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Abstract
Semi-arithmetic Fuchsian groups is a wide class of dis-
crete groups of isometries of the hyperbolic plane which
includes arithmetic Fuchsian groups, hyperbolic trian-
gle groups, groups admitting a modular embedding, and
others. We introduce a new geometric invariant of a
semi-arithmetic group called stretch. Its definition is
based on the notion of the Riemannian center of mass
developed by Karcher and collaborators. We show that
there exist only finitely many conjugacy classes of semi-
arithmetic groups with bounded arithmetic dimension,
stretch and coarea. The proof of this result uses the
arithmetic Margulis lemma. We also show that when
stretch is not bounded there exist infinite sequences of
such groups.

MSC 2020
20H10 (primary), 11F06, 30F10 (secondary)

1 INTRODUCTION

Semi-arithmetic Fuchsian groups were introduced by Schaller andWolfart [28] as a natural exten-
sion of the class of arithmetic Fuchsian groups which includes all triangle groups (and their
subgroups of finite index). A cofinite Fuchsian group Γ is called semi-arithmetic if the subgroup
Γ(2) generated by the squares of the elements of Γ is contained in an arithmetic group Δ acting on
a product ℍ𝑟 of hyperbolic planes. We refer to Section 2 for more details regarding the definition.
By Takeuchi [30], almost all hyperbolic triangle groups are non-arithmetic but it is not hard to
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check that they are all semi-arithmetic. Other examples of strictly semi-arithmetic groups can be
found in [6, 7, 16, 28]. Semi-arithmetic groups appear in the study of Teichmüller curves, billiards,
translation surfaces and related topics. Lately these connections were investigated by McMullen
in [21–23].
In this paper we are interested in finiteness properties of semi-arithmetic groups. Recall that

by Borel’s theorem there exist only finitely many arithmetic Fuchsian groups of bounded coarea.
This is no longer the case for semi-arithmetic groups, as, for instance, there exist infinitely many
hyperbolic triangle groups and all of them have bounded coarea. Therefore, in order to separate a
finite subset of semi-arithmetic groups we need to consider other invariants. The second natural
invariant is the arithmetic dimension 𝑟 from the definition of a semi-arithmetic group. Indeed,
Nugent andVoight showed in [26] that there exist only finitelymany triangle groupswith bounded
arithmetic dimension (see also Corollary 4.6 for a different proof). Moreover, in Corollary 4.5
we show that an upper bound on coarea and arithmetic dimension imply finiteness of all semi-
arithmetic groups that admit amodular embedding (by [16] there exist Veech groupswithmodular
embeddings that are not subgroups of hyperbolic triangle groups). This is about as far as one can
get with these two invariants at hand — it was shown in [7] that for any fixed genus g there
exist semi-arithmetic surfaces defined over any totally real number field of odd prime degree. In
particular, there exist infinitely many semi-arithmetic groups of a fixed sufficiently large coarea
with bounded arithmetic dimension.
In order to have a finer control over the structure of semi-arithmetic groups we introduce a

new invariant called stretch. The name is inspired by Thurston’s stretch of maps between hyper-
bolic surfaces from [31], though our notion is different. Perhaps a more precise name would be
arithmetic stretch but we prefer to stay with a shorter version. Stretch is defined using Lipschitz
geometry and the proof of its invariance with respect to commensurability is based on the notion
of the Riemannian center of mass (see Definition 3.1 and Proposition 3.2). The Riemannian center
of mass was introduced by Grove and Karcher in [14] and further developed in a series of papers
by Karcher and collaborators in 1970s. It appeared to be extremely useful in differential geometry
but we could not trace any prior applications of this construction in geometry of groups.We define
stretch and discuss its basic properties in Section 3. The stretch of an arithmetic Fuchsian group
is equal to 1. The contracting property of holomorphic maps implies that the stretch of groups
with modular embeddings is also equal to 1. This way stretch can be understood as a quantitative
measure of non-arithmeticity of a group. For us, it provides the missing parameter for the class of
semi-arithmetic groups.
We are now ready to state the main result of the paper:

Theorem 1. For any 𝐿 ⩾ 1, 𝜇 > 0 and 𝑟 ⩾ 1 there exist only finitely many conjugacy classes of semi-
arithmetic Fuchsian groups with arithmetic dimension at most 𝑟, stretch at most 𝐿 and coarea at
most 𝜇.

The proofs of Theorem 1 and related results together with some corollaries are presented in
Section 4. The key new ingredient of the proof of the theorem is the arithmetic Margulis lemma.
This result was obtained in [12] following the previous work of Breuillard in [4]. In order to prove
Corollaries 4.5 and 4.6 we use the contracting property of modular embeddings which follows
from the classical Schwarz–Pick lemma.
As it was indicated above, all the three conditions in Theorem 1 are necessary. In particular,

the results of [7] imply that there exist infinite sets of semi-arithmetic groups with bounded arith-
metic dimension and coarea whose stretch is unbounded. In Section 5 wemodify the construction
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GEOMETRY AND ARITHMETIC OF SEMI-ARITHMETIC GROUPS 3 of 17

from [7] in order to produce such groups defined over a fixed totally real field𝐾. As a corollary we
obtain infinite families of non-commensurable Fuchsian groups contained in SL(2, 𝐾). The ques-
tion about existence of such infinite sets was asked by A. Rapinchuk and answered by Vinberg for
𝐾 = ℚ [32]. Our result in Proposition 5.1 gives a construction of such sets of groups for the totally
real fields 𝐾 of arbitrarily large degree.

