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Abstract— Thermoformed tubular channels piezoelectrets exhibit-
ing piezoelectric-magnetic behaviors were recently presented as
Thermoformed Magnetic-Piezoelectrets (TMPs). This alternative
sensor was suitable for detecting external magnetic fields from
distant magnets. In this contribution, TMPs transducer was investi-
gated as current transducer, where the magnetic field produced by
an electrical current passing through a energized wire mechanically
stimulates the TMP and consequently disrupts the electrical charge
equilibrium providing a proportional electrical signal. The charge
variation was correlated with the magnetic field intensity, providing
a piezo-magnetic coefficient, similar to those noted in traditional
piezoelectrets. It has been noticed that under certain conditions,
TMP could have coefficients up to 498 × 105 pC/T. From these results, it was concluded that such a polymer-based
device is suitable for monitoring electrical current in live wires, providing an interesting solution for non-invasive current
transducers (CT) with a reduced footprint. These novel transducers can thus provide an effective replacement for coil-
based CTs reducing installation cost and space, without the need for wire re-connection (as required by the coil CTs),
enabling hot-plug capabilities, as well as providing a direct and cost-effective replacement for high-frequency current
transformers.

Index Terms— Electrets, Polymers, Piezoelectricity, Magnetic-electrical effect.

I. INTRODUCTION

THE ferroelectrets, also referred to as electromechanical
films, have garnered significant attention due to their

remarkable ability to exhibit a strong piezoelectric effect.
Consisting mainly of electrically charged polymer foams,
these materials exhibit internal positive and negative electrical
charges, leading to the occurrence of an electric polarization
phenomenon. Such materials, when exposed to the influence
of perpendicular mechanical stresses, reacts with an elec-
trical signal that is proportional to the applied stress [1]–
[3]. The notable combination of considerable charge trapping
capability and the inherent low density of these electrically
charged polymeric foams consistently engenders piezoelectric
coefficients (d33) that surpass those observed in conventional
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piezoelectric polymers like polyvinylidene fluoride (PVDF).
As a result, they are increasingly finding applicability across
a broad spectrum of mechanical stimulus scenarios [4], [5].

However, propelled by the wave of technological advance-
ments that encompasses equipment refinement, novel mate-
rials, and innovative processing techniques, a distinct path
emerged to amplify piezoelectricity within ferroelectrets. This
novel route involved molding and fusing polymer layers.
This layered association ushered in an alternative means of
enhancing the thermal stability within ferroelectrets [4], [6]–
[10]. In these composite formations, polymers capable of
charge trapping capabilities, such as polytetrafluoroethylene
(PTFE) and its copolymer fluoroethylene propylene (FEP),
were seamlessly integrated with structures of minimal density,
culminating in higher thermal-electromechanical responsive-
ness [11].

Through the molding and fusion approach, ferroelectrets
with different geometric configurations and distributions of
their internal cavities were fabricated [12]–[14]. Various
methodologies for fabricating optimized polymeric structures
have been recently described in the literature [8], [9]. Fur-
thermore, regularly shaped air cavities affected the unifor-
mity of electrical charging, thereby intricately enhancing the
piezoelectric characteristics of the material, as scholarly high-
lighted in [15], [16]. A successful paradigm for fabricating
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fluoropolymer matrices featuring precisely arranged tubular
cavities was introduced by Altafim [15]. In this innovative
approach, the arrangement of open tubular channels was
achieved by laminating FEP films alongside a precisely aligned
PTFE rectangular template, creating a parallel configuration.
This methodology not only offers the ability to fine-tune
the geometric attributes of internal cavities for meticulous
characterization but also demonstrates its prowess in engi-
neering multi-layered structures with systematically organized
channels, thereby further amplifying the piezoelectric potential
[17], [18].

In a recent stride of advancement, this lamination tech-
nique was extended to incorporate overlapping polymer strata,
resulting in the creation of a ferroelectret exhibiting not
only piezoelectric properties but also endowed with mag-
netic response. This innovative step resulted in the discovery
of a concept where a piezoelectret material demonstrates a
significant magnetic-electric response. This achievement was
made possible by adding a magnetic polymer layer on top of
the tubular channel structure. The resultant phenomenon ob-
served on these “magnetic-piezoelectrets” does not resembles
traditional magnetoelectricity, wherein the interplay between
materials possessing ferroelectric or magnetic attributes gives
rise to a characteristic effect through hysteresis, what is known
as the magnetoelectric effect [19], [20].

