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Abstract: The identification of multivariable systems is of extreme importance in

practice. This paper deals with the use ofsubspace identification methods, to obtain

a multivariable linear dynamic model in state-space form of an activated sludge

process, around an operating point (a LTI model with lumped parameters).

Different subspace algorithms (such as CVA. N4SID, MOESP, DSR) are used and

compared. based on performance quality criteria. The selected model is cross-

validated. It is a very low-order model and describes well the complex dynamics of

the process. This model is asymptotically stable and it can be used specifically for

control and also for monitoring purposes.
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1. INTRODUCTION

Advanced engineering applications require suitable mathematical models. System identification deals

with the problem ofobtaining (approximate) models of dynamic systems from measured input-output

data. This issue is of interest in a variety of applications, ranging from chemical process simulation

and control to identification of vibrational modes in flexible structures. The most traditional svstem

identification techniques are the prediction error method (PEM) and the instrumental variable method

(IVM). These methods are primarily used with the so-called black-box model structures (Viberg.

1995)

The field of linear system identification is by now quite advanced and it has been studied for more

than 25 years in the mathematical engineering literature. While at first sight, the linear identification

techniques seems to be rather restricted, it turns out that the input-output behavior of many real-world

problems. for most practical purposes (such as simulation, prediction, optimization. monitoring or

control system design), can be approximated very well by a linear-time invariant (LTI) model.

However. several important problems remain to be solved. The PEM has excellent statistical

properties provided the ''true“ PEM estimate can be found. Nevertheless, computing the PEM model

can sometinres be overwhelmingly difficult. In general, a multi-dimensional non-linear optimization

problem must be sol\'ed. On the other hand, the IVM attempts to deliver parameter estimates by only

solving linear systems of equations. However, the use of these models is quite cumbersome in the

general nrultivariable case. and the numerical reliability may be unacceptably high for complex cases

involving large system orders and many outputs (Viberg, 2000). The preferred model structure for

complex problems is therefore a state-space model.

Subspace identification method is a branch that has been recently developed in system identification

(around 10 years old by now), which has attracted much attention, owing to its computational

sinrplicity and effectiveness in identifying dynamic state-space linear multivariable systems. These

algorithms are numerically robust and do not involve nonlinear optimization techniques, i.e., they are

fast (non-iterative) and accurate (since no problems with local minima occur). The computational



colnplexity is modest colnpared to PEM, particularly when the number of inputs and outputs is large.

Because applications of large dimensions are commonly found in the process industry, subspace

identification methods are very promising in this field. As a result, a large number of successful

applications of subspace identification methods for simulated and real processes have been reported in

the literature.

In this paper, a low-order LTI state-space multivariable model that describes the nitrate concentrations

in the anoxic and aerobic zones of an activated sludge process is estimated around an operating point.

Several subspace identification methods are applied and their performances are compared in order to

select the best obtained model. It can be used to control the process, e.g., as in Lindberg (1997), where

a multivariable control algorithm based on a subspace model is used to regulate an activated sludge

process. Previous performance comparisons of several subspace methods, applied to other processes,

can be found in Abdelghani er al. (1 998), Katayama ef aI. (1998), Favoreel ef a/. (1999) and Juricek er

al . (2000),

In this work, the ASWWTP-USP (Activated Sludge Wastewater Treatment Plant – University of São

Paulo) benchmark (Sotoluayor er aI .. 2001 a) is used as a data generator. This benchmark simulates the

biological. chemical and physical interactions that occur in a complex activated sludge plant.

2. SUBSPACE IDENTIFICATION METHODS

The subspace identification methods refer to a class of algorithms whose main characteristic is the

approximation of subspaces generated by the row spaces of block-Hankel matrices of the input/output

data. to calcu late a reliable discrete-time state-space model of the following form:

1#,1 = HIt + Buk + u 1

):Á, = Cx k + Du # + vk
(1)



where H'Á is called the process noise and vÁ. is called the measurement noise. They are assumed to be

unmeasurable gaussian-distributed zero-mean white noise vector sequences, in this formula, 1

represents the nrodel state vector. 11 is the manipulated input vector and y is the process output

vector. .4 is the system (state transition) matrix, B is the input matrix, C is the output matrix and D is

the direct input to output matrix. The time index k denotes a discrete (sampled) system

The following assunrptions have been considered related to equation (1):

• tIre systenr is asymptotically stable;

• the pair ( 1. C) is obsewable: and

• the pair ( .4. B ) is controllable.