2 PRELIMINARIES

Let Γ < PSL(2, ℝ) be a finitely generated Fuchsian group. The trace field of Γ is the field generated
by the traces of all elements of Γ over the rational numbers ℚ(tr Γ). This field, however, is not
invariant under commensurability, which is the desirable notion of equivalence when dealing
with subgroups of the integral points of some algebraic group (in particular, arithmetic and semi-
arithmetic groups). We are then motivated to look at Γ(2) = ⟨𝛾2 ∣ 𝛾 ∈ Γ⟩. This is a finite index
normal subgroup of Γ with the property of having the minimal trace field among all finite index
subgroups of Γ. This implies, in particular, that ℚ(tr Γ(2)) is an invariant of the commensurability
class of Γ, it is called the invariant trace field of Γ and denoted by 𝑘Γ.

Definition 2.1. Let Γ be a Fuchsian group of finite covolume. We say that Γ is semi-arithmetic if
𝑘Γ is a totally real number field and the traces of elements of Γ are algebraic integers.

This notion is closely related to arithmetic Fuchsian groups. Indeed, arithmetic groups must
also satisfy the following: every non-trivial Galois embedding 𝑘Γ ↪ ℝ maps the set tr Γ(2) to a
bounded subset of ℝ (cf. [17, 29]). In the semi-arithmetic case, these sets may be unbounded for,
say, 𝑟 of the Galois embeddings. This number is called the arithmetic dimension of Γ (cf. [26]). Note
that, if 𝑛 = [𝑘Γ ∶ ℚ], then 1 ⩽ 𝑟 ⩽ 𝑛. In particular, arithmetic Fuchsian groups have arithmetic
dimension 1.
Alternatively, arithmetic and semi-arithmetic Fuchsian groups may be characterized in terms

of quaternion algebras, as we present next.
Let𝐴 =

(
𝑎,𝑏

𝑘

)
be a quaternion algebra over the totally real number field𝑘 of degree [𝑘 ∶ ℚ] = 𝑛.

Denote by𝜎1 = id, 𝜎2, … , 𝜎𝑛 theGalois embeddings of 𝑘 intoℝ. Each of these extends to an embed-
ding 𝜌𝑖 of 𝐴 into

(
𝜎𝑖(𝑎),𝜎𝑖(𝑏)

ℝ

)
, which is a quaternion algebra over ℝ and thus must be isomorphic

either to the algebraM(2,ℝ) of 2 × 2matrices with real coefficients, or to the algebra of Hamil-
ton’s quaternions. In the former case, we say that 𝐴 is unramified over 𝜎𝑖 , or that 𝐴 splits over 𝜎𝑖 .
Otherwise, we say 𝐴 is ramified over 𝜎𝑖 .
Assume 𝐴 splits over exactly 𝑟 ⩾ 1 embeddings and suppose, without loss of generality, that

they have been labeled so that 𝐴 splits over 𝜎1, … , 𝜎𝑟. Then we obtain an isomorphism

𝐴⊗ℚ ℝ ≅ M(2, ℝ)𝑟 ×𝑛−𝑟, (1)

by mapping 𝑥 ⊗ 𝑎 to (𝑎𝜌1(𝑥), … , 𝑎𝜌𝑛(𝑥)).
Note that the natural inclusion 𝐴 ↪ 𝐴⊗ℚ ℝ, followed by the isomorphism (1) and the projec-

tion onto the 𝑖th factor, gives back the embedding 𝜌𝑖 ∶ 𝐴 ↪ M(2, ℝ) or. We observe that each
𝜌𝑖 preserves both norm and trace, in the sense that tr 𝜌𝑖(𝑥) = 𝜎𝑖(tr(𝑥)) and det 𝜌𝑖(𝑥) = 𝜎𝑖(n(𝑥)),
for all 𝑥 ∈ 𝐴.
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4 of 17 BELOLIPETSKY et al.

In particular, if 𝐴1 denotes the subgroup of elements of 𝐴 of norm 1, then 𝜌 = (𝜌1, … , 𝜌𝑟)

restricts to an embedding

𝜌 ∶ 𝐴1 ↪ SL(2, ℝ)𝑟.

Note that, for each 𝑥 ∈ 𝐴1, 𝜌(𝑥) = (𝜌𝑖(𝑥), … , 𝜌𝑟(𝑥)) acts on ℍ𝑟 componentwise via Möbius trans-
formations.
Let  be an order in 𝐴. The well-known Borel–Harish-Chandra theorem implies that 𝜌 maps

1 onto a discrete subgroup of SL(2, ℝ)𝑟 of finite covolume. In other words, 𝜌(1) is a lattice in
SL(2, ℝ)𝑟.

Definition 2.2. A subgroup Δ of PSL(2, ℝ) is said to be an arithmetic group acting on ℍ𝑟 if it is
commensurable to some P𝜌1(1) as above. In case Δ is a finite index subgroup of P𝜌1(1), we say
it is derived from a quaternion algebra.

This definition was given in [28]. In particular, any group derived from a quaternion algebra as
above, acts on ℍ𝑟 in a natural way since it can be embedded into SL(2, ℝ)𝑟 by the map 𝜌 ◦ 𝜌−1

1
.

LetΓ be a semi-arithmetic Fuchsian group. The subset ofM(2,ℝ) consisting of finite sums of the
form

∑
𝑎𝑖𝛾𝑖 where each 𝛾𝑖 is an element of Γ(2) and each 𝑎𝑖 is in 𝑘Γ inherits a natural structure

of an algebra over 𝑘Γ. In fact, it is a quaternion algebra over 𝑘Γ, denoted by 𝐴Γ, which is an
invariant of the commensurability class of Γ (see [17, Chapter 3]). The subring Γ(2), consisting
of those finite sums whose coefficients are algebraic integers in 𝑘Γ, forms an order in 𝐴Γ. Then
(Γ(2))1 is an arithmetic group acting onℍ𝑟 (in fact, it is derived from a quaternion algebra), and Γ
is commensurable to the subgroup Γ(2) of (Γ(2))1. The embedding 𝜌maps Γ(2) to a subgroup of a
lattice in SL(2, ℝ)𝑟. This proves one direction of the following characterization of semi-arithmetic
Fuchsian groups.

