :
» wy€ R" and vy e R’ denote white noise sequences (process and measurement noise) and

* the input data sequence is assumed to be a persistently exciting quasi-stationary deterministic

sequence (Ljung. 1997), with correlation:



Ruu(_r)=EN [u(r+r)uT( ] lim ——ZE [u t+7)u (r] (A3)

N—o N

(where N is the number of measurements)

A.2 Notations and definitions

The input and output data will be organized into block Hankel matrices with (27) row-blocks and (j=N-

2i+1) column-blocks:

* the input block Hankel matrix. U!/.-’:‘Jr_,r‘—f(f._,r')- or just U:

|7 iy ”j _]
U= Ui o Upgjog _ Uf/:‘+j—f(f.j) _ Up e RIMIXJ
Uiy ] e Uiy g Ui+!/2:‘+j—1 L ur
7 ;i J
Uap o Udpy ;'—;J

where the subscripts p and f denote past and future, respectively. In the same way, Up,j= Up+

and Upy /0y =Uy”

© Y{or ¥}/ 304 j-1i. ;) is the output block-Hankel matrix with 2i row-blocks and j column-blocks

o
and H = J

- X ¢ is the state sequence generated by a bank of Kalman filters, working in parallel on each of the

columns of the block Hankel matrix of past inputs and outputs, illustrated in the next figure:
e o - - nxj
X =%es/1 Fix2/2 .- EN-i+1/N-2i+1] € R™ and

- nxj
“ [+1 “[ Xit2/2 --‘,-\'—:'+3;'.-’\f’—3f+_"] e
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Fig. A.1 — Interpretation of the sequence X £ as asequence of Kalman filter state estimates based on i

measurements of u; and V..

[} is the extended observability matrix (since />n) where the subscript i denotes the number of row-

blocks (in fact. the estimated order has (/i) as an upper bound):

[—! _ “ c RHXJT (A4)

H{-d is a block Toeplitz matrix. built with Markov parameters:

D cee ) Hy e ()
o ST Hy = ff -
de - - ! = thmt (A.5)
cA'="B - D| |Hi_; - Hy

A3 One subspace identification technigue

The main principle behind subspace theory is the estimation of the system matrices as the least squares

problem:



K] T4 ][ %;
}"f(, i C D Li;/_;

(A.6)

where X'/ ; and )-(f- are Kalman filter state estimates, obtained directly from the input-output data.

In fact. Van Overschee and De Moor (1994, 1995b) establish a relation between the estimated Kalman

filter state sequence and the input and output data — through orthogonal or oblique projections:

- the orthogonal projection of the row space of Y ¢ (future outputs) into the row space of the past

inputs. past outputs and future inputs row space U s | Z; = Y is related to ):"f by the

P
Uy |

expression Z; =1} X p + Hf-dU)r.
- the oblique projection of the row space of Y}r (future outputs), along the future inputs row space

U s . into the row space of the past inputs and outputs ¥, , is related to the estimated Kalman filter

state sequence /{! by the expression O; = I; )?f c O =Y /Up Wy =1, X'f

There is a slight difference between Z; and O;. In fact, O; can be computed fromZ; by just
ignoring the information given by Uf. The consequences are clear: part of the information required
to estimate )E'” is no Ion_ger available so. the estimated state sequence (if) is different from Xf
Although )?5 and )if are not the same bank of Kalman filters, they are still very similar and.

actually, under some special conditions (i = e or {uﬂ.} is white noise or the system is purely

deterministic) they are the same.

This approximation of the state sequences is used to obtain a more elegant and simple algorithm

presented in the next section. Unlike the algorithm that considers the “exact™ Kalman state estimates




by implementing some orthogonal projections (unbiased for j — o), this approximate algorithm is

biased for finite 7, except under certain special cases (Van Overschee and De Moor, 1994).

A3 Algorithm based on the result: O; =T} X ¢

1. Projections: Compute the oblique projections (LQ-decomposition):

O; =Yy /Uy Hp, and Opy =Y, /U;” H,*.

2. SVD: Compute the Singular Value Decomposition of the oblique projection O; :

o, =U-s¥vT =[u, U;]{

S; ol\w,T
; }Ii =U;-S; -V

0 0lly,T

2

where O; R'™I se RIXJ (diagonal matrix with the singular values of O;) . Ue RIS

T e pi% (U and ¥~ are  orthogonal  matrices), Uje RIr, S;e R™,

I";T e R™ | r=rank( O; y=n.

=
[

1-J
LJ

Order n of the system: can be determined (Van Overschee and De Moor. 1994, 1995a, 1995b)
by the number of the nonzero singular values of O; (dim (S;)). However, in many practical

situations, when the measurements are noise corrupted, it may be not straightforward to
distinguish the “nonzero™ from the “zero” singular values — we must take a decision by

comparing the values or by assuming different orders and then comparing simulation errors.

of : 3 /2
Observability matrices: as the column spaces of I} and U; - S;j' ~ are the same, compute

I =U;-S'"° . Tocompute I;_; . remove the last / rows of 7.

State  sequence: since O; =1; )Tf and O;=1I;-1 j(:f +1.  compute

:\u, = pinv(I;) O; and jff ;= pinv (I ‘;__1)01'_',_‘!, where pinv() denotes the Moore-

Penrose pseudo-inverse. In order to achieve a more robust algorithm, we can estimate 4 and



C from [;:C from the first / lines of I; and 4 such that [;_; A=1T; where

[ ¢4

2
I

i—1
| c4

3. System matrices: the model can now be expressed as a simple least squares problem

%,.,] (4 B[ &
L }{:’ ZLC Bl U,v;[- where Y; /; -——Lv;... _1=1,-+_,-_;J and U;;; = l“f ---uH_,-_]J. Compute

the covariance of the residuals, in order to determine the matrices 0°, R® and S*.
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