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Abstract

1. Biodiversity is an important component of natural ecosystems, with higher spe-
cies richness often correlating with an increase in ecosystem productivity. Yet, this 
relationship varies substantially across environments, typically becoming less pro-
nounced at high levels of species richness. However, species richness alone cannot 
reflect all important properties of a community, including community evenness, which 
may mediate the relationship between biodiversity and productivity. If the evenness 
of a community correlates negatively with richness across forests globally, then a 
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1  |  INTRODUC TION

In this era of diminishing biodiversity, understanding how changes in 
plant biodiversity will impact the functioning of ecosystems is criti-
cal (Ceballos et al., 2015; Isbell et al., 2017). Many studies show that 
the productivity of ecosystems typically increases with a greater 
number of species (Balvanera et al.,  2006; Cardinale et al.,  2007; 
Grace et al., 2016; Hooper et al., 2005). However, this positive re-
lationship between productivity and diversity generally saturates 
and decays at high levels of species richness (Brun et al., 2019; Fei 
et al., 2018; Fraser et al., 2015; Liang et al., 2016; Schmid, 2002). 
Despite the consistency of this pattern across forests globally (Liang 
et al., 2016), we still lack a comprehensive understanding of the eco-
logical relationships driving this attenuating effect of richness, which 
limits our capacity to relate diversity with productivity across the 
globe (Cardinale et al., 2012; Fraser et al., 2015).

The species redundancy hypothesis has been proposed to 
explain the saturating shape of the relationship between rich-
ness and ecosystem productivity (Cardinale et al., 2011; Loreau 
& Hector, 2001). This theory posits that, as the number of spe-
cies in a region increases, functional redundancy increases and 

the proportional impact of any single species on ecosystem 
functioning declines (Cardinale et al.,  2011; Gitay et al.,  1996). 
However, another possible explanation for the diminishing ef-
fect of diversity on productivity is that species richness only 
captures one aspect of community structure, and does not re-
flect the true ‘diversity’ of a community (Caswell, 1976; Stirling 
& Wilsey,  2001) (Figure  1). By reflecting the homogeneity of 
species abundances within the community, evenness serves as 
the other central component of diversity (Jost, 2010; Peet, 1974; 
Tuomisto, 2012). The relationship between community produc-
tivity and evenness might differ from the relationship between 
productivity and richness.

Broad-scale analyses suggest that speciose communities tend to 
be dominated by a few species, with a long tail of rare species (i.e. are 
highly uneven) (ter Steege et al., 2013). If such a negative relationship 
between richness and evenness holds across forests globally, then (i) 
speciose communities might tend to be dominated by a small num-
ber of species that have a disproportionate influence on ecosystem 
functioning, and (ii) the increasing richness of speciose communities 
might come at the expense of evenness. This trade-off might ulti-
mately limit both functional diversity and ecosystem productivity.

greater number of species may not always increase overall diversity and productivity 
of the system. Theoretical work and local empirical studies have shown that the ef-
fect of evenness on ecosystem functioning may be especially strong at high richness 
levels, yet the consistency of this remains untested at a global scale.

2. Here, we used a dataset of forests from across the globe, which includes composition, 
biomass accumulation and net primary productivity, to explore whether productivity cor-
relates with community evenness and richness in a way that evenness appears to buffer 
the effect of richness. Specifically, we evaluated whether low levels of evenness in speci-
ose communities correlate with the attenuation of the richness–productivity relationship.

3. We found that tree species richness and evenness are negatively correlated 
across forests globally, with highly speciose forests typically comprising a few domi-
nant and many rare species. Furthermore, we found that the correlation between di-
versity and productivity changes with evenness: at low richness, uneven communities 
are more productive, while at high richness, even communities are more productive.

4. Synthesis. Collectively, these results demonstrate that evenness is an integral 
component of the relationship between biodiversity and productivity, and that the 
attenuating effect of richness on forest productivity might be partly explained by 
low evenness in speciose communities. Productivity generally increases with species 
richness, until reduced evenness limits the overall increases in community diversity. 
Our research suggests that evenness is a fundamental component of biodiversity–
ecosystem function relationships, and is of critical importance for guiding conserva-
tion and sustainable ecosystem management decisions.

K E Y W O R D S
diversity, ecosystem function and services, evenness, forests, global, productivity, species 
richness

[Correction added on 10 May 2023, after first 
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Of course, a negative relationship between richness and even-
ness would only be relevant if both components of diversity in-
fluence the productivity of the community. Experimental studies 
provide clear evidence that community evenness has a direct 
effect on productivity (Kirwan et al., 2007; Sonkoly et al., 2019; 
Yan et al.,  2021). Furthermore, if uneven communities tend to 
be dominated by one or a few species, the mass-ratio hypothe-
sis suggests that increasing the number of rare species should 
have a relatively minimal impact on productivity (Grime,  1998; 
Lembrechts et al., 2018; Loreau, 1998). In contrast, in highly even 
communities, introducing a new species that is relatively abundant 
could substantially alter overall community productivity, for ex-
ample through niche complementarity (see Figure 1) (Lembrechts 
et al., 2018; Nijs & Roy, 2000; Niklaus et al., 2017). Still, it remains 
unclear whether these effects of evenness mediate the effects 
of richness on productivity within complex natural communities 
and across biomes, because we do not know whether (i) the ap-
parent negative relationship between richness and evenness is 

consistent across forests globally (Soininen et al.,  2012; Zhang, 
John, et al., 2012) and (ii) there is an interactive effect of even-
ness and richness on productivity across a range of environmental 
conditions. Disentangling these relationships between richness, 
evenness and productivity is critical for understanding the mech-
anisms governing the diversity–productivity relationship across 
broad spatial scales (Figure 1).