Proposition 2.3 [28, Proposition 1].AFuchsian group Γ of finite covolume is semi-arithmetic if and
only if it is commensurable to a subgroup of an arithmetic group acting on ℍ𝑟.

We say that a semi-arithmetic Fuchsian group Γ is derived from a quaternion algebra if Γ < Δ,
for some arithmetic group Δ acting on ℍ𝑟 which is derived from a quaternion algebra. It follows
from the previous paragraph that Γ(2) is always derived from a quaternion algebra.
An important subclass of semi-arithmetic groups is defined using the notion ofmodular embed-

ding. It was first formally introduced in [28]. We will use a slightly different definition which
includes certain necessary adjustments (see [24, 27]).

Definition 2.4. Let Γ be a semi-arithmetic Fuchsian group so Γ(2) is derived from a quaternion
algebra. This provides a family of embeddings𝑓 ∶ Γ(2) → SL(2, ℝ)𝑟 (the restriction of𝜌 ◦ 𝜌−1

1
in the

comment following Definition 2.2, for each choice of 𝜌). We say that Γ admits modular embedding
if 𝑓 can be chosen such that there exists an 𝑓-equivariant holomorphic function 𝐹 ∶ ℍ → ℍ𝑟, that
is, a function 𝐹 satisfying

𝐹(𝛾 ⋅ 𝑧) = 𝑓(𝛾) ⋅ 𝐹(𝑧),

for all 𝑧 ∈ ℍ and all 𝛾 ∈ Γ(2).
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GEOMETRY AND ARITHMETIC OF SEMI-ARITHMETIC GROUPS 5 of 17

With this notion of modular embedding, [27, Proposition 2(ii)] allows us to apply the argument
of [5] to prove the following important result.

Theorem 2.5. All Fuchsian triangle groups admit modular embedding.

The notion of arithmeticity is deeply related with commensurability of lattices. Recall that the
commensurator of a subgroup Γ of a group 𝐺 is defined by

Comm(Γ) = {g ∈ 𝐺 ∣ [Γ ∶ Γ ∩ g−1Γg] < ∞}.

A fundamental result of Margulis [19, Theorem 1, p. 2] states that a lattice Γ in a semisimple Lie
group is non-arithmetic if and only if its commensurator is discrete, and hence is amaximal lattice
containing Γ. Note that properly semi-arithmetic groups satisfy this property.
We conclude this section with a technical lemma that will be used later on.

Lemma 2.6. Let Γ, Γ′ be cofinite Fuchsian groups of the same signature such that Γ is maximal and
let 𝜙 ∶ Γ → Γ′ be an isomorphism of groups. Consider a finite index normal subgroup 𝑁 ⊲ Γ and
define𝑁′ = 𝜙(𝑁). If the groups𝑁 and𝑁′ are conjugate, then Γ and Γ′ are conjugate.

Proof. Suppose that 𝑁′ = g𝑁g−1 for some g ∈ PSL(2, ℝ). Since Γ has the same coarea as g−1Γ′g ,
the groups Γ and g−1Γ′g are equal if and only if g−1Γ′g is contained in Γ. In order to prove this
inclusion, it is sufficient to show that g−1Γ′g is contained in the normalizerPSL(2,ℝ)(𝑁) = {𝛽 ∈

PSL(2, ℝ) ∣ 𝛽𝑁𝛽−1 = 𝑁} of𝑁. Indeed,PSL(2,ℝ)(𝑁) is a cofinite Fuchsian group (see [33, Corollary
4.5.5]) containing Γ and, since Γ is maximal, we have Γ =PSL(2,ℝ)(𝑁).
Let 𝛾 ∈ Γ and consider 𝜂 = g−1𝜙(𝛾)g ∈ g−1Γ′g . We have

𝜂𝑁𝜂−1 = (g−1𝜙(𝛾)g)(g−1𝑁′g)(g−1𝜙(𝛾−1)g).

Now we use that 𝑁 ⊲ Γ and the definition of 𝑁′ in order to obtain

𝜂𝑁𝜂−1 = g−1𝜙(𝛾𝑁𝛾−1)g = g−1𝑁′g = 𝑁. □

3 STRETCH OF A SEMI-ARITHMETIC GROUP

Let Γ be a semi-arithmetic Fuchsian group with arithmetic dimension 𝑟 and commensurable to a
subgroup of a group Δ derived from a quaternion algebra.
Let𝐺 = PSL(2, ℝ)𝑟 be the orientation-preserving isometry group ofℍ𝑟, and let 𝜌0 ∶ Δ → 𝐺 be a

discrete representation such that 𝜌0(Δ) is an arithmetic subgroup. If Γ < Δ, then, up to replacingΔ
by a finite index subgroup, we can suppose that Δ (hence Γ) is torsion-free. In this case, 𝑆 = Γ∖ℍ

and 𝑀 = 𝜌0(Δ)∖ℍ
𝑟 are smooth manifolds. The representation 𝜌0, when restricted to Γ, defines

a homomorphism 𝜌 that can be seen as a homomorphism from 𝜋1(𝑆) to 𝜋1(𝑀). Since 𝑀 is an
asphericalmanifold, there exists a continuousmap 𝑢 ∶ 𝑆 → 𝑀with 𝜌 = 𝑢∗ ∶ 𝜋1(𝑆) → 𝜋1(𝑀) (see
[20, Theorem 1.7.6]). By the Whitney approximation theorem we can suppose that 𝑢 is smooth.
Moreover, we can suppose that such 𝑢 is constant outside a compact set if 𝑆 is non-compact.
Hence, by lifting 𝑢 we show that the set of 𝜌-equivariant smooth Lipschitz maps from ℍ to ℍ𝑟
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6 of 17 BELOLIPETSKY et al.

