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A realistic model describing a black string-like object in an expanding Universe is analyzed in the context
of the McVittie's solution of the Einstein field equations. The bulk metric near the brane is provided
analogously to previous solutions for black strings. In particular, we show that at least when the Hubble
parameter on the brane is positive, a black string-like object seems to play a fundamental role in
the braneworld scenario, generalizing the standard black strings in the context of a dynamical brane.

© 2013 Elsevier B.V. All rights reserved.

The search for solutions engendering realistic black holes on
the brane, stable and presenting no naked singularity, is an ob-
ject of current interest. Although an exact solution is known for a
(1+2)-brane in a 4D bulk [1], such task urges to be evinced in the
5D scenario with a single extra dimension of infinite extent. Nu-
merical simulations of relativistic static stars on the brane and the
exact analysis of the collapse on the brane as well - based on the
AdS/CFT correspondence [2] - appear as good efforts to address
the issue [3,4]. There are arguments indicating that whichever the
solutions are, they approach the Schwarzschild geometry at large
distances [3].

On the other hand, black holes embedded in an expanding Uni-
verse can be described by McVittie’s solutions [5]. In this cosmo-
logical scenario, a more realistic solution can be probed, providing
an asymptotic Schwarzschild-de Sitter geometry on the brane. The
legitimate black hole interpretation holds at least when the cos-
mological scenario is dominated at late times by a positive cos-
mological constant [6]. Nice features regarding the McVittie metric
on the brane can be listed and potentially employed. For instance,
they reduce to the standard homogeneous and isotropic FRW cos-
mology, and to a Schwarzschild or de Sitter-Schwarzschild black
hole, in appropriate limits. The issue is fascinating, endowing real-
istic models for black holes in the Universe. Interesting overviews
on the subject are given, e.g., in [6-8], providing a deep and mod-
ern approach.
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In this Letter we are mainly concerned with the black string
profile induced by the McVittie solution, by delving into the Tay-
lor expansion outside a McVittie black hole metric on the brane
along the extra dimension, where the corrections in the area of
the associated 5D black string warped horizon arise. The issue in-
duces interesting physical effects in the black string-like object, as
we shall prove. The fine character of the expansion along the extra
dimension is crucial to analyze the generalized black string asso-
ciated to the McVittie’s solution on the brane. The way how the
dynamical content of the solution on the brane affects the patho-
logical properties regarding the black string [9] shall be deeply
reported.

In a braneworld with a single extra dimension of infinite ex-
tent, a vector field in the bulk decomposes into components in
the brane and orthogonal to the brane, as (x*,y). The bulk is
endowed with a metric gapdx?dxB = g, (x¥, y)dxF dx” + dy>.
The brane metric components gy, and the bulk metric are re-
lated by &uv = guv + nuny, where n° are the components re-
lated to a time-like vector field, splitting the bulk in normal co-
ordinates, and g44 = 1 and gis = 0. In addition, 7 = §Ak2 and
Ag = '(2—52(A5 + 1k23%), where Ay is the effective brane cosmolog-
ical constant, k4 [k5] denotes the 4D [5D] gravitational coupling,
and A is the brane tension. Usually kx5 = 87 G5, where Gs de-
notes the 5D gravitational coupling, related to the 4D gravitational
constant G by Gs = Gepjanck and £pjanck = +/Gh/c3. The extrinsic
curvature is K,y = %Engw (£, denotes the Lie derivative, which in
Gaussian normal coordinates reads £, = d/dy). The junction con-
dition determines the extrinsic curvature on the brane as

1 1
Ky = —Exg [T,w + 5@ — T)g,w]. (1)
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Here THY is the energy-momentum tensor, and T = T,’f. We also
denote K =K}, and K% = KopK“F. Given the 5D Weyl tensor

2., R
Cuvop =P Ryuvop — §(gl/w O Rujp + Ewp® Ryt

1 .
- é(S)R(gu.[rrgva)

where ®R,,,5, denotes the components of the 5D Riemann ten-
sor (¥R, and ®R are the associated Ricci tensor and the
scalar curvature), the symmetric and trace-free components are re-
spectively the electric (£, = Cpvopn®n®) and magnetic (B e =
gﬁg;’ C pwlgnﬁ) Weyl tensor components. The effective field equa-
tions are complemented by a set of equations, obtained from the
5D Einstein equations and Bianchi equations [3,10,11], which are
employed to calculate the terms of the Taylor expansion of the
metric along the extra dimension, providing in particular the black
string profile and some physical consequences, given by (hereon
we denote g,y (x*,0) = g, ):

guv(xaa Y)