Here, we used approximately 1 million forest inventory plots 
(sourced from the Global Forest Biodiversity Initiative database) to ex-
plore whether community evenness affects the relationship between 
richness and productivity across global forests. If evenness restricts 
the positive effect of richness on ecosystem productivity, then two 
things must hold: (i) richness trades off with evenness across forests 
globally, such that speciose communities tend to be dominated by a 
few species and (ii) there is an interactive effect of both richness and 
evenness on the productivity of forest ecosystems. Specifically, we 
tested the hypothesis that (i) high species richness generally comes 
at the expense of evenness, as the greater number of species within 

F I G U R E  1  Four hypotheses describing how evenness interacts with the relationship between richness and productivity. The four levels 
of evenness are indicated with different colours from low evenness (yellow) to high evenness (red), and lower colour intensity indicates a 
lower data density. The dashed black line indicates the average relationship across the system. In all hypotheses, it is assumed that species 
richness has a positive effect on productivity (Balvanera et al., 2006; Cardinale et al., 2007; Hooper et al., 2005). If community evenness 
interacts with the effect of species richness on productivity, then (1) the effect of species richness on productivity depends on the evenness 
of the community, and (2) richness is correlated with evenness across the system (either positively or negatively). If there is no interaction 
between richness and evenness (Hypothesis A) or if there is no correlation between evenness and richness (Hypothesis B) (Ma, 2005), then 
the average effect (dashed line) of richness on productivity will neither attenuate nor increase at high richness levels. In such instances, 
the observed decrease in productivity at high richness levels is more likely a by-product of other ecological processes (e.g. functional 
redundancy). If, however, there is a significant interaction between richness and evenness, such that uneven communities have lower 
productivity at high richness (Hypothesis C), then a negative correlation between richness and evenness (Cook & Graham, 1996; Hanlin 
et al., 2000; Symonds & Johnson, 2008) would lead to an attenuation in productivity at high richness level: the marginal trend (dashed 
line) first tracks the high evenness isocline at low richness levels but then bends down towards the low evenness isoclines at high richness. 
Conversely, if uneven communities exhibit higher productivity at high richness levels (Hypothesis D), then a positive correlation between 
richness and evenness (Cotgreave & Harvey, 1994; Manier & Hobbs, 2006; Tramer, 1969) would explain this reduction in productivity: the 
marginal trend first tracks the low evenness isocline at low richness levels but then bends down towards the high evenness isoclines at high 
richness.
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a community corresponds to a greater proportion of locally rare spe-
cies, and (ii) that richness positively correlates with productivity in 
highly even, species-poor communities, but at the highest levels of 
species richness this positive relationship will break down due to an 
intrinsic reduction in evenness (Figure 1, Hyp. C).

2  |  MATERIAL S AND METHODS

To evaluate the relationship between evenness and richness, we 
incorporated all 1,011,027 forest inventory plots from the Global 
Forest Biodiversity Initiative (GFBI database, 2021, including data 
from Condit et al., 2019a, 2019b). Forest plot size ranged from 0.0008 
to 2.0 ha. Because evenness and richness inherently vary with scale 
(Gleason,  1922; Wilson et al.,  1999), plot sizes smaller than 0.02 
and larger than 1.5 ha were excluded to ensure comparable results. 
Indeed, the effect of plot size on richness is especially strong when 
plots are smaller than 0.02 ha (r = 0.39, r2 = 0.15, p < 0.001) or larger 
than 1.5 ha (r = −0.84, r2 = 0.71, p < 0.001). Elimination of these two 
plot size groups resulted in a filtered dataset with weak correlations 
between plot size and richness (r = 0.13, r2 = 0.02, p < 0.001), and plot 

size and evenness (r = −0.09, r2 = 0.008, p < 0.001). Although there 
is a range in plot sizes, 75% of the plots have a size between 0.02 
and 0.06 ha. Quality controls of tree density estimations were con-
ducted, and we removed plots with tree densities that fell outside 
the median ± 2.5 times the median absolute deviation, a moderately 
conservative threshold, within each biome (0.8% of total plots) (Leys 
et al., 2013). Additionally, we removed plots with unlikely biomass 
accumulation and productivity values (for details, see Section 2.2). 
The final dataset (Figure 2) comprised 896,276 forest plots, contain-
ing information on tree species richness and abundance. Of these, 
367,565 plots contained diameter at breast height (DBH) informa-
tion of individual trees which allowed us to estimate biomass. For 
both datasets, the plots were measured once between 1980 and 
2017, with 2002 as the mean measurement year. The mean age of 
the forest where the plots are established is 52 years, with a stand-
ard deviation of 15 years (estimated with the global forest age map; 
Poulter et al., 2019).