is non-empty. We are considering here the Kobayashi metric on ℍ𝑟, that is, the supremum of the
hyperbolic metrics on each factor.
If Γ, and therefore Δ, is not torsion-free, we consider finite index subgroups Γ′ < Γ and Δ′ < Δ

which are torsion free, and then let Γ0 = Γ′ ∩ Δ′ < Γ1 = Γ ∩ Δ′ < Δ′. By the previous argument,
there exists a function 𝑢0 ∶ ℍ → ℍ𝑟 which is smooth, 𝜌-equivariant with respect to Γ0 and 𝐿-
Lipschitz for some 𝐿 ∈ ℝ. We now show that it is possible to construct a function 𝑢 ∶ ℍ → ℍ𝑟

which is also smooth, 𝜌-equivariant with respect to Γ1 and 𝐿-Lipschitz.
First we note that, for 𝑗 = 1,… , 𝑟, if 𝜋𝑗 ∶ 𝐺 → PSL(2, ℝ) and 𝜋𝑗 ∶ ℍ

𝑟 → ℍ, are the natural
projections, we can write 𝑢0 = (𝑢1

0
, … , 𝑢𝑟

0
) and 𝜌 = (𝜌1, … , 𝜌𝑟), where for each 𝑗, 𝑢

𝑗
0
∶= 𝜋𝑗 ◦𝑢0,

𝜌𝑗 = 𝜋𝑗 ◦ 𝜌 and 𝑢
𝑗
0
is 𝜌𝑗-equivariant with respect to Γ0. Therefore, if we construct, for each

𝑗, a map 𝑢𝑗 ∶ ℍ → ℍ, which is 𝜌𝑗-equivariant with respect to Γ1 and 𝐿-Lipschitz, we get that
𝑢 = (𝑢1, … , 𝑢𝑟) ∶ ℍ → ℍ𝑟 is the function that we are looking for.
Let 𝑛 = |Γ1 ∶ Γ0| and write Γ1 = g1Γ0 ∪ … ∪ g𝑛Γ0. We fix 𝑗 ∈ {1, … , 𝑟} and consider, for each

𝑖 = 1, … , 𝑛, the map

𝐹𝑖(𝑧) = 𝜌𝑗(g𝑖) ⋅ 𝑢
𝑗
0
(g−1𝑖 𝑧).

The desired map 𝑢𝑗 will be the center of mass of the 𝐹′𝑖 𝑠, which can be obtained by using a
construction of Karcher (see [15, Section 1]). If we let 𝐵 = {1, … , 𝑛} with the usual counting mea-
sure, we can define for each 𝑧 ∈ ℍ the mass distribution 𝑍 ∶ 𝐵 → ℍ given by 𝑍(𝑖) = 𝐹𝑖(𝑧). The
map

𝑃𝑍(𝑥) =
1

2 ∫𝐵 𝑑(𝑥, 𝑍(𝑎))
2𝑑𝑎 =

1

2𝑛

𝑛∑
𝑖=1

𝑑(𝑥, 𝐹𝑖(𝑧))
2

is smooth by Theorem 1 in [15], and its gradient ∇𝑃𝑍 is given by

∇𝑃𝑍(𝑥) = ∫𝐵 exp
−1
𝑥 (𝑍(𝑎))𝑑𝑎 =

1

𝑛

𝑛∑
𝑖=1

exp−1𝑥 (𝐹𝑖(𝑧)).

Moreover, sinceℍhas negative curvature,∇𝑃𝑍 has a unique singularitywhich is, by definition, the
center of mass 𝑢𝑗(𝑧) of the set {𝐹1(𝑧), … , 𝐹𝑛(𝑧)}. By the Implicit Function Theorem, the function
𝑢𝑗(𝑧) is smooth. Furthermore, by [15, Theorem 1.5], we have

|∇(𝑃𝑍(𝑥))| ⩾ 𝑑(𝑥, 𝑢𝑗(𝑧)).

This inequality implies the map 𝐹 defined above is 𝐿-Lipschitz. Indeed, we have

𝑑(𝑢𝑗(𝑤), 𝑢𝑗(𝑧)) ⩽ |∇(𝑃𝑍(𝑢𝑗(𝑤)))|
=

|||||
1

𝑛

𝑛∑
𝑖=1

exp−1
𝑢𝑗(𝑤)

𝐹𝑖(𝑧)
|||||

⩽
1

𝑛

𝑛∑
𝑖=1

||||exp−1𝑢𝑗(𝑤) 𝐹𝑖(𝑧) − exp−1
𝑢𝑗(𝑤)

𝐹𝑖(𝑤)
||||
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GEOMETRY AND ARITHMETIC OF SEMI-ARITHMETIC GROUPS 7 of 17

⩽
1

𝑛

𝑛∑
𝑖=1

𝑑(𝐹𝑖(𝑧), 𝐹𝑖(𝑤))

⩽ 𝐿𝑑(𝑧, 𝑤),

where we used the following facts:

(1) by the definition of 𝑢𝑗(𝑤) with𝑊(𝑖) = 𝐹𝑖(𝑤), we have

0 = ∇𝑃𝑊(𝑢𝑗(𝑤)) =
1

𝑛

𝑛∑
𝑖=1

exp−1
𝑢𝑗(𝑤)

𝐹𝑖(𝑤);

(2) the function exp−1𝑝 is 1-Lipschitz in the hyperbolic plane for any 𝑝; and
(3) the functions 𝐹𝑖 are 𝐿-Lipschitz.

Therefore, there exists a function 𝑢 ∶ ℍ → ℍ𝑟 which is smooth, 𝜌-equivariant with respect to
Γ1 and 𝐿-Lipschitz.
We are now ready to define the notion of stretch of a semi-arithmetic Fuchsian group derived

from a quaterion algebra with representation 𝜌0. We say that such a group has stretch at most 𝐿
if there exists a 𝜌0-equivariant 𝐾-Lipschitz map with 𝐾 ⩽ 𝐿.
For the general case we recall that Γ(2) is derived from a quaternion algebra. Therefore, the

stretch of Γ can be defined as follows:

Definition 3.1. Asemi-arithmetic Fuchsian groupΓhas stretch atmost𝐿 ifΓ(2) has stretch atmost
𝐿. This means that, for 𝑟 = a.dim(Γ), there exist a discrete representation 𝜌0 ∶ Γ(2) → PSL(2, ℝ)𝑟

and a 𝜌0-equivariant𝐾-Lipschitz map with𝐾 ⩽ 𝐿. The infimum of the set of such constants 𝐿will
be called stretch of the group Γ and denoted by 𝛿(Γ). We also write 𝛿(𝑆) = 𝛿(Γ) for the stretch of
the orbifold 𝑆 = Γ∖ℍ.