1
=8&uv —K52 |:T/w + 5()\ - T)guv]|Y|
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+ K*PRyuqvp +3K* (uEvya — KEpv

+(KWK,,,3—KD[/5KW)K“’3—?K,w — 4. (2)
Such expansion regards the metric on the bulk near the brane, and
was analyzed in [3,12] only up to the second order. The fourth
order expansion was derived in [3] for a particular case. In [13]
the most complete fourth order expansion, also containing the
additional terms coming from the variable brane tension, was ac-
complished. Due to the awkward expression therein, we insert
above the expansion up to the third order. As a particular case,
the black hole horizon evolution along the extra dimension (the
warped horizon [14]) may be examined, by exploring the com-
ponent ggy(x¥, y) in (2). Indeed, any spherically symmetric met-
ric associated to a black hole presents radial coordinate given by
/809 (x,0) =r1. The black hole solution, namely, the black string
solution on the brane, is regarded when ./ggg(x,0) = R, where R
denotes the coordinate singularity. More precisely, the black string

horizon for the Schwarzschild metric is defined when r = ZS—ZM
obtained when the coefficient (1 — %) = g of the term dr?

goes to infinity [15]. It corresponds to the black hole horizon on
the brane. On the another hand, the radial coordinate r in spher-
ical coordinates legitimately appears as the term ggg d6% = 1 d6?
in the Schwarzschild metric. Our analysis of the term ggg(x%, y)
by Eq. (2) holds for any value r and provides the bulk metric. In
particular, the term originally coined “black string” corresponds to
the Schwarzschild metric on the brane [14], defined by the black
hole horizon evolution along the extra dimension into the bulk.
Hence, the black string regards solely the so-called “warped hori-
zon”, which is ggg(x¥, y), for the particular case where r=R is a
coordinate singularity.

Now we argue whether such interpretation regarding black
strings holds for the McVittie’s solutions. In their simplest form
they have zero spatial curvature in the asymptotically FRW region,
but can be generalized [5,16]. The spatial curvature of the FRW
geometry is not expected to appreciably alter the behavior of the
metric near a mass source as long as the gravitational radius of
the mass M whichever larger, be smaller than the radius of curva-
ture. The metric is written in isotropic spherical coordinates [17]
defined by r=r(1 + £M), as [5,6]

2
1—
ds® = _<TZ> dt? + (1 + w*a® ) (dr? +r? de?), 3)

where a(t) is the asymptotic cosmological scale factor, u = %t)r'
and M is the mass parameter of the source. Using spatial transla-
tions, r = 0 is chosen as the center of spherical symmetry. Here the
asymptotically spatially flat FRW metric is considered, suggesting a
cosmic scenario compatible to current cosmological data [18,19]. It
is an exact solution of the field equations for an arbitrary mass M
provided that a(t) solves the Friedmann equation and

362
8w Ga?’

p(t) = (4)
which describes the matter energy density, with H = g being the
Hubble parameter. The isotropic pressure associated to the fluid
can be written as [20]

1 @ 1+pufda a
b= 8nG(3a2+21—u<a az))’ (>)
having a homogeneous term proportional to H? and an inhomo-
geneous term as well, containing H. The McVittie’s solution has
a curvature singularity at w = 1, since the Ricci scalar can be
expressed in the form R = 12H> +6H(}f—ﬁ); this singularity is in-
terpreted as a cosmological big bang singularity [6].

McVittie’s solution describes black holes embedded in expand-
ing FRW Universes, when the Hubble parameter is positive. Some
results advocate spherically symmetric solutions in asymptotically
FRW cosmologies [21]. McVittie’s solution is one sample among
the geometries describing masses in FRW, where the mass param-
eter is a constant and the energy density is homogeneous. The
inhomogeneous pressure is hence necessary. The initial big bang
singularity is absent when H = 0, and in fact the geometries (3)
reduce to either the Schwarzschild or Schwarzschild-de Sitter solu-
tions. In the case a(t) =1 the McVittie’s solution reduces to a black
hole in flat space, and the metric (3) provides the Schwarzschild
solution in isotropic coordinates.