Richness and evenness were calculated for each plot, enabling 
us to evaluate the nature of the relationship between these two 
components of diversity at biome and global scales. To examine 
the effect of evenness and richness on biomass accumulation and 

F I G U R E  2  (a) Location of the Global Forest Biodiversity Initiative (GFBI) plots used in this study, where the density of forest plots is 
indicated from low density (blue) to high density (red). (b) The distribution of evenness and richness in the boreal, temperate and tropical 
biomes. An evenness value of one resembles either a monospecific stand or an even abundance of species. The tail of richness values of the 
tropical biomes extends to 380 species (not shown in the graph). The majority of our dataset is composed of secondary forests (mean age is 
52 years), and especially the monospecific and relatively species-poor stands were affected by human activity in some degree.

Nr of plots

<10

>160

(a)

(b)
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productivity, we fit linear models that simultaneously accounted 
for evenness and richness while controlling for a wide range of en-
vironmental variables, including temperature, precipitation and soil 
characteristics.

We estimated forest productivity using two complementary 
approaches. First, we used biomass estimates, calculated using re-
gional allometric equations that included information about DBH 
and species information from each individual tree, and divided this 
information by forest age (Poulter et al., 2019) to approximate stand-
level biomass accumulation over time. Second, we estimated net 
primary productivity (NPP) for each plot using MODIS satellite data 
(Running et al.,  2011), thus providing both ground-sourced and re-
motely sensed estimates of productivity. Satellite-derived NPP es-
timates largely agreed with ground measured temporal data for the 
plots where this information was available (r = 0.65, p < 0.001), see 
Section 2.3 for more details.

2.1  |  Examining the relationship between species 
richness and evenness

Richness was defined as the total number of tree species per forest 
plot. We estimated Hill's evenness at the same plot level using the 
following equation:

where H is Shannon's entropy, S is the species richness and exp(H) can 
be figuratively interpreted as an approximation of the number of rela-
tively abundant species (Hill, 1973; Jost, 2010). Therefore, Hill's even-
ness can roughly be seen as the proportion of species that dominate 
the community in terms of abundance. Evenness values range from 
close to zero, when the community is dominated by only a few species, 
to one, where all species in the community have the same number of 
individuals.

There are many evenness indices available in the ecological 
literature (Tuomisto, 2012), and some commonly used indices are 
mathematically restricted by richness (including Pielou's J), reflect 
particularly dominance in the community (e.g. Simpson's evenness) 
or express evenness as the ratio between diversity and richness 
(including Hill's evenness). We also included the standardized Hill's 
evenness index in our supplementary analyses, as Hill's evenness 
reports an evenness of one in monospecific sites, which is avoided 
when using standardized Hill's evenness. As we explored the re-
lationship between richness and evenness, each commonly used 
and distinct evenness index evaluated (standardized Hill's even-
ness, Pielou's J, Simpson's evenness, Evar, PIE, Eq) revealed simi-
lar overall trends (Figure S2) (Tuomisto, 2012). Given this overall 
consistency across different indices, including standardized Hill's 
evenness, we focus on the well-known Hill's evenness for the ma-
jority of our analyses because (i) it reflects evenness according 
to the current understanding of evenness as the ratio between 
diversity and richness (Tuomisto, 2012) and therefore (ii) consists 

of the mathematically robust components of Shannon's entropy 
and richness (Hill, 1973).

In addition to analysing the relationship between evenness and 
richness at a global scale and for the major forest biomes (boreal, 
temperate and tropical biomes), for every World Wildlife Fund 
(WWF) biome we selected a number of plots that is proportional 
to the forested area within that biome (Table S2; Olson et al., 2001). 
By taking this subset of the data, we reduced the sampling bias by 
assuring that the results are more representative for either the for-
ests globally or the boreal, temperate or tropical biomes. Regarding 
the global dataset, the majority of the plots fall within the temperate 
broadleaf and mixed forest biome and a smaller proportion of the 
data represents the tropical moist forest, but with subsetting the 
data we create a more representative global dataset. The same pro-
cedure is followed when subsetting biomes to represent the boreal, 
temperate and tropical biomes. The proportions of forested area for 
every biome were calculated in Google Earth Engine by overlaying 
the WWF biomes with a global map of existing forest cover (Hansen 
et al., 2013). Areas with more than 10% canopy closure for vegeta-
tion taller than 5 m were defined as forests (FAO, 2000). To avoid 
heteroscedasticity due to the skewed nature of the species richness 
distribution, richness was log transformed, and the relationship was 
evaluated with a Pearson correlation (see Figure  3). To show that 
the relationship between evenness and richness is neither a math-
ematical artefact of the Hill's index nor dependent on the evenness 
index used, we visualized the results of a null model (Figure S1) and 
the relationship for commonly used evenness indices (Figure  S2). 
The null model was created by evaluating the relationship between 
evenness and richness of 10.000 random data subsets, formed by 
drawing species according to a multinomial distribution from the 
dataset (see Figure S1 for a more detailed explanation). Additionally, 
to evaluate the effect of monospecific stands on the relationship be-
tween evenness and richness in forests globally, we compared the 
correlation coefficients of the relationship with and without mono-
specific stands.