Proposition 3.2. Let 𝐿 > 0 be a fixed number. The property of having stretch at most 𝐿 is invariant
by commensurability.

Proof. Suppose Γ1 is commensurable to Γ2 and let 𝑟 be their arithmetic dimension. Then there
exists a torsion-free group 𝐻, which is a finite index subgroup of both Γ(2)

1
and Γ(2)

2
. If Γ1, and

thus Γ(2)
1
has stretch at most 𝐿, there is a 𝐾-Lipschitz map 𝑢 ∶ ℍ → ℍ𝑟, for some 𝐾 ⩽ 𝐿, which is

Γ
(2)
1
-equivariant, and therefore𝐻-equivariant. Hence𝐻 has also stretch at most 𝐿.
By using the center of mass construction as above, since 𝐻 has finite index in Γ(2)

2
, we can

construct a 𝐾-Lipschitz Γ(2)
2
-equivariant map, and therefore Γ(2)

2
, and thus Γ2, also have stretch at

most 𝐿. □

Stretch can be estimated in terms of the matrix coefficients of the group. In order to state
this result we will need to recall some notations. Given a subgroup Γ < PSL(2, ℝ), we denote by
Spec(Γ) the set of the biggest eigenvalues of the hyperbolic elements of Γ. If 𝜆 is an algebraic
integer, the house is the maximal absolute value of its conjugates.
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8 of 17 BELOLIPETSKY et al.

Proposition 3.3. If Γ is a semi-arithmetic Fuchsian group with representation 𝜌 as above, which
has stretch at most 𝐿, then

(2)

Proof. We can suppose that Γ is derived from a quaternion algebra. In this case, for any hyperbolic
element 𝛾 ∈ Γ and 𝑧 contained in the axis of 𝛾, any 𝐿-Lipschitz 𝜌-equivariant map 𝑓 ∶ ℍ → ℍ𝑟

satisfies

2 log(𝜆𝑖(𝛾)) = 𝓁(𝜌𝑖(𝛾)) ⩽ 𝑑(𝑓𝑖(𝑧), 𝑓𝑖(𝛾𝑧)) ⩽ 𝐿𝓁(𝛾) = 2𝐿 log(𝜆1(𝛾)),

for each 𝑖 = 1, … , 𝑟, where 𝜆𝑖(𝛾) is the biggest eigenvalue of 𝜌𝑖(𝛾) if 𝜌𝑖(𝛾) is hyperbolic and 1
otherwise. Since and 𝜆 = 𝜆1(𝛾) we conclude that . □

By the definition, the stretch of an arithmetic Fuchsian group is equal to 1. The next proposition
shows that the same holds true for all semi-arithmetic groups that admit modular embeddings.

Proposition 3.4. If a semi-arithmetic Fuchsian group Γ admits a modular embedding, then its
stretch is equal to 1.

Proof. Since Γ admits a modular embedding, there exists a holomorphic Γ-equivariant function
𝑓 ∶ ℍ → ℍ𝑟. By the Schwarz–Pick lemma, this function is 1-Lipschitz and thus 𝛿(Γ) ⩽ 1. On the
other hand, the previous proposition implies that 𝛿(Γ) ⩾ 1. □

In Section 5 we will construct examples of semi-arithmetic groups Γ with arbitrarily large
stretch. Let us note in passing that we did not find the exact value of stretch for these groups
but only a lower bound. Indeed, we do not have a single example of a group for which the stretch
is bigger than 1 and computed explicitly. We leave it as an open problem.

Problem 1. Find the exact value of 𝛿(Γ) for some semi-arithmetic group Γ with 𝛿(Γ) > 1.

Another interesting question arises in connection with Proposition 3.3: Is it possible to give an
upper bound for 𝛿(Γ) in terms of the spectrum? Or, perhaps, even define the stretch by the left hand
side of (2)? For ourmain applications we use both the lower spectral bound and the upper geomet-
rical bound. This allows us to turn stretch into an effective invariant and to prove new results. Our
previous investigations were focused around the spectral properties of semi-arithmetic groups but
without the geometric counterpart their applications were limited.
We conclude this section with a brief discussion of some other notions related to stretch of

embeddings. We have already mentioned that the notion of stretch was motivated by the term
used by Thurston in the context of maps between surfaces [31]. In this paper we generalize it for
maps from semi-arithmetic surfaces to associated higher dimensional arithmetic locally symmet-
ric spaces. In our definition of stretch and the proof of its commensurability invariance we used
Karcher’s center of mass. Another related geometric construction is the well-known Douady–
Earle barycentric extension for homeomorphisms of the circle to the disk [9]. Although the ideas
are similar (in both cases the goal is to find an average of points in order to define an equivariant
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GEOMETRY AND ARITHMETIC OF SEMI-ARITHMETIC GROUPS 9 of 17

map), the methods are quite different. In particular, in [9], the authors define a map that asso-
ciates a barycenter in the Poincaré disc to a measure on a circle, while we are interested in higher
dimensional spaces of non-constant sectional curvature. The results of Douady and Earle were
greatly generalized by Besson, Courtois and Gallot (cf. [3]) and it may be possible to apply their
approach to our maps. One important feature of Karcher’s method is that it allows us to construct
a new map with the same Lipschitz constant. This property is essential for our applications and
it is not clear if it can be achieved via the Besson–Courtois–Gallot method. We leave a detailed
study of this question for future research.