It is known that magnetoelectric effect can manifest either
as direct or inverse in nature, since magnetic polarization can
be modified through electric fields [19]. In magnetic piezoelec-
trets, only a direct effect is observed, that is, when a magnetic
field initiates a mechanical stress that interacts synergistically
with the piezoelectric layer, thereby engendering a mechanical
deformation effect, which culminates in the emergence of an
electric field response (E) [20], [21]. In the literature, there
are various MEMS sensor prototypes designed for monitor-
ing AC current in residential and commercial settings. One
such sensor features a piezoelectric MEMS cantilever with a
mounted permanent magnet, generating voltage proportional to
the current being measured. Fabrication involves a four-mask
process and the integration of microscale composite permanent
magnets, providing a compact solution for monitoring end-use
electricity or piezoelectric energy harvesting from AC current-
carrying wires [22], [23]. Additionally, a study explores a
zero-power multifunctional device combining piezoelectric
technology and a magnet mass for current monitoring and
energy harvesting in power lines. The performance of this
device is influenced by the type of wire, the stiffness of the
cantilever and the magnet characteristics, showing potential
for smart grid applications. In contrast, the thermoformed
magnetic-piezoelectrets (TMPs) differ from these sensors in
terms of assembly, characterization, and physical principles
[24], [25].

Therefore, the configuration devised by Altafim et al. [26],
incorporates ferroelectrets in lieu of conventional piezoelectric
materials, thereby yielding a material of enhanced direct mag-
netic sensitivity. In the current investigation, these TMPs were
undertaken, subjecting them as noninvasive electric current
sensors under magnetic fields of varying intensities.

II. PIEZOELECTRETS WITH MAGNETIC BEHAVIOR

For a proper understanding of the piezo-magnetic behavior
observed on thermoformed magnetic-piezoelectrets, one must
consider the simplified structure presented in Fig.1.

From this, one can observe that the presence of an external
magnetic field attracts or repels the magnetic layer, represented
here as the black layer above the channel and attached to the
channel surface. This magnetic force influence results in a
deformation in the channel thickness (d), which leads to an
electric-charged variation on the ferroelectret electrodes. This
magnetic-mechanical deformation is therefore responsible for
producing an electrical response, proportional to the external
magnetic field.

For a better description of the relation between electrical
charge variation on ferroelectrets and the external magnetic
field, a piezoelectric-magnetic coefficient (dp−m) is proposed.
This coefficient derives from those observed in traditional
piezoelectric materials, where the polarization may be ob-
served in different orthogonal axes and is represented by a
three-dimensional tensor (dij) [11], [27].

In ferroelectrets, the electric polarization P⃗ results from
the electrical charging, which occurs in the direction of the
external electrical field, in this case, the out-plane direction,
referred to as the third axis. Since the mechanical deformation
or electrical stimulation is applied in this direction the d33
tensor is generally used to define the piezoelectric coefficient
in ferroelectrets [28].

The d33 coefficient is expressed in (1), representing the
relation between a mechanical stress variation (∆p) that is
applied perpendicular to the ferroelectret thickness (out-of-
plane direction), and the variation in the electrical charge
densities (∆σ) that is induced on the ferroelectret electrodes
[11], [27], [28].

d33 =
∆σ

∆p
. (1)

In the thermoformed magnetic-piezoelectrets, the same con-
cept is employed, however, the mechanical stress now results
from the presence of an external magnetic field, and it was
redefined in (2) as the external magnetic field variation (∆m),
which provide the magnetic-piezoelectric effect (dp−m).

dp−m =
∆σ

∆m
. (2)

III. MATERIALS AND METHODS

The Thermoformed Magnetic Piezoelectrets (TMP) exam-
ined in this study adhered to the preparation methodology
elucidated in [26]. Following this methodology, a polymer-
based laminate with longitudinal hollows is produced by
fusing two thin sheets of PET using a thermal lamination
process. To produce the hollows, a PTFE template is inserted
between these two PET sheets during the thermal lamination
process. This laminate structure is then covered by a set of
strips made from a magnetic polymer. A third layer of FEP foil
covers the entire structure. Finally, an aluminum film covers
the top and bottom surfaces to provide the electrodes.
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Fig. 1. Schematic representation of the magnetic-piezoelectret struc-
ture, illustrating the effect of the external magnetic field on its mechanical
structure and consequent modification of the macroscopic dipoles.

A. Materials
As described above, the laminate consists of three thin

sheets of FEP, each with a thickness of 50 µm. Two of these
FEP sheets make up the main hollow structure of the device,
while the third one completes the laminate structure to support
the top conductive electrode.

A temporary template used to create the hollows inside the
laminate is laser cut from a PTFE sheet with a thickness of
100 µm.

The magnetic layer is made up of several rectangular stripes
(1.5 mm × 15 mm), which have been precision-cut from a
magnetic adhesive mat with a thickness of 300 µm, sourced
from Fermag-BR.