2.2  |  Biomass estimation

To estimate the above-ground biomass of each tree in extratropical 
biomes, we used 430 species-specific DBH-based allometric equa-
tions obtained from the GlobAllomeTree database to estimate the 
above-ground biomass of each tree (Henry et al., 2013). These allo-
metric equations use a common logarithmic equation for estimating 
above-ground biomass from DBH measures (Jenkins et al., 2003):

where biomass is the total above-ground biomass (kg dry weight), DBH 
is the measured diameter at breast height (cm), ln is the logarithm to 
the base e (2.718), and ß0 and ß1 are free parameters governing the ef-
fect of DBH on above-ground biomass. Following Jenkins et al. (2003), 
we applied back calculation to generate a pseudo dataset for biomass 

(1)Evenness = exp(H)∕S,

(2)Biomass = e

(

β0+β1×ln
DBH

)

,
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changes along DBH gradients based on each of the 430 allometric 
equations. To generate the pseudo data, we applied the following 
rules: (1) for a DBH between 5 and 25 cm, each centimetre was as-
signed a corresponding pseudo biomass value; (2) for a DBH between 
25 and 100 cm, every 5 cm were assigned a corresponding value, (3) for 
a DBH between 100 and 300 cm (maximum DBH), every 10 cm were 
assigned a corresponding value. Consequently, we trained biome-
specific allometric equations for each biome (varying in the �0 and �1 
parameter estimates) based on the pseudo-DBH and biomass dataset 
(Olson et al., 2001) (Table S1; Figure S3).

Biomass estimations for the tropical biomes followed the allo-
metric equations for pantropical regions from Chave et al.  (2014), 
which are available through the r package ‘biomass’ (Réjou-Méchain 
et al., 2017). These equations require information on wood density, 
and we compiled species-specific wood density estimates from the 
Global Wood Density Database (Chave et al., 2009) and the BAAD 
database (Falster et al., 2015). To match the binomial species names 
between the GFBI and the wood density databases, we standardized 
species binomials using the Taxonomic Name Resolution Service 
platform (Boyle et al., 2013).

After computing the above-ground biomass for all 24 million 
individuals in our dataset, plot-level biomass values were obtained 

by summing up the biomass of all individuals in the respective plot. 
Biomass densities (t/ha) of each plot were obtained by dividing the 
total above-ground biomass (t) by the plot size (ha).

2.3  |  Biomass accumulation rates and 
productivity data

We selected approximately 95% of the data by excluding plots that 
had biomass values greater than two times the standard deviation 
above and below the mean plot-level biomass per biome to filter po-
tential outliers in biomass values due to errors in measurement or 
data management. Additionally, we excluded plots with biomass val-
ues higher than 1 million kg/ha, as these values were likely overesti-
mating biomass due to the presence of a large tree in the plot (Bastin 
et al., 2018; Chave et al., 2004; Slik et al., 2013). This filtering pro-
cedure resulted in 367,565 plots that were used in the final analyses 
(see Table S2 for an overview of the number of plots for the biomass 
and productivity analyses). All biomass values were divided by esti-
mated forest age (Poulter et al., 2019), to control for differences in 
forest developmental stage that cause striking differences in forest 
biomass accumulation (Peichl & Arain, 2006; Poorter et al., 2016). 

F I G U R E  3  The relationship between evenness and logged species richness, where the data density is indicated from low density (blue) 
to high density (red). The Pearson correlation is highly significant for all relationships, we therefore describe the adjusted r2 as a measure 
of effect size. (a) The global relationship between evenness and richness (N = 20,272, r = −0.52, r2 = 0.28). (b) The relationship between 
evenness and richness for the boreal (N = 61,712, r = −0.42, r2 = 0.18), temperate (N = 374,142, r = −0.53, r2 = 0.28), and tropical (N = 9570, 
r = −0.48, r2 = 0.23) biomes.

(a) (b)
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As such, final biomass estimates reflect the mean annual biomass 
accumulation over time.

Biomass accumulation over time is not a precise indicator of 
forest productivity, as it cannot account for all of the ecological 
dynamics and disturbances that occurred during forest develop-
ment, but it is a useful proxy for overall cumulative growth at the 
ecosystem level. However, to attempt to account for the annual 
variation in forest productivity, we used productivity estimates 
from an independent satellite-derived product. Specifically, we 
estimated NPP for every plot location from MODIS satellite im-
ages, using Google Earth Engine (Gorelick et al.,  2017; Running 
et al.,  2011) to supplement the forest biomass analysis. NPP is 
calculated as absorbed fraction of photosynthetically active ra-
diation, which is a combination of leaf area index and fraction 
of photosynthetically active radiation, while taking temperature 
and water stress into account as well (Running et al., 2011). We 
calculated the mean productivity between 2000 (first year of 
NPP data availability) and 2009 (third quartile of forest age in 
our data), to obtain a robust NPP value and coincide the average 
NPP measurement year with the median forest age in our data-
set. In the temperate biomes—the only region where sufficient 
DBH information was available across multiple years in the GFBI 
database—the ground-measured temporal changes in biomass 
were fairly well correlated with the satellite-derived productiv-
ity data (r = 0.65, p < 0.001). The lack of forest plots measured 
multiple times in the boreal and tropical biomes, precluded the 
estimation of the accuracy of the NPP data from these regions. 
We conducted all analyses across both mean annual biomass ac-
cumulation and NPP to explore the unifying trends that emerge 
across both approaches.