4 MAIN RESULTS

For any given integers g , 𝑛 ⩾ 1with g + 𝑛 ⩾ 2, letg ,𝑛 be themoduli space of surfaceswith genus
g and 𝑛 cusps. In addition, for any integer 𝑟 ⩾ 1 and positive number 𝐿 ⩾ 1, define

g ,𝑛(𝑟, 𝐿) = {𝑆 ∈ g ,𝑛 ∣ a.dim(𝑆) ⩽ 𝑟 and 𝛿(𝑆) ⩽ 𝐿},

whereg ,𝑛 = {𝑆 ∈g ,𝑛 ∣ 𝑆 is semi-arithmetic} and a.dim(𝑆) denotes the arithmetic dimension
of 𝑆.

Theorem 4.1. Let Γ be a torsion-free semi-arithmetic Fuchsian group with invariant trace field 𝑘,
arithmetic dimension at most 𝑟, stretch at most 𝐿 and coarea at most 𝜇. Then

[𝑘 ∶ ℚ] ⩽ 𝐶 log(𝜇) + 𝑐

for some constants 𝐶, 𝑐 > 0 which depend only on 𝑟 and 𝐿.

Proof. If Γ has parabolic elements, then 𝐴⊗ℚ ℝ has no compact factors and hence [𝑘 ∶ ℚ] = 𝑟.
Therefore, the theorem holds with the constants 𝐶 = 1 and 𝑐 = 𝑟 − log(𝜋

3
), using that 𝜋

3
is the

minimal coarea of a non-cocompact Fuchsian group.
If Γ is cocompact of coarea 𝜇(Γ), by Yamada’s theorem (see the work of Yamada [34] or the

proof given in [11, Theorem 5.3] for a more precise result) there exist a point 𝑝 ∈ ℍ and a constant
𝑅 > 0 such that the set

𝐷(𝑝, 𝑅) = {g ∈ Γ ∣ 𝑑(g𝑝, 𝑝) ⩽ 𝑅}

contains two primitive non-conjugate hyperbolic elements. For all g ≠ 1, we have g𝐵(𝑝, 𝑅) ∩

𝐵(𝑝, 𝑅) = ∅, hence

𝑅 ⩽ cosh−1
(
𝜇(Γ)

2𝜋
+ 1

)
.

Moreover, the subgroup of Γ generated by 𝐷(𝑝, 𝑅) contains a non-abelian free group.
Since Γ(2) is derived from a quaternion algebra and torsion-free, this group is embedded in

a group Δ derived from a quaternion algebra acting on ℍ𝑟 and there must exist a 𝐿-Lipschitz
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10 of 17 BELOLIPETSKY et al.

Γ(2)-equivariant map 𝑢 ∶ ℍ → ℍ𝑟. Thus, if g ∈ 𝐷(𝑝, 𝑅), we get that g2 ∈ Γ(2) and

𝑑𝑟(g
2 ⋅ 𝑢(𝑝), 𝑢(𝑝)) = 𝑑𝑟(𝑢(g

2 ⋅ 𝑝), 𝑢(𝑝)) ⩽ 2𝐿𝑅.

By the arithmetic Margulis lemma in [12, Section 3], there exists 𝜖𝑟 > 0, which depends only on
𝑟, such that the subgroup generated by

{𝜆 ∈ Δ ∣ 𝑑𝑟(𝜆 ⋅ 𝑢(𝑝), 𝑢(𝑝)) < 𝜖𝑟[𝑘 ∶ ℚ]} (3)

is virtually nilpotent. Since the subgroup generated by {g2 ∣ g ∈ 𝐷(𝑝, 𝑅)} contains a non-abelian
free group we obtain

𝜖𝑟[𝑘 ∶ ℚ] ⩽ 2𝐿𝑅.

Therefore,

[𝑘 ∶ ℚ] ⩽ 𝐶 log(𝜇) + 𝑐

for some constants 𝐶, 𝑐 > 0 which depend only on 𝑟 and 𝐿. □

Proposition 4.2. Let 𝑆 be a semi-arithmetic Riemann surface of coarea 𝜇, arithmetic dimension 𝑟
and stretch at most 𝐿, then sys(𝑆) ⩾ 𝑠 for some positive constant 𝑠 = 𝑠(𝜇, 𝑟, 𝐿).

Proof. Let 𝑆 = Γ∖ℍ, where Γ is a semi-arithmetic group with invariant trace field 𝑘 and invariant
quaternion algebra 𝐴. Consider an arbitrary hyperbolic element 𝛾 ∈ Γ with biggest eigenvalue
𝜆(𝛾) > 1. Note that 𝛾2 satisfies the quadratic equation 𝑥2 − 𝑡𝑥 + 1 in𝐴, with 𝑡 = 𝜆(𝛾)2 + 𝜆(𝛾)−2 ∈

𝑅𝑘, where 𝑅𝑘 is the ring of integers of 𝑘.
If we denote by 𝑃(𝑥) the minimal polynomial of 𝜆(𝛾)2, then 𝑃(𝑥) is an integral monic polyno-

mial of degree 𝐷 = 2[𝑘 ∶ ℚ]. We can assume that 𝐷 ⩾ 4, because 𝑘 = ℚ reduces to the arithmetic
case. By Theorem 4.1, 𝐷 ⩽ 2𝐶 log(𝜇) + 2𝑐, where 𝐶 and 𝑐 are positive constants depending only
on 𝑟 and 𝐿.
LetM(𝑃) be theMahler measure of 𝑃(𝑥), which is given by

M(𝑃) =

𝐷∏
𝑖=1

max(1, |𝜃𝑖|),
where 𝜃1 … , 𝜃𝐷 are the roots of 𝑃(𝑥).
Since 𝐴 splits at 𝑟 real places and 𝑆 has stretch at most 𝐿, we obtain by Proposition 3.3 that

M(𝑃) ⩽ 𝜆(𝛾)2𝑟𝐿.