It is common practice to distinguish among the three possible situations regarding the inputs acting on

the system:

• tIle purely deterministic case (u'Á. = vÁ, = 0) ;

• the purely stochastic case (u k = 0) ; and

• the combined determin istic/stochastic case

Subspace-based methods for state-space modeling have their origin in state-space realization, as

developed by Ho and Kalman (1966). These techniques determine a state-space model from a given

inlpulse response. which received a tremendous attention in the signal processing area in the Iate

seventies. In systenr identification area. one usually has available input-output data rather than

measured impulse response. In this context, subspace methods were developed in the late eighties.

The tern1 '-subspace identification method-- was first introduced by Verhaegen and Deprettere (1991 ).

There are now many different versions of subspace algorithms. These include an early version of

subspace algorithm presented in the paper by Moonen er aI. (1989), Canonical Variate Analysis



(CVA) by Larilnore (1 990), Multivariable Output-Error State-sPace model identiâcation (MOESP) by

Verhaegen and Dewilde (1992), Instrumental Variable Subspace-based State-Space System

IDentification (IV-4SID) by Viberg er al . (1993), Numerical algorithm for Subspace State Space

System IDentification (N4SID) by Van Overschee and De Moor (1993) and Deterministic and

Stochastic subspace system identification and Realization (DSR) by Di Ruscio (1997).

All subspace identification methods consists of three main step: estimating the predictable subspace

for multiple future steps. then extracting state variables from this subspace and finally fitting the

estimated states to a state-space model (see Appendix). Nevertheless, each subspace identification

method looks quite different from other in concept, computation tools and interpretation. The major

differences among these subspace identification methods lie in the regression or projection methods

used in the fist step to remove the effect of the future inputs on the future outputs and thereby estimate

the predictable subspace, and in the latent variable methods used in the second step to extract estinrates

of the states. A general overview of the state-of-the-art in subspace identification methods is presented

in De Moor er aI . ( 1 999). Favoreel (1999) and Favoreel er a/. (2000).

The major advantages of these algorithms are that they only need input-output data and very little prior

knowledge about the system. In addition. these algorithms are based on system theory, geometry and

nulnerically stable non-iterative linear algebra operations, such as QR (or LQ»factorization, SVD

(singular value decolnposition) and its generalizations, for which good numerical tools are well-known

(Golub and VanLoan. 1 996). A drawback against subspace identification approach is that the physical

insight of the process. in the obtained model. is lost, which is a characteristic of black-box models. For

example. the states are "artificia!” and it is not possible to understand how a process variable. which is

not directlv included in the model. af:fects the process. Furthermore, a large amount of data is required

to obtain accurate models. ActuaIly, generating and collecting data of some processes can be too

expensive. Important issues involved in developing a model through subspace identification methods

can be found in AnlilThalingam and Lee ( 1999).



Subspace identification methods have recently reached a certain level of maturity. The subspace

identification algoritllms considered in this paper are:

CVA: Canonical Correlation Analysis (CCA) technique - uCCA (unconstrained version) and cCCA

(constrained version). both in Peternell er aI. ( 1996).

MC)ESP: Past Output (PO) variant of the MC)ESP algorithm in the SMI Toolbox by Haverkamp and

Verhaegen ( 1 997).

N4SID: N4SID function (n4sid.m) in MATLAB System ldentification Toolbox v.4.0.4 (Ljung, 1997),

that implements the "standard'- N4SID algorithm from Van Overschee and De Nloor (1994) and the

"robust-- N4SID algorithm from Van Overschee and De Moor ( 1996).

DSR: DSR algorithm in the D-SR Toolbox by Di Ruscio (1997).