A black string-like object associated to the McVittie’s solution
is led into the Schwarzschild and FRW ones as limiting cases.
Therefore, we adopt an effective approach, studying the horizon
variation Taylor expansion. The Weyl term on the brane is given

by [3]

Ego (1, 1)
2 2
[ (G(55) (2-125) )+ sare
ARG 1—un 1—u 4(1 + p)4a?
p
— 57(1 +4p+5u? +4u) (6)

for the McVittie's solution (3). By substituting the expressions (4),
(5) for p(t) and p(t) above, as the black string horizon variation
along the extra dimension is analyzed, the term ggg (x*, y) in (2)
is given by
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The brane metric g, is regular everywhere on and outside the
black hole horizon and away from the big bang. The expansion
including the term y* was considered in [13], and here Eq. (7)
is written up to the second order in the extra dimension for the
sake of conciseness. When a(t) = 1, by transforming the spherical
isotropic coordinates to the spherical standard ones, the bulk met-
ric component in (7) - which is the warped horizon of the black
string-like object when r is constant - is led to the bulk metric
component

A 1 1
goo (1, y) =1° (1 - §K52|y| + (—K?Az - —A5>y2 +- )

30—

36 6

which, in particular, is the classical Schwarzschild black string
warped horizon when r is constant. Therefore the results in [9]
- further generalized in [25] and discussed in, e.g., [3,13,14] - are
obtained, in such limit.

Our aim is to analyze the possibility and the properties of a
black string-like object locally associated to the McVittie’s solution,
in the context of (2) and (7). In the case of a pure FRW metric, the
state parameter w = % is defined and the Einstein field equations

on the brane provide p oca=31+W)/# (where we define 8 := }:r—ﬁ)
leading together with the Friedmann equation to the time evolu-
tion of the scale factor. When the mass M = 0 it implies 8 =1, and
the scale factor takes the well-known value for the scale factor
of a flat universe a(t) o t2/> (dominated by non-relativistic mat-
ter, where w = 0) or a(t) « t'/2 (dominated by the radiation or
relativistic matter, where w = %). In the case of a cosmological
constant (w = —1), we have a(t) o« exp(Hot), independently of B.
The manifold u =1 (8 =0), corresponds to the event horizon in
the Schwarzschild case. However, we should avoid this value in or-
der to circumvent the big bang singularity [6]. In all cases below,
the value 8 =0.9 is used to illustrate the results. Different val-
ues for B do not affect the physical aspects underlying the results
below.

We shall compare the black string-like object profile in the two
eras of evolution of our Universe, without a cosmological constant
and, in addition, in the presence of a cosmological constant. Let
us first consider the case where the scale factor a(t) o t#/2, emu-
lating a radiation-dominated brane. In the figures below the time
parameter t is considered in the scale [t] = 10% yr, correspond-
ing to our choice A =1 = k5. The black string-like object has the

goo(t,1,y)
6 -

5.5

0.1 0.2

Fig. 1. Plots of the warped horizon g4 (t,r, y) for (a(t) o t#/2) along the extra di-
mension Yy, for different values of the bulk curvature radius parameter ¢. For the
dotted line, ¢ = 10~2 mm; for the light-gray line, £ = 10~3 mm); for the dashed
black line, £ = 10~* mm; for the black line, £ = 10~> mm; and for the dark-gray
line £ =10"% mm.

40'\/ i
Zop(t,ry) |

Fig. 2. Plot of the warped horizon ggg(t,r, y) along the extra dimension y, as an
explicit function of time t, for a(t) o tF/2.

geo(t,1,y)

0.1 0.2

Fig. 3. Plots of the warped horizon ggy(t,r,y) for (a(t)  t2f/3) along the extra
dimension y, for different values of the bulk curvature radius parameter ¢. For the
dotted line, ¢ = 10~2 mm; for the light-gray line, £ = 10~3 mm; for the dashed
black line, ¢ = 10~* mm; for the black line, £ = 10~> mm; and for the dark-gray
line, £ =10"% mm.

warped horizon provided below, depicted in Fig. 1 for a fixed time
t = 0.8 and different values of ¢. Further, the graphic depicted in
Fig. 2 evinces the warped horizon profile according to the time
evolution, along the extra dimension.

Next, we consider the scale factor as a(t) o t?#/3, mimicking
a non-relativistic matter-dominated brane. The results are illus-
trated in Figs. 3 and 4. Also, in Figs. 5 and 6 we depict the results
for the scale factor in the form a(t) oc exp(Hot), which leads to a
braneworld scenario dominated by a cosmological constant.

The question regarding a black string-like object, correspondent
to the McVittie's solution, can be more realistically answered, by
considering the legitimate black hole interpretation of the McVit-
tie’s solution [6]. It occurs when the Hubble parameter is positive.
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Fig. 4. Plot of the warped horizon gyy(t,r, y) along the extra dimension y, as an
explicit function of time t, for a(t) o t28/3,

8oo(t,1,y)

Fig. 5. Plots of the warped horizon ggy(t,r, y) in a scenario dominated by a cos-
mological constant, for a(t) o exp(Hot), along the extra dimension y. For the
dotted line, ¢ = 10~2 mm; for the light-gray line, £ = 10~3 mm); for the dashed
black line, ¢ = 10~4 mm; for the black line, £ = 10> mm); for the dark-gray line,
£=10"% mm.