On the other hand, by Dobrowolski’s bound for the Mahler measure [8] we have

log(M(𝑃)) ⩾ 𝑈

(
log(log(𝐷)

log(𝐷)

)3

for some universal constant 𝑈 > 0.
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GEOMETRY AND ARITHMETIC OF SEMI-ARITHMETIC GROUPS 11 of 17

Hence,

𝓁(𝛾) = log(𝜆(𝛾)2) ⩾
log(M(𝑃))

𝑟𝐿
⩾
𝑈

𝑟𝐿

(
log(log(𝐷))

log(𝐷)

)3

.

Since
log(log(𝑥))

log(𝑥)
is decreasing for 𝑥 > 1, and 𝐷 ⩽ 2𝐶 log(𝜇) + 2𝑐, there exists a constant 𝑠 =

𝑠(𝜇, 𝑟, 𝐿) > 0 which depends only on 𝜇, 𝑟 and 𝐿 such that 𝓁(𝛾) ⩾ 𝑠 for any hyperbolic element
𝛾 ∈ Γ. □

Theorem 4.3. The set g ,𝑛(𝑟, 𝐿) is finite, for all positive integers 𝑟, g and 𝑛 and every 𝐿 ⩾ 1.

Proof. Given 𝑆 = Γ∖ℍ ∈ g ,𝑛(𝑟, 𝐿), by Theorem 4.1 the invariant trace field of Γ has bounded
degree 𝑑.
By Proposition 4.2, there exists 𝛿 > 0 depending only on (g , 𝑛), 𝑟 and 𝐿 such that sys(𝑆) ⩾ 𝛿.

Hence, by [2, Theorem 1], 𝑆 is contained in a compact subset ofg ,𝑛.
Let 𝓁1, … ,𝓁𝑠 be a set of length functions defined on a fundamental domain of the modular

spaceg ,𝑛 in its universal covering which determine uniquely a surface 𝑆. If 𝓁𝑖(𝑃) ⩽ 𝓁 for any
𝑖 = 1, … , 𝑠 and for any 𝑃 ∈ , then the map which associates 𝑆 to the parameters (exp(𝓁𝑖 (𝑆)

2
)
)
𝑖
is

an injective map from g ,𝑛(𝑟, 𝐿) to 𝑅2𝑑(𝓁𝐿)𝑠 which is finite, where 𝑅𝑛(𝑋) is the set of algebraic
integers of degree at most 𝑛 and house at most 𝑋. □

We are now ready to prove Theorem 1, which we restate for convenience.

Theorem 4.4 (Main Theorem). For any 𝐿 ⩾ 1, 𝜇 > 0 and 𝑟 ⩾ 1 there exist finitely many conjugacy
classes of semi-arithmetic Fuchsian groups with arithmetic dimension at most 𝑟, stretch at most 𝐿
and coarea at most 𝜇.

Proof. We can suppose that the Fuchsian groups are maximal. For any conjugacy class of a semi-
arithmetic Fuchsian group satisfying the hypothesis of the theoremwe can associate its signature
𝜎. Then we can split the proof in two parts: (i) proving that there are finitely many possible sig-
natures, and (ii) showing that for a given signature there are finitely many conjugacy classes of
maximal semi-arithmetic Fuchsian groups with bounded arithmetic dimension and stretch.
For part (i) we recall that the area 𝜇 of a surface 𝑆 = Γ∖ℍ is expressed in terms of the signature

of the Fuchsian group Γ. Therefore, the genus, the number of cusps, and the number of conjugacy
classes of elliptic elements of a group Γ of signature 𝜎 are bounded above by a function depending
only on 𝜇. It remains to show that the maximal order of elliptic elements is also bounded.
By [10, Theorem 1.2], there exists a torsion-free subgroup Γ1 < Γ of index at most 2𝑡𝑚, where 𝑡

(resp.,𝑚) is the maximal order (resp., the number of conjugacy classes) of elliptic elements of Γ.
Since Γ and Γ1 share the same invariant trace field 𝑘, they have the same arithmetic dimension
and both have stretch at most 𝐿. As Γ1 has coarea at most 2𝑡𝑚𝜇, by Theorem 4.1 we have

[𝑘 ∶ ℚ] ⩽ 𝐶𝑚 log(𝑡) + 𝐶 log(2𝜇) + 𝑐 ⩽ 𝐶′ log(𝑡)

for some constant 𝐶′ which depends only on 𝑟, 𝐿 and 𝜇.
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12 of 17 BELOLIPETSKY et al.

On the other side, since a quadratic extension of 𝑘 contains 2 cos( 2𝜋
𝑡
), we have that [𝑘 ∶ ℚ] ⩾

1

2
𝜙(𝑡), where 𝜙 denotes Euler’s totient function. The inequality

1

2
𝜙(𝑡) ⩽ 𝐶′ log(𝑡)

can hold only for finitely many values of 𝑡, hence we conclude the proof of (i).
For part (ii) we take the torsion-free group Γ1 as above and consider the embedding of marked

conjugacy classes of maximal Fuchsian groups of signature 𝜎 satisfying the hypothesis of theorem
into the set of marked conjugacy classes of Fuchsian groups of signature of the group Γ1 (cf. [13]).
By Theorem 4.3, up to conjugation there are only finitely many possibilities for Γ1, and since Γ is
maximal we can apply Lemma 2.6 in order to guarantee that up to conjugation there are finitely
many possibilities for Γ. □

By Proposition 3.4, we have the following consequence of Theorem 4.4:

Corollary 4.5. For any 𝜇 > 0 and 𝑟 ⩾ 1 there exist finitely many conjugacy classes of semi-
arithmetic Fuchsian groups which admit modular embeddings, with arithmetic dimension at most
𝑟 and coarea at most 𝜇.