As previously mentioned. the purpose of the present paper is to compare the performance of these

methods and not to analyze their implementational differences. As for the detailed algorithms, the

difference between these subspace identification methods seems so large that it is hard to find the

sinlilarities between them. Nevertheless. Van Overschee and De Moor (1995a) showed that the

sul)space aIgorithms CV A. MC)ESP and N4SID are actually related to each other and that they differ

only in the choice of weighting functions in a minimization problem. Di Ruscio (2000) reports the

main differences and simi=larities among the algorithms CVA, MC)ESP. N4SID and DSR.

3 . DESCRIPTION OF THE PROCESS

The ASWWTP-USP benchmark is a dynamic model, developed to simulate the processes that occur in

a biological wastewater treatment plant (WWTP). The benchmark represents a continuous-flow pre-

den itrifying activated sludge process (ASP). a frequently applied system for removal of organic matter



and n itrogen from municipal effluents, predominantIy domestic, operating at a constant temperature of

15'C and neutral pH. The layout of the process is shown in figure 1.

1 (pp1 /

Q,/7 B 1
j

Zona 1 | Zona 2 F Zona 3
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2,

Q, | 'q.

Fig. 1 . Layout of the ASWWTP-USP benchmark

The process configuration is formed by a bioreactor composed of an anoxic zone (zone 1 with 13 m-’).

two aerobic zones (zone 2 and zone 3 with 1 8 m-’ and 20 m-', respectively) and a secondary settler (20

ms). In nominal steady-state conditions, the innuent rate of raw wastewater is Qi„ = 4.17 m3/h. with

an average propollion of 224 mg COD/1 of biodegradable organic matter and 44.88 mg N/l of total

KjeldahI nitrogen (TKN) and a hydraulic retention time of 17.0 hours (based on total volume. i.e.

bioreactor + secondary settler). The internal recycle flow rate is 0111, =1.3el-n , the external sludge

recycle now rate is (2*1 = o.5e1/1 , the wastage flow rate is gw = 25.8 1/h and the external carbon

flow rate is eu, = o.0 1/h. In this case. an external carbon source is available, constituted by pure

methanol. in a 33%-solution with a concentration of 80,000 mg COD/1. In the aerobic zones. the

dissolved oxygen (DO) concentration is controlled in 2.0 mg 02/1 by simple PI controllers and in the

anoxic zone it is assumed zero DO concentration.

For a reliable simulation of an ASP, the ASWWTP-USP benchmark is based on models widely

accepted bv the international community, Each bioreactor zone is modeled by IAWQ Activated Sludge

Model ASM 1 (Henze er aI.. 1987) and the secondary settler is modeled by the double-exponential

settling velocity model of Takács er a 1. ( 1 991 ). The complete plant model includes 52 large, complex,

coupIed non-linear differential equations, which were implemented in Matlab/Simulink v.5.3. The

values of the process parameters are here omitted, but they can be found in Sotomayor et al. (2001 a).



For more realistic sinrulations. a white noise, with zero-mean and standard deviation 0.05. was added

to tIre outputs produced by the benchmark

4. IDENTIFICATION OF A SUBSPACE MODEL FOR THE ASP

4. 1 Gencl'ution and pre-tl'ealmenT of daTa set

11 is not ver)’ eas)' to select either the input or the output variables of the process. In this work, the

nitrate concentrdtions in the anoxic zone SIIO \ (mg N/1) and in the last aerobic zone suoR (mg N/1)

are selected as outputs. The internal recirculation rate gin, (m3/h) and the external carbon dosage Q ,,\,

(1/h) dre considered as inputs. However, to improve the model influent flow rate ph (m"/h), influent

readily biodegradable substrate Ss lrJ (mg COD/1) and influent ammonium concentration Snh 111 (mg

N/1) are assunred as nreasurable disturbances, while influent nitrate concentration Sno 111 (mg N/1) is

assunled as dn unmeasurable disturbance. The signals used in the identification procedure are

sumnlarized in figure 2. Note that all disturbances are considered as inputs.