B. Magnetic-Piezoelectret Fabrication Process
The entire magnetic-piezoelectret structure is produced us-

ing a heated lamination process. In accordance with the
procedure applied by Altafim et al. [26], two sheets of FEP
were meticulously fused at a temperature of 300◦C using
a thermal-lamination device, resulting in the formation of a
stratified structure. Preceding the lamination process, the PTFE
template, featuring precisely incised rectangular patterns, was
intercalated between the layers of FEP. This strategic place-
ment facilitated the fusion of the FEP layers in alignment with
the prescribed template. Notably, the template implemented in
this investigation was strategically designed to engender four
distinct channels, each exhibiting a width of 2 mm, arranged
equidistantly and parallel.

Subsequently, in the ensuing processing phase, the channels
were superimposed on an arrangement of rectangular mag-
netic tape strips. The inherent magnetic layer introduced an
incompatible surface irregularity with the electrode formation,
therefore a supplementary FEP film was adeptly laminated
over the stratum of magnetic strips, using a temperature of
300◦C to ensure its effective integration.

After the final lamination process, the PTFE template was
meticulously extracted, revealing the unobstructed and empty
channels integrated into the FEP matrix. Aluminum electrodes
of approximately 50 nm thickness were then deposited on the
outer layers through a vacuum-assisted evaporation process,
and an electrical charge was applied for 10 seconds using a

Fig. 2. (a) Layup sequence of the Thermoformed Magneto-
Piezoelectret (TMP) with open tubular channels. (b) Produced TMP
device with aluminum electrodes (20mm of diameter).

Fig. 3. (a) Schematic representation of the TMP current sensor
assembling. (b) Image of the front of the metal casing. (c) Image of the
back of the metal enclosure.

direct current (DC) voltage of 3.5 kV . A schematic represen-
tation of the production process is provided in Fig.2.

C. Assembly of the Current Transducer
An electrically charged TMP, was used as sensing element

in the Electro-magnetic current transducer. Therefore, the TMP
was assembled into an aluminum casing, equipped with a BNC
connector and insulating materials, as shown in Fig.3.

The insulating material was made from Polyvinyl chloride
(PVC), and two aluminum planar electrodes were fabricated
to provide electrical contact to the TMP. A sealing ring was
used to avoid mechanical vibrations of the sensor. Notice that
the front part of the transducer (Figure 3b) is open to provide
direct access to the TMP if necessary. A Keithley 6517 Digital
Electrometer, was used in this study to measure the electrical
charge generated during the experiments.

D. Characterization of current transducer - Electrical
current sensitivity test

To verify the influence of magnetic fields on the TMP
transducer, a setup according to Fig.4 was mounted. This
experiment consisted of stimulating the wire with different
electrical currents in amperes (A), to produce a magnetic
field with several magnitudes. The TMP transducer shown in
Fig.4(a), was initially placed above a variable alternate current
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Fig. 4. (a) Alternate current (AC) power supply (1.a), Schematic drawing
of TMP (2.a) and live wire with current flow and magnetic field orientation
(3.a). (b) Current Transformer (CT) (1.b), Secondary wire of the CT (2.b)
and Variac (3.b).

(AC) power supply and later positioned at several distances
from the live wire, Fig.4(b).

However, before conducting any tests with the TMP, the
currents were calibrated to 2, 10, 20, 30, 40, 50, 60, 70, and 80
A. For each current, the TMP was positioned at distances of
1, 5, 10, and 20 cm away from the wire.

IV. RESULTS AND DISCUSSION

The magnetic layer, placed above the piezoelectret channels,
under the influence of an oscillating external magnetic field
reacts as a vibrating loading onto the piezoelectret. This
dynamic load is then responsible for deforming the electrically
charged channels, disturbing the TMP electrical field, resulting
in an electrical charge flow.

The graph depicted in Fig.5 presents the electrical charge
values measured at different positions and current intensities,
while the results presented in Table I, represent these val-
ues converted into magnetic-piezoelectric coefficients (dp−m).
From these, one may observe that when TMP is fixed at a
certain position, the electrical charge output increases linearly
with the current intensity (I). And that the transducer sensi-
bility is much affected by its position, since a charge decay is
observed when the TMP is moved away from the wire.

The material behavior becomes thus non-linear, and the
transducer response loses the direct linear relation to the mea-
sured electrical field intensity. This behavior is graphically rep-

Fig. 5. Electrical charge produced by the TMP when placed at different
distances from the electrical wire under several electrical currents.