2.4  |  Evaluating the effect of evenness and 
richness on biomass accumulation and productivity

We used linear models to assess the effect of evenness, richness 
and their interaction, on NPP and biomass accumulation. The data 
met the linear model assumptions and evaluation of the model fit 
(Q–Q plots, distribution of residuals) suggested that linear models 
were applicable. To account for the fact that biomass accumulation 
does not necessarily vary linearly with time or successional state, 
we included time as a covariate in the model of biomass accumula-
tion rate, which is equivalent to allowing the relationship between 
stand-level biomass and time to be quadratic (Poulter et al., 2019). 
Additionally, we controlled for the potentially confounding effects of 
climatic drivers and other environmental influences (Ali et al., 2019), 
including mean annual temperature, isothermality, annual precipita-
tion, variation in seasonal precipitation (Hijmans et al., 2005), and 
soil carbon, sand content and pH in the upper 15 cm of the soil as 
covariates, each extracted from global maps at a 30-arc second 
resolution (Batjes et al.,  2017; Ribeiro et al.,  2018). These climate 
variables capture both the mean and variation in temperature and 

rainfall, while the edaphic variables include the most important soil 
drivers of biomass and productivity (Ali et al., 2019). Human impact 
was also considered in the linear models by including estimates of 
the percentage of human development, calculated as the percentage 
urban areas and managed vegetation per square kilometre (Tuanmu 
& Jetz, 2014), and population density as the number of people per 
square kilometre (Center for International Earth Science Information 
Network—CIESIN—Columbia University, 2016). The density of trees 
was included as an independent variable in the analyses, as this 
can affect both evenness (Wilson et al., 1999) and richness values 
(Lomolino, 2000). Additionally, ‘biome’ was included as a factor in the 
global model, and we accounted for plot size in all models (Poulter 
et al., 2019). To explore the possible effect of plot size, we analysed 
the relationship between evenness and richness and the effect of 
both on the two measures of productivity for small, medium and 
large plot sizes for the dataset globally (Figure S5). Additionally, we 
performed a sensitivity analysis on species richness, evenness and 
their interaction to plot size when predicting NPP or biomass accu-
mulation rates in the global dataset (Figure S6A) and on biome level 
(Figure S6B–D).

Collinearity between variables in our model was evaluated using 
variance inflation factors (VIF). Although evenness and richness 
were negatively correlated, on average, there was substantial varia-
tion in this trend (Figure 3), such that the VIF values between even-
ness and richness were less than 3.0 in all models, and both were 
therefore included in every model (Becker et al., 2015). The model 
was implemented at the global scale, in which every biome was pro-
portionally represented according to the extent of forested area 
within that biome (as described above), and at the biome level. At 
the biome level, the boreal, temperate and tropical biomes were rep-
resented by their largest forested ecosystems, respectively, the bo-
real forest, temperate broadleaf and mixed forest, and tropical moist 
forest. To visualize how richness and evenness interacted to affect 
productivity, we plotted the relationship between richness and pro-
ductivity at four different levels of evenness (<0.4, 0.4–0.6, 0.6–0.8, 
and 0.8–1). The lowest evenness level <0.4 was chosen as this rep-
resents the lower end of the evenness values in the dataset, while 
including sufficient observations in this category. The subsequent 
categories were defined as an increase of 20% in the evenness val-
ues. For each evenness level, productivity was predicted with every 
model covariate (e.g. climate, soil, human impact) set at its median 
value. Thus, each predicted productivity is marginal to the aggregate 
trend at the global scale and for each biome. To examine whether 
the relationship between richness, evenness and productivity var-
ied with evenness index, we evaluated the global trend for six com-
monly used evenness indices (Figure S7). We used a bootstrapping 
approach to incorporate uncertainty in the biomass calculations and 
satellite-derived NPP (Figure S8).

To quantify the relative importance of evenness, richness, their 
interaction, environmental variables and human impact, we used 
the scaled calc.relimp function in R (Grömping,  2006). This func-
tion evaluates the contribution of each independent variable to the 
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variation explained, by averaging the contribution of each indepen-
dent variable to the r2 in terms of its sum of squares across all pos-
sible fitting sequences. The statistical analyses were performed in 
R version 3.5.1 (R Core Team, 2018). The code used to perform the 
statistical analyses can be found at Github, following this link: tinyu​
rl.com/3vvf52v9.