Fig. 6. Plot of the warped horizon ggg(t,r, y) along the extra dimension y, as an
explicit function of time t. Here a(t) o« exp(Hot), as in the previous figure.

In the graphics below, the value for the ggg component is provided
in units of 2GM and A =1 =ks.

The original black string, corresponding to the Schwarzschild
singularity, is obtained in the limit where a(t) = 1. The formation
of a galaxy with a central black hole was investigated in [23]. The
black hole may be either a collapsed object or a generalization of
a wormhole [23]; the cases wherein such interpretations hold are
depicted in Figs. 1-4. The black string-like object warped horizon
can be accomplished by the Egs. (2), (7), given a black hole in the
brane and its associated singularity.

Figs. 1 and 3 evince the time-dependent profile that mimics
a radiation-dominated and a matter-dominated scenario, respec-
tively. They depict the graphics for the bulk metric ggo(t,7,y)
along the extra dimension, for different values of the bulk curva-
ture radius parameter ¢ for a fixed time t = 0.8, in full compliance
with the upper limit of ¢ in the region ¢ < 0.2 mm [22]. Figs. 2
and 4 clearly reinforce such profiles, which correspond respectively
to Figs. 1 and 3, which are solely their section for t = 0.8. It can be

noticed that in a non-relativistic matter-dominated brane (Fig. 2)
the warped horizon of the black string-like object increases more
abruptly then in a radiation-dominated brane (Fig. 1). Fig. 5 shows
the time-dependent profile that describes a pure cosmological con-
stant scenario on the brane. The warped horizon evolutes along
the extra dimension even more smoothly then in the radiation-
dominated era, due to the presence of a cosmological constant.
In all cases, the evolution drastically contributes for the warped
horizons alterations, as the time elapses, along the extra dimen-
sion.

In Figs. 2 and 4, for each slice of constant time in the range
considered in the graphics, there is a subtle and prominent differ-
ence between both the warped horizons, regarding the respective
corresponding eras. In Fig. 2, regarding a brane dominated by the
radiation or relativistic matter (a(t) « t%#/3), the warped horizon
of the associated black string-like object increases monotonically
along the extra dimension, irrespectively of the time. Instead, in
Fig. 4, which concerns a brane dominated by non-relativistic mat-
ter (a(t) o< tP/2), as the time evolutes the warped horizon of the
associated black string-like object decreases along the extra di-
mension for any value for t < 0.54. For the time parameter greater
than this value, the warped horizon of the black string-like object
always increases, along the extra dimension.

The pure cosmological constant braneworld scenario exhibited
in Figs. 5 and 6 approaches a realistic black string-like object in a
global asymptotically FRW braneworld, where locally the behavior
of a solution is analyzed. From the Einstein equations, by providing
on the brane a relation analogous to the Friedmann equation, de-
pending only on the geometry and matter content of the brane, the
solution on the brane is extended to the bulk in [24], where ex-
act solutions to the brane cosmology are compatible with standard
cosmology in a Randall-Sundrum-like braneworld scenario, with
a single extra dimension of infinite extent. Our results engender
such achievements, without the necessity of taking into account
the extra dimensional dependence on the scale factor nonetheless.
As the metric at the bulk provides coefficients for the terms |y|* in
Egs. (2), (7), such extra dimensional dependence in the scale factor
does not add relevant physical information to the current results.

In summary, as the McVittie solution is established to present
a legitimate interpretation as a black hole when Hgp > 0 [6], we
have shown that there is indeed a realistic black string-like ob-
ject in this case. Moreover, our method describes the metric in
the bulk when the brane evinces radiation-dominated and matter-
dominated scenarios as well, suggesting the possibility for similar
interpretations.

In order to reveal the physical nature of the black string-like ob-
ject introduced above, one cannot rely on a non-invariant quantity
such as the metric component to deduce conclusions on the topol-
ogy of a spacetime. Rather, the use of an invariant quantity would
be a better choice, as the one analyzed in [6]. For completeness,
we have checked that when the scale factor a(t) = 1, the asso-
ciated Kretschmann scalars are led to the Schwarzschild ones. In
fact, when at late times the cosmology is dominated by a positive
cosmological constant, the McVittie metric on the brane is regular
everywhere on and outside the black hole horizon, and it asymp-
totes in the future and near the horizon to the Schwarzschild-
de Sitter geometry, which has a black string-like object associated,
already thoroughly accomplished and analyzed in [26]. It essen-
tially holds for any slice of the extra dimension, in gaussian coor-
dinates. In the Schwarzschild-de Sitter geometry, there can be a
point y; along the extra dimension for which the Kretschmann
scalar ®K = ®OR,,,0 ORI diverges at r — 0, and also at
y = y1, irrespective of the value for r, characterizing a singular-
ity. Furthermore, for the case where the cosmological constant
equals zero, our results are in full compliance with [9]. In fact, in
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such particular case the Kretschmann scalar ®) K oc 48& M= p4lyl/¢

diverges at the bulk horizon as well as at the black string;> singular-
ity at r=0 [9].