TABLE I
MEASURED PIEZOELECTRIC-MAGNETIC COEFFICIENTS

dp−m [pC/T ] × 104

Electrical Current [A] 1 cm 5 cm 10 cm 20 cm
2 195.95 990.00 1350.00 4980.00

10 38.80 145.00 324.12 631.25
20 24.50 98.10 168.18 321.88
30 14.10 57.71 113.88 181.03
40 11.12 43.24 76.49 148.61
50 8.27 35.66 56.37 128.81
60 7.12 25.94 50.26 96.14
70 6.12 24.83 46.90 75.89
80 5.33 21.68 42.17 71.01

resented in Fig.6, where the distribution of the piezoelectric-
magnetic coefficient is plotted for different values of electrical
current passing through the electrical wire. From this, one can
observe that:

• When measuring low levels of the electrical current
(below 10 A), the distance between the transducer and
the observed electrical wire has a significant effect on
the piezoelectric-magnetic coefficient.

• The higher value for this coefficient, 498 × 105 pC/T ,
is reached for the lowest electrical current applied to the
observed electrical wire (2 A) when the transducer is
located at 20 cm from that wire.

• For higher values of electrical current (> 10 A) the effect
of the distance between the transducer and the electrical
wire becomes less significant.

Representing this graph in a logarithmic scale, as depicted
in Fig. 7, two major observations can be drawn:

• The distribution of the piezoelectric-magnetic coefficients
for each distance assumes a linear shape parallel to the
diagonal lines in the Log-Log graph.

• The vertical distances between the piezoelectric-magnetic
values for the four distances herein considered (1, 5, 10
and 20 cm) are practically constant and independent from
the value of the electrical current under observation.

From the first observation, one can conclude, as expected,
that there is an inversely proportional relation between the
piezoelectric-magnetic coefficient and the value of the elec-
trical current that is passing through the wire. According to
Equation (2), this coefficient varies inversely with the magnetic

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3431990

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FXX2023) 5

Fig. 6. Piezoelectric-magnetic coefficients (dp−m) measure for dif-
ferent electrical current values and for the four distances between the
transducer and the electrical wire considered in this study (1, 5, 10 and
20 cm).

field, whereas there is a direct relation between the electrical
current value and the resulting magnetic field.

The second observation suggests a direct relation be-
tween the distance (from the transducer to the live wire)
and the piezoelectric-magnetic coefficient. Fig.8 shows the
piezoelectric-magnetic coefficient distribution against the
transducer-wire distance (again using a logarithmic scale) to
understand better and assess this last observation.

As depicted, the values assume a linear distribution parallel
to the diagonal lines, indicating a proportional direct relation
between the piezoelectric-magnetic coefficient and the distance
between the transducer and the wire. Once again, this can
be justified using Equation (2) because the magnetic field
created by an electrical wire is inversely proportional to the
distance between the observed magnetic field and the wire that
is producing it. It is also observed that this linearity is more
evident for higher values of the electrical current.

V. CONCLUSIONS

A novel characterization procedure for the biphasic mate-
rial named thermoformed magnetic-piezoelectret (TMP) was
presented in this study. The piezoelectrets constructed with an
extra magnetic layer were able to exhibit a magnetoelectric
effect when subjected to an external magnetic field, suffering
an elastic deformation in the soft and electrically charged com-
ponent. The electromagnetic field was created by an electrical
current passing along an electrical conductor (live wire). By
changing the TMP position and the current intensity it was
possible to better understand the TMP behavior, and more
accurate piezo-magnetic coefficients (dp−m) were calculated.
Results presented here revealed that under certain conditions
(i.e., at a distance of 20 cm and an applied current of 2 A),
dp−m up to 498 × 105 pC/T were obtained. Although there
is very little research on TMP, it is difficult to compare these
results. Nevertheless, the method presented here indicates
another direction to measure TMP sensitivity and validates
their use as non-invasive electrical current transducers.

Fig. 7. Piezoelectric-magnetic coefficients (dp−m) versus electrical
current – Logarithmic representation.

Fig. 8. Piezoelectric-magnetic coefficients (dp−m) versus transducer-
wire distance.
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This study has unveiled a novel approach in the field of
electrical current transducers, demonstrating the feasibility
of using TMP devices. These devices offer a unique set
of characteristics that pique curiosity and warrant further
research and validation studies. One such interesting feature
is the linearity of the relation between the electrical current
(observed parameter) and the measured response in TMP.
Moreover, the potential of these polymer structures lies in
their ability to provide non-invasive and reduced-size current
transducers, a departure from the conventional invasive and
large coils typically used for this purpose. Furthermore, TMP
provide an interesting alternative to high-frequency current
transformers, typically used for measuring transient current
signals on power transformation and transmission facilities
(power transformers and power transmission lines), such as
high-frequency partial discharges.
However, to fully harness this potential, further investigation
is required to optimize and assess this novel transducer con-
cept. One promising research direction is the development of
optimized configurations for the hollow structure to improve
transducer linearity and sensitivity, covering different electrical
current ranges.
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