SSin Snhin Qin

Qilx

Qcx!

Snot

Sno3

ASWWTP-USP
Benchmark

Sno,

Fig. 2- Signals for subspace identification

Pseudo-random binary sequences (PRBS) are widely used in the identification of linear systems. The

ad\'antages of the PRBS input include ease implementation and an autocorrelation function similar to

white noise. However, since the PRBS consists of only two levels, the resulting data may not provide



sufficient information to excite nonlinear dynamics. Additionally, a PRBS signal of a too large

magnitude may bias the estimation of the linear kernel. Multi-level (m-level) sequences, in contrast,

allow the user to highlight nonlinear system behavior while manipulating the harmonic content of the

signal. reducing the effect ofnonlinearities in the resulting linear model (Godfrey, 1993). On the other

hand. the iII-conditioning of probing inputs may lead to a substantial deterioration of performance of

the subspace algorithms. This possible cause of iII-conditioning has to do with wide variations in the

anlplitude of the input spectrum and with frequency bands where the spectrum is nearly zero causing

--insut-ficient excitation-- (Chiuso and Picci. 2000).

In the present paper. the data signals correspond to m-level uniformly distributed random sequences.

Their anrplitudes and frequencies were chosen so as to adequately excite the system, without deviating

too much from the normal operating point and, therefore, enabling the identification of a suitable

linear model. All data signals are stored at a sampling rate of 0.16 hours to obtain 1400 samples.

For a better identification result. the raw data set is pre-processed. As the data set is generated from a

simulation model. no data pre-filtering is necessary, However, since the system is running at an

operating point different from zero and hence introducing some D.C. offsets, subtraction of the sample

mean from data set is done in order to remove these offsets. This operation is common in system

identiücation (Sõderstrõm and Stoica. 1989). As pointed out by Chui (1997), it is important to make

sure that the scales of the input-output data are of comparable sizes. Therefore, all data signals are

norlnalized ainring to be equally weighted. Finally, the data set is detrended in order to remove linear

trends from input-output data. This step is usual in signal processing. Asymptotic properties of

subspdce procedures. when the data set is pre-processed by removing trends and periodic components,

are presented in (Bauer, 2000a). The pre-processed signals are shown in figures 3 and 4.
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Fig. 3. Data sequences of the process: (a) inputs and (b) disturbances
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Fig. 4. Output signals of the process

The identification process was carried out off-line in batch form by using the first 1000 points of the

data set. whereas the remaining 400 points were applied for model validation. In the identification

procedure is done in open loop and the purely deterministic case is considered

4.2 Order esTintation

There is an extensive literature for order estimation algorithms for linear, dynamical, state-space

systems. Nevertheless. there exist only few references dealing with the estimation of the order in the

context of subspace identification methods (Bauer. 200 1 ).

The deternrinatíon of the system order n is very subtle. Normally, this information is obtained by

detecting a gap in the spectrum of the singular values of the orthogonal (or oblique) projections of the

row spaces of data block-Hankel matrices. In the present case, the gap is not easy to determine. as it is

seen in figure 5, and hence the application of this strategy becomes subjective and the decision

regarding the order of the model is an arbitrary one.
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Fig. 5. Singular value spectrum

According to Bastogne er a/. (1998), a more practical procedure is to choose the value m that

lnininlizes the estinration errors. For instance, subspace identification methods do not involve error

nrininlization schemes. These techniques are exclusive of the ''classical“ PEMs and they require a

larger conrputational effort. The determination of the theoretical order, in the sense of minimization of

the estinlation error. is shown in figure 6. which was generated using the ''robust“ N4SID algorithm

Conlparing the relati\'e estinration error indexes, it can be noticed that the 3rd, 6th and 7th-order model

have practically the same mean error index, but for n = 6 it is slightly lower. Nevertheless. the choice

of 6th or 7th-order does not bring enough improvement in comparison with a reduced order given by

the 3rd-order model. whi.ch is the selected order estimation. For n = 3 the relative square error was