In [26], Nugent and Voight proved that the number of triangle groups with bounded arith-
metic dimension is finite. Theorem 4.4 provides another proof of this fact, due to Theorem 2.5
and Corollary 4.5 we have

Corollary 4.6. For any 𝑟 ⩾ 1 there exist finitely many conjugacy classes of triangle groups with
arithmetic dimension at most 𝑟.

5 INFINITE SEQUENCES OF SEMI-ARITHMETIC GROUPSWITH
THE SAME QUATERNION ALGEBRA

It is natural to ask if the conditions in Theorem 4.4 are all necessary. The existence of infinitely
many non-commensurable triangle groups shows the necessity to bound arithmetic dimen-
sion. There are also infinitely many non-commensurable arithmetic groups with arbitrary large
coarea. We now show that there exists an infinite family of non-commensurable semi-arithmetic
Fuchsian groups with the same coarea and arithmetic dimension, but with unbounded stretch.
In what follows, let 𝑅𝐾 be the ring of integers of the real quadratic number field 𝐾 = ℚ(

√
3)

and let 𝜖 ∈ 𝑅∗
𝐾
be a fixed non-trivial unit, from what we get ℚ(𝜖) = 𝐾.

Let us fix 𝑥 = sinh−1( 𝜖
2
). There exists a unique (up to isometry) trirectanglewith acute angle

equal to 𝜋

3
and one of the opposite sides to this angle of length 𝑥. Let 𝑦 (resp., 𝑧) denote the length

of the other opposite side to the acute angle (resp., the length of the diagonal joining two right
angled vertices of the trirectangle). By the hyperbolic trigonometry of the trirectangle we obtain
(see Figure 1)

sinh(𝑥) sinh(𝑦) =
1

2
, (4)

cosh(𝑥) cosh(𝑦) = cosh(𝑧). (5)
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GEOMETRY AND ARITHMETIC OF SEMI-ARITHMETIC GROUPS 13 of 17

x
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π
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F IGURE 1 Trirectangle.

Consider the index two subgroup Γ of orientation-preserving isometries of the reflection group
whose fundamental domain is . This Fuchsian group is generated by some elements 𝑋,𝑌, 𝑍,𝑊
such that 𝑋,𝑌, 𝑍 are elliptic of order two,𝑊 has order three and 𝑋𝑌𝑍𝑊 = 1. We note that this
group is generated by the elements 𝐴 = 𝑋𝑌 and 𝐵 = 𝑍𝑋. Indeed,

[𝐴, 𝐵] = (𝑋𝑌)(𝑍𝑋)(𝑌𝑋)(𝑋𝑍) = (𝑋𝑌𝑍)(𝑋𝑌𝑍) = 𝑊−2 = 𝑊.

Moreover,

𝑋 = (𝑌𝑍𝑊)−1 = 𝑊2(𝑍𝑌) = 𝑊2(𝑍𝑋)(𝑋𝑌) = 𝑊2𝐴𝐵.

Therefore Γ is a non-elementary Fuchsian group generated by 𝐴 and 𝐵. By [17, Lemma 3.5.7]
the invariant trace field of Γ is

𝑘Γ = ℚ(tr(𝐴)2, tr(𝐵)2, tr(𝐴)tr(𝐵)tr(𝐴𝐵)).

It follows from [17, Theorem 3.6.2] that the invariant quaternion algebra 𝐴Γ can be described as

𝐴Γ =

(
tr(𝐴)2(tr(𝐴)2 − 4), tr(𝐴)2tr(𝐵)2(tr([𝐴, 𝐵]) − 2)

𝑘Γ

)
.

We now compute 𝑘Γ and 𝐴Γ explicitly. First, we note that 𝐴 and 𝐵 are products of order two
elliptic elements, hence they are hyperbolic, and their displacements are given by twice the dis-
tance between the fixed points of the respective half-turns (see [1, Theorem 7.38.2]). Similarly, 𝐵𝐴
is hyperbolic, with displacement given by twice the diagonal of the trirectangle.
We can suppose that 𝐴 has displacement 2𝑥. In this case 𝐵 has displacement 2𝑧. If 𝜆 (resp.,

𝜇 and 𝜂) denotes the biggest positive eigenvalue of 𝐴 (resp., 𝐵 and 𝐵𝐴), then 𝜆 = 𝑒𝑥, 𝜇 = 𝑒𝑧 and
𝜂 = 𝑒𝑦 . Since sinh(𝑥) = 𝜖

2
and by (4), sinh(𝑦) = 𝜖−1, we have

𝜆 − 𝜆−1 = 2 sinh(𝑥) = 𝜖 and 𝜂 − 𝜂−1 = 2𝜖−1.

Hence

𝜆 =
𝜖 +

√
4 + 𝜖2

2
, (6)
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𝜆−1 =
−𝜖 +

√
4 + 𝜖2

2
. (7)

Analogously,

𝜂 = 𝜖−1 +
√
1 + 𝜖−2, (8)

𝜂−1 = −𝜖−1 +
√
1 + 𝜖−2. (9)

By definition, tr(𝐴) = 𝜆 + 𝜆−1, hence

tr(𝐴)2(tr(𝐴)2 − 4) = (𝜆2 + 𝜆−2 + 2)(𝜆2 + 𝜆−2 − 2)

= 𝜆4 + 𝜆−4 − 2

= (𝜆2 − 𝜆−2)2

= 𝜖2(4 + 𝜖2).

where the last equality follows from (6) and (7).
By (5), we obtain

tr(𝐵) = 𝜇 + 𝜇−1 =
1

2
(𝜆 + 𝜆−1)(𝜂 + 𝜂−1) =

√
4 + 𝜖2

√
1 + 𝜖−2.

In order to calculate 𝑘Γ, note that

tr(𝐴)tr(𝐵)tr(𝐴𝐵) = (𝜆 + 𝜆−1)(𝜇 + 𝜇−1)(𝜂 + 𝜂−1)

=
1

2
(𝜆 + 