Here, when M = 0, the solution obtained reduces to a stan-
dard homogeneous and isotropic FRW cosmology on the brane,
and for H(t) constant, it is led to a Schwarzschild (standard)
black string [3,9,13] or de Sitter-Schwarzschild (or Kottler) black
string of mass M, already investigated in [26]. All curvature in-
variants on the null surface equal their values on the horizon of
a Schwarzschild-de Sitter generalized black string of mass M [26]
and positive Hubble constant, and this null surface is a soft, null
naked singularity in an FRW spacetime if H(t) = 0 at late times.
At least in the case when Hg > 0 the McVittie metric on the brane
induces a black string-like object.

Now we can further probe the bulk properties, as an alternative
radial coordinate is defined [21] as r = (1 + w)2a(t)r. It makes the
McVittie metric (3) to read

ds? = —gdt? —2Hr f~2drdt + f~'dr? + r2d2,,

where f =1 — 2M/r. On the brane, a null apparent hori-
zon is placed at r_, the smaller positive root of g(r) =1 —
2M/r — H2r?2 = 0. When H equals a constant, the metric above
is the Schwarzschild-de Sitter metric in coordinates similar the
Eddington-Finkelstein ones. In the case Ho > 0 [Ho = 0] it is a
regular black hole event horizon [null singularity]. By using this
scaling one sees that the Ricci scalar R = 12H% + 6H f~1/2 is finite
in the limit r = 2M, but higher curvature invariants may be not
finite. For instance, the invariant

£ = (Vi VoReypo) (VHVVRTVP7) (8)

contains a term H*H2 f~> which diverges at the horizon along in-
going null geodesics [6]. When Hg > O the invariant (8) attains a
maximum at a finite distance from the horizon r = r_ and then
decreases to its Schwarzschild-de Sitter value. When Hy — 0, the
horizon becomes a null, soft, and weak singularity [6]. The 4D and
the 5D Riemann tensors are related by the Gauss equation as

O Reypo = Reypo — KepKyo + Kea Ky p, (9)

and the 5D version of the invariant & in (8) reads

g = (DaDp'® Ry po ) (DIDP O RTV40) (10)
where the indices a, b are effectively 4D spacetime indexes, since
the decomposition of the 5D covariant derivative can be expressed
as Dg =V, fora=0,...,3, and Dy = Vy, when a = 4. Therefore,
the difference between the invariants in (8) and (10) is given by
Of — & =2(V, VyKepKyo) (VHVKPKYT)

—2(Vu VoK Ky p) (VEVVKTPKVO)

+2(Vu Vo KepKyo) (VAVVKTPKY )

— 2(VuVy Ko Ky p) (VFVYRTVPO)

— A(VyVyKrpKyo) (VI VVRTVP?)

—2(VyVyKepKyo) (VY VVKTIKVP)

+2(Vy VKo Ky p) (VY VVRTVP?)

+ (VyVyReypo) (VY VVRTVP?)

— 4V VyKepKyo) (VFVIRTVP)

—2(VuVyKepKyo) (VAVYKTOKVP)

+ (Vi VyRey po) (VH VI RTVP7)

+2(VuVyKeo Ky p) (VAVYKTIKVP)

+ (V3 Reypo) (V) RTV77)
—4(ViKepKya) (V7)) R777)
+2(V2Kzo Ky p) (VY) KTOKYP)

— 2(V2KepKyo ) ((VY) KTOKVP). (11)

By considering the extrinsic curvature in (1), the terms on the right
hand side in (10) do not cancel the divergence of the 4D invariant
in (8), hence the black string invariant ®¢ diverges at the black
string warped horizon as well as in the black string-like singular-
ity, in full compliance with its limiting case when a(t) = 1, which
originates the classical black string [9].

Our analysis goes beyond the existence of black string-like ob-
jects in realistic braneworlds, since Egs. (2), (7) describe the metric
in the bulk. Wherever the radial coordinate on the brane describes
a black hole horizon, hence the black string-like warped horizon is
obtained as a particular situation.
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