34.60% for the case of Snc) , and 35.07% for the case of Sno= , with a mean error of 34.84%. This

order of the model corresponds to the number of states or poles of the model.
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Fig. 6. Estimation error spectrum

4.3 Per+-ol-nrance qualit\: criTeria

In Favoreel ef aI . ( 1999), three subspace algorithms (CVA, MC)ESP and “robust” N4SID) were

applied to 15 different data sets from real-life systems. They evaluated the algorithms according to

conrputational conrplexity and prediction/simulation error and concluded that their performance is

very silnilar

In the present paper. two performance indicators are proposed to measure identification/validation

error. in order to obtain the best 3 rd-order state-space model. The performance indicators are:

Mean relative square error (MRSE):

”-“=;.: x 100 (2)



Mean variance-accounted-for (MV AF):

% A( 1 A r = ; o É [ 1 | x 1 o o
(3)

being N the number of identification data points, / the number ofoutputs, )’1 the i-th real output and

Í1 the i-1 h simulated output produced by the model. The MRSE index is widely used in the literature,

while the MV AF index is specifically used by the SMI Toolbox. Both performance indexes are used to

e\'aluate the ddequac}' of the model produced by each algorithm.

Table 1 . Numerical results of the performance of the subspace-based algorithms

%NIRSE

dentification Validation

40.44 1 7 69.9404

69.2404no

57.580631.8091

72.924244.4914

57.750834.8394

34.2450 50.9904

%MVAF
ldentification Validation

75.562883.5750

83.7998 73.9129

79.309689.9037

80.0546 74.243 1

8 1 .247587.8739

84.427488.2237

cCCA

MOESP
N4SID

robust- N4SID

DSR

Analyzing the values in table 1, the MOESP model seems to produce a better model in terms of

identitlcation, while the f)SR model seems to produce a better model in terms of validation. Hence, in

this work. the 3rd-order DSR model was chosen to describe the process.

4,4 ídentiÍicatiolt results

The selected deterministic model (proper model) is described by the following matrices:



0.9763

.4 = | o.o061

0.0023

0.0194
0.8815

0.0071 :i;: 1
0.0238

B 0.1295

0.0097

–O.0459 –O.1488
0.0299 0.0230

–O.0082 –O.0082

– 0.0403

0.0185

0.0004 –:+::}](4)

( = [ : : : : : :
– 0.4032

0.2880
– 0. 1 823

0.4626

0 = [ OÀ : ;39:7
– 0.0193 – 0.0651 – 0.0312

0.0086 0.0126 0.0105

0.0053

0.0026

A strictly proper model (i.e. with D = 0 ) is also identified, and it is described by:

[ 0.9763 0.0199 0.3263]

,4=1 o.o062 o.8818 o.09071

1–o.o024 o.o072 o.9758 F

,=[–:{i:;
– 0.0434

0.0234
– o.0100

– 0.1537

0.0357

– 0.0091

– 0.043 1

0.0283
0.0003 1::E; 1 (5)

– 0.1810.2259c=
0.4630.2664

– 0.4026
0.2876

The poles (eigenvalues of 1) of the proper model (denoted by the +) and the poles of the strictly proper

model (denoted by A ) are shown in figure 7. The poles closer to the unit circle are related to the

slower system dynamics. The poles close to 1, show that the data set seems to contain a phenomenon

klroun as -co-integration in econometrics. Based on this observation, it is possible to obtain models

which produce a one-step-ahead prediction error much smaller (Bauer, 200C)b).
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Fig. 7. Location of the poles of the DSR-model.

Figures 8 and 9 show the outputs generated by the identified strictly proper model (dotted line), As it

can be observed. the identified model for a given operating points correctly reproduces the main

dynamic characteristics of the activated sludge process. In these graphics, either the identification or

the validation data were introduced in the obtained model. In both cases the simulation started at zero

initial conditions,

Id entificati on

600400

Validation

800 1000

1300 1350 1400

Fig. 8. Response comparison for Sno \
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Fig. 9. Response comparison for suoR

Given that low-order state-space models sufficiently representative of the nominal system behavior are

a prerequisite to the systematic design of control systems, the strictly proper model (5) derived above

has been successfully used in the implementation of an infinite-horizon optimal controller. For more

details see Sotomayor er al. (2001 b).

5. CONCLUSIONS

The use of subspace identification methods has proved to be a valuable tool in the estimation of LTI

state-space models for the activated sludge process. The performance of different identification

algorithnls (CV A_ MC)ESP, N4SID and DSR) was compared, Although the used simulation

benchmark consists of 52 complex differential equations (3 IAWQ and the settler models), the 3rd-

order obtained one (a very reduced order model) manages to describe sufficiently well the process, it

is well suited for model-based control (not just for Model Predictive Control) and also for monitoring

applications.
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APPENDIX

In this section, we introduce the state-space identification problem and review the main issues related

to subspace identification methods and one particular technique (the “standard” N4SID). The text to

follow is taken (with some modifications) from Delgado er aI . (2001 ).

A. 1 The pl-oblent

The objective is to estimate, from measured input/output data sequences ({tzk ] and { )’# },

respectively). the system described by:

Fx/,+/ = ,4 x/' + B u k + 111

1 _v/, = C: 1 1, + D u 1, + \, k
(A. 1 )

'[[:1',’ 1',’„„’'1=[5}Ss
.8 >0

Pq
Rs

(A.2)

\\-here:

B Ae R'lx': . B e Rnx}11 , C e RI>(" , D e Rlxn1 ,Os e R11xYt , Ss e RYtxl , Rs e Rlxi and x/' e R’=

• tr/\_ e Rn and denote white noise sequences (process and measurement noise) and

• the input data sequence is assumed to be a persistently exciting quasi-stationary deterministic

sequence (Ljung, 1 997). with correlation:



R:„k) = EN ['(' + ,) :'’(')]= #!:_{;E k(' + ') „’(')]

(where N is the number of measurements)

(A.3)

A.2 N<)tations and def'rnitions

The input and output data will be organized into block Hankel matrices with (2i) row-blocks and Q=N-

2/+ ] ) column-blocks

• the input block Hankel matrix, U 1 / 2i+ j_IQ.jI, or just U\

u / 1/ j

u= “‘
1(/+/ “lj;' =[„:’,','::.::?„ 1=[:; 1=*;„*‘

where the subscripts p and./-denote paw and .Êfrlfre, respectively. In the same way, U 0 / 1 = Up+

and Ui+ 1 / :i_ | = U f

• Y(or Y / / 31'+ /_/r/, /' ) ) is the output block-Hankel matrix with 21 row-blocks and J column-blocks

,„''=[71
e XT is the state sequence generated by a bank ofKalman filters, working in parallel on each of the

columns of the block Hankel matrix of past inputs and outputs, illustrated in the next figure:

-f / = ['t/+/ / / X/-+: ./ : ... 'tAr–/+//N–2/+/ 1 € Rn)( J and

X /,/ = k,+_,.,’ 1 .- 'tÀr–,+3/N–:,',:] € R"xj



„/ 1 „ q, 1 1 „J 1- Kalman

: 1 : 1 : & | Filter

1
: 1 : 1 : 11 1
_,,/ 1 ., ,1,i 1 y j,i_1 11 1

-t./- = k,-+/,„/ .-. -t,/+,'+//q+1 ..- .tJ+,'/ J]

Fig, A. 1 –lnterpretation of the sequence Xf as a sequence ofKalman filter state estimates based on /

measurements of uk and

Fi is the cxtclrded obser\'ability matrix (since 1>n) where the subscript i denotes the number of row-

blocks ( in fact, the estimated order has (//) as an upper bound):

C
C.4

ri =

C 41 – /

is a block Toeplitz matrix. built with IVlarkov parame

D ... o1 [ //IJ ... 0

A /H (l = 1CJ|9 n n a 0 = J|h|r1 e + n 0

(A.4)

ters

CHi –: B ... DI [//1._/ ... Ho

ation techniqueA.3 One sulrspace identi.fit

J | 1 .1 ,1+ 1 1 y / 11 1

problem

[Pl Xl xl

”,,=[T,',’„/ 1 „ q,i 1 „ j,i_1 1 1

The main principle behind subspace theory is the estimation of the system matrices as the least squares

//X/7cR

lixrnieR (A.5)



1,:' 1=[1 :].[:-:-, 1[ (A.6)

where X 1 +1 and X f are Kalman filter state estimates, obtained directly from the input-output data.

In fact. Van Overschee and De IVIoor ( 1994. 1995b) establish a relation between the estimated Kalman

filter state sequence and the input and output data – through orthogonal or oblique projections:

the Olthogonal projection of the row space of Yr (future outputs) into the row space of the past

1
expression Zf = 6 xr

the oblique projection of the row space of Yr (future outputs), along the future inputs row space

U /- . into the row space of the past inputs and outputs PPp , is related to the estimated Kalman filter

,t,t, „q„„,ce X,- by th, ,xp,e„io„ O,. = C if : oj = {r /uf wp = a x/

[ [ 11|Jlr ;
is related to Xf by theinputs. past outputs and future inputs row space Uf zf = yr /

There is d slight difference between Z/ and Of , in fact, Of can be computed fromZi by just

ignoring the information given by Uf . The consequences are clear: part of the information required

to ,sti„,at, Xo is no Ion'g„ available so. the estimated state sequence (Xf ) is different from if .

Altho„gh X,- „,d ,t f a„ „ot the sam, bank of KaI,T,an filters, they are still very similar and,

actually. under some special conditions (/ A .. or {u/c } is white noise or the system is purely

determ in istic) they are tIre same.

This approximation of the state sequences is used to obtain a more elegant and simple algorithm

presented in the next section. Unlike the algorithm that considers the “exact“ Kalman state estimates



by implementing some orthogonal projections (unbiased for j d '' ), this approximate algorithm is

biased for finite i, except under certain special cases (Van Overschee and De Moor, 1994).

A.3 AlgoriTl1111 based 011 f he restttT: Oi = ri xr

1. Projections: Colnpute the oblique projections (LQ-decomposition):

O,. = Y f / U f A P and Oi+1 –Y.f– /U .f– A p'F

2. SVD: Compute the Singular Value Decomposition of the oblique projection Of :

„.=“-''"’="'“;'['„' : 1[L: 1=“,'„''’
where Of € Rlix-i , Se Rlix j (diagonal matrix with the singular values of Of ) . Ue Rlixli

U le Rlix’ , SI e R'-xF1'F e R ix 1 (0 and F are orthogonal matrices),

1/ 1 / € R’- x / , 1- = rank( O,. )=/7.

2.1. Order /7 of the system: can be determined (Van Overschee and De N4oor, 1994. 1995a, 1995b)

by the number of the nonzero singular values of Of (dim ( SI )). However, in many practical

situations. when the measurements are noise corrupted, it may be not straightforward to

distinguish the -'nonzero’- from the “zero“ singular values – we must take a decision by

comparing the values or by assuming different orders and then comparing simulation errors.

Observability matrices: as the column spaces of a and U 1 S ///2 are the same, compute

Fi = U1 - S ]1 ' 1 . To compute Fl_ ] , remove the last /rows of 6 .

2.3. State sequence: since o/ = ( xr

= pin\'( C ) O,- a„d Xf+l = pitt\, (f /_/) O,.+/ , where pin\7 (.) denotes the Moore-

Penl'ose pseudo-inverse. In order to achieve a more robust algorithm, we can estimate ,4 and

and o,. = C – / xr + 1 , c,„,pute



C from C ; C from the first / lines of a and ,4 such that Fi_ 1 /4 = C where

'=[:1, 1-
3. System matrices: the model can now be expressed as a simple least squares problem

{,:' 1=[/ : 1.[:;,- 1„“„*.','=''...,[ i+ J i+ j./] ar:d Ui/i = k', -„ “ / ]. Compute

5

the covariance of the residuaIs, in order to determine the matrices Ps , R' and S
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