3  |  RESULTS

There was a consistent, negative correlation between evenness and 
richness at the global scale, which was apparent across all forest bi-
omes (Figure 3a–d), scales (Figure S4) and plot sizes (Figure S5). This 
negative correlation was also found using several other commonly 
used evenness indices, including the normalized Hill's evenness 
index, Simpson's evenness, Evar index and PIE (Figure S2), suggesting 
that the relationship is robust to the evenness index used. Moreover, 
the magnitude of the negative correlation was more negative than 
expected at random, suggesting that the relationship between 
evenness and richness is not a mathematical artefact of the even-
ness metrics used (Figure  S1). Instead, it demonstrates that highly 
speciose, highly even forest communities are less rare in nature than 
would be expected by chance (Figure S1), suggesting that biotic pro-
cesses may play a role in shaping the relationship between richness 
and evenness. Additionally, excluding monospecific stands did not 
change the sign of the correlation, although the relationship was 
stronger when monospecific stands were included as they force the 
correlation through one (r = −0.08 for forests globally, r = −0.07 ex-
cluding monospecific stands). Within forests, species-poor commu-
nities tend to have a relatively uniform distribution of abundances, 
while among speciose communities, having more species is associ-
ated with increasingly uneven abundance distributions caused by a 
few dominant and many rare species (Figure 3a–d). Temperate and 
boreal biomes exhibited a saturating relationship, with evenness 
never extending below E = 0.75, on average, even at the highest rich-
ness levels.

However, after accounting for underlying environmental 
variation, we identified a significant positive relationship be-
tween richness and both biomass accumulation and productivity 
(0.06 < ß < 0.48, p < 0.01), supporting a recent global analysis (Liang 
et al., 2016) (but see also (Sheil & Bongers, 2020)). However, the re-
lationship varied among regions, as temperate forests exhibited a 
marginally negative relationship between richness and productivity 
(ß = −0.09, p < 0.05) (Figure  4). Given the observed negative rela-
tionship between richness and evenness, increasing evenness was 
generally associated with lower biomass accumulation. However, 
this pattern was not observed in tropical forests (ß = 0.04, p < 0.01), 
where there was a positive relationship between evenness and pro-
ductivity (0.004 < ß < 0.014, p < 0.01) (Figure 4).

In combination, both the evenness and richness of forest com-
munities were more strongly related to plot-level biomass accumu-
lation than to productivity (25% vs. 19% of variance explained in the 
global model) (Figure  4). Among boreal forests, which are species 

poor, richness was more strongly related to both biomass accumu-
lation and productivity than was evenness (variance explained by 
richnessBiomass = 10.1, evennessBiomass = 6.8 and richnessNPP = 14.8, 
evennessNPP = 0.4) (Figure  5b,f). In contrast, among moist tropical 
forests, which are species rich, productivity was similarly related to 
either richness or evenness (variance explained by richnessNPP = 1.8, 
evennessNPP = 1.6) (Figure 5d,h).

Experimentally increasing species richness increases biomass 
accumulation (Balvanera et al., 2006; Cardinale et al., 2007; Grace 
et al., 2016; Hooper et al., 2005), but observational data suggest that 
the effect becomes weaker or even reverses at high species rich-
ness (Brun et al.,  2019; Fei et al.,  2018; Fraser et al.,  2015; Liang 
et al.,  2016; Schmid,  2002). We hypothesized that if increasing 
community evenness causes productivity to decline, then the at-
tenuating effect of richness on productivity could be explained by a 
negative correlation between species richness and community even-
ness (Figure 1). To explore if productivity data from the world's for-
ests might be explained by such a hypothesis, we modelled the data 
with a regression featuring the hypothesized interaction between 
richness and evenness (Figure 5). The proposed interaction between 
richness and evenness is statistically significant in every model 
(p < 0.05), although the strength of the interaction varies. The stron-
gest interactive effect was observed on biomass accumulation in the 
moist tropical forest, which are highly speciose (ß = 0.14) (Figure 5d). 
A weaker interaction was observed in temperate and boreal forests 
(ß = 0.03 and ß = −0.06, respectively), which contained fewer spe-
cies (Figure 5b,c). In the tropics, biomass accumulation is predicted 
to vary by 2.5-fold between high- and low-evenness communities 
(6000 vs. 15,000 kg/ha year−1 at maximum richness) (Figure  5c), 
whereas this range is much lower in the temperate (4700–5000 kg/
ha year−1 at maximum richness) (Figure 5c) and boreal systems (850–
1150 kg/ha year−1 at maximum richness) (Figure 5b). Moreover, we 
find the same trend for productivity (Figure  5f–h), across differ-
ent evenness indices (Figure  S7), plot sizes (Figure  S5) and when 
incorporating uncertainty of the biomass and productivity values 
(Figure S8). Additionally, the sensitivity analyses show that there is 
no consistent effect or no effect of plot size on the relationship of 
evenness, richness and their interaction on both measures of pro-
ductivity (Figure S6).

4  |  DISCUSSION

Among forests across the globe, the positive correlation between spe-
cies richness and ecosystem productivity appears to attenuate in the 
most speciose communities (Liang et al., 2016). Our analysis examines 
whether the evenness of plant communities might contribute to this 
attenuation. We observed a consistent negative correlation between 
richness and evenness across forests, globally (Figure  3), whereby 
highly specious communities exhibited relatively low levels of even-
ness. We also detected interactive effects of the correlation of richness 
and evenness with ecosystem productivity, which lends support to the 
hypothesis that evenness might mediate the impacts of richness on 
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forest productivity. In short, when the number of species is relatively 
low, species richness correlates positively with productivity. However, 
in the most speciose communities, the long tail of rare species makes 

them highly uneven, which may limit the impact of diversity on produc-
tivity. As such, in these highly uneven communities, a greater number 
of species does not necessarily correlate with greater productivity.

F I G U R E  4  (a) Positive (green) and negative (blue) regression coefficients, and (b) variable importance of evenness, richness, the 
interaction of evenness and richness and climate, soil and human impact variables on biomass and productivity. Only the results for the 
boreal, temperate, tropical moist forest and all the biomes globally are visualized, and variables causing multicollinearity are taken out (see 
Section 2). The open circles in (a) indicate non-significant coefficients, while the filled circles indicate significant coefficients. The adjusted r2 
values of the linear models are displayed in (a).

r2 0.48 0.45 0.51 0.50 0.50 0.31 0.63 0.75

Regression coefficient
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0.4

0.1
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F I G U R E  5  The hypothesized effect of different levels of evenness on the relationship between species richness and mean annual 
biomass accumulation (a–d) or productivity (h–e). The graphs visualize predicted values based on the results of a linear model, with the 
covariates held constant (see methods), and as a cut-off point the third quantile of the biomass and NPP values to avoid overfitting. The data 
are projected on the graph (black line), and the 95% upper and lower confidence intervals are visualized in grey. At the right side of every 
graph the scaled variable importance, according to a linear model including covariates, of richness (green), evenness (dark blue), and the 
interaction between richness and evenness (light blue) is visualized. In the graphs at the left side, the global effect is visualized, while at the 
right side the data are split among boreal, temperate and moist tropical forests. The uncertainty of the biomass calculations and estimated 
productivity are visualized in Figure S7.

(a) (b)

(c)

(d)

(e) (f)

(g)

(h)
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Our results suggest that, when there are more species pres-
ent, they are more likely to have an uneven distribution. However, 
this relationship between richness and evenness was significantly 
more negative for our observational data than would be expected 
under null-model predictions (Figure S1), highlighting this pattern 
is at least partially a by-product of ecological and evolutionary 
processes. The observed negative relationship between evenness 
and richness observed across forests globally (Figure 3) may po-
tentially arise if species-rich ecosystems contain relatively fewer 
dominant, but more rare species than species-poor systems. 
We focus on the Hill's evenness index because it is largely un-
correlated with richness (Hill, 1973), to ensure that the observed 
negative correlation between richness and evenness is not merely 
a mathematical artefact of the evenness index used (Figure  S1). 
Nevertheless, our results are robust to a range of common even-
ness indices (Figures S2 and S7), demonstrating the generality of 
this relationship and of the resulting global trends. The drivers of 
this trend are likely to include a range of ecological coexistence 
mechanisms. A possible explanation for this negative correlation 
could be that in cold boreal forests, there are only a few species 
present, and intraspecific competition is expected to be higher 
than the interspecific competition (Aguiar et al., 2001). However, 
in warm, moist environments, such as moist tropical forests, there 
are many species present. Higher species richness is likely to give 
rise to substantial interspecific competition, as well as scope for 
additional ecological mechanisms such as the Janzen Connell 
effect to influence the abundance of species (Connell,  1971; 
Janzen, 1970). As species have different competitive abilities and 
strategies, high levels of asymmetric competition allow relatively 
few species to become dominant, with the majority of the species 
being either abundant or rare (McGill et al., 2007).

The strength of the negative correlation between evenness and 
productivity varies between biomes (Figure 5) (Sonkoly et al., 2019; 
Zhang, Chen, & Reich,  2012), which may be indicative of a greater 
effect of niche partitioning in more speciose and even forests. In bi-
omes with few species, increasing the richness of species tends to 
enhance resource partitioning and productivity (Figure  5b,c) (Isbell 
et al.,  2009; van Ruijven & Berendse,  2005). In contrast, in biomes 
with many species, evenness of those species is relatively low as there 
are many rare species, and so increasing the evenness might increase 
ecosystem productivity (Kirwan et al., 2007; Zhang, John, et al., 2012; 
Zhang, Chen, & Reich,  2012) (Figure  5d,h). Interestingly, a different 
trend was observed for productivity in temperate forests, where at 
high evenness productivity peaks at low richness, and at low evenness 
productivity peaks at high richness (Figure  5c). This could possibly 
be explained by the overarching importance of environmental driv-
ers for productivity in this biome, with the combined effects of rich-
ness and evenness explaining only 2% of the total explained variance 
(Figure 4b). Conversely, this biome contains the greatest proportion of 
forest plots with high human activity (Figure 4b), such that this trend 
may reflect different management practices across biomes.

Our results suggest that it may not only be the redundancy of 
the species that drives the attenuating effect of the relationship 

between richness and ecosystem productivity (see Cardinale 
et al., 2011), but also the low abundances (and corresponding min-
imal contribution to productivity) of the rare species that flattens 
the relationship between richness and productivity at high richness 
levels. Our hypothesis predicts that, within speciose communities, 
adding new species at extremely low abundances will have little im-
pact on the overall productivity, relative to the effect on productiv-
ity of adding new species to less speciose communities. We stress 
that this finding does not discount the importance of rare species, 
which contribute significantly to productivity through positive 
complementarity effects in many ecological communities (Loreau 
& Hector, 2001; Sonkoly et al., 2019). Indeed, rare species contrib-
ute to ecosystem multifunctionality, which can have very important 
indirect effects on productivity (e.g. being critical for pollination) 
(Dee et al., 2019; Lyons et al., 2005), or sustain productivity over 
the long term when they become more abundant with (environmen-
tal) change (Loreau & Hector,  2001; Loreau et al.,  2003; Yachi & 
Loreau, 1999). However, our analysis supports the idea that—in line 
with the mass-ratio hypothesis—rare species tend to contribute less 
to productivity than do dominant species. If this hypothesis were 
correct, then a higher relative abundance of rarer species (i.e. in-
creasing evenness) would increase the biodiversity and productiv-
ity within the system.

The two measures of productivity used here—biomass accumu-
lation and satellite-derived NPP—each have their unique drawbacks 
and challenges (Sheil & Bongers, 2020), such as relying on coarse es-
timates of forest age, being susceptible to mismatches between plot 
size and satellite resolution, and uncertainty in the calculations. For 
the temperate region, satellite-derived NPP and productivity calcu-
lated from multiple times measured ground-sourced data were well 
correlated (r = 0.65); however, we could not estimate the accuracy 
for the other biomes due to limited data. Despite the uncertainty 
in the biomass and productivity calculations, the main results were 
robust when considering the uncertainty within these two esti-
mates of productivity individually (Figure S8). We chose to consider 
these metrics in tandem specifically to minimize the data limitations 
of each, and ensure that our results are qualitatively robust to the 
choice of productivity metric. Additionally, in our dataset, we have 
considerable variability in plot sizes, which can affect both species 
richness and evenness values, and subsequently the importance of 
niche and neutral processes (Gleason, 1922; Viana & Chase, 2019; 
Wilson et al., 1999). Yet, sensitivity analyses show that the differ-
ences in plot size do not change the main results (Figure S5), with 
no consistent biases across plot sizes (Figure S6). However, we do 
detect considerable noise across the range of plot sizes, partially 
due to unbalanced sample sizes in relation to plot size in between 
biomes.

Although our work establishes baseline empirical trends, it is 
important to highlight that these results rely on correlative trends 
using observational data from a compilation of different data-
bases and sources. Future experimental research will be needed 
to test the hypotheses we have presented and to explore direct 
causal relationships among evenness, richness and productivity. 
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Long-term experimental studies with various plot sizes and suc-
cessional stages will be critical for disentangling the relative im-
portance of the different processes underpinning diversity and 
function. By being able to manipulate species richness, evenness 
and functional redundancy, while also obtaining direct temporal 
measurements of productivity, experimental studies will be crit-
ical for identifying mechanistic drivers that are difficult to as-
sess from broad-scale observational and statistical approaches 
(Paquette et al.,  2018). Nevertheless, our analysis is consistent 
with the findings from a wide range of biodiversity–ecosystem 
function experiments, observational and modelling studies, high-
lighting that the positive effect of species richness on forest pro-
ductivity declined in the most speciose communities (Cardinale 
et al., 2007; Hooper et al.,  2005). In addition, by exploring how 
these trends vary across biomes, this analysis can help to provide 
the context for the highly variable relationships between richness 
and productivity across the globe.

5  |  CONCLUSIONS

An ever-growing body of evidence suggests that, across forests 
globally, plant species richness correlates with ecosystem produc-
tivity of plant communities (Liang et al.,  2016; Luo et al.,  2019). 
Our results support previous studies, showing that richness cor-
relates positively with ecosystem productivity, particularly in 
communities with few species. However, as the number of spe-
cies increases, the relationship between richness and productiv-
ity attenuates. We observed that, as species richness increases, 
the evenness of those communities tends to decline, which may 
potentially limit the influence of richness on ecosystem productiv-
ity in the most speciose communities. Because communities with 
many species tend to be dominated by relatively few species, the 
evenness of those communities tends to be relatively low. This 
negative correlation between richness and evenness may partially 
contribute to the attenuating effect of species richness on ecosys-
tem productivity observed in highly diverse communities (Liang 
et al., 2016). In addition, this apparent trade-off between richness 
and evenness may explain some of the idiosyncrasies observed in 
previous biodiversity–productivity analyses, as the slope of the 
richness–productivity relationship will vary considerably across 
time and space due to the confounding effect of evenness. These 
trends have direct implications for ecosystem management prac-
tices by showing where community productivity is most depend-
ent on richness or evenness. Ultimately, the interacting effects 
of richness and evenness help shape our understanding of the 
biodiversity–productivity relationship, identifying core relation-
ships that link community structure to the functioning of forest 
ecosystems worldwide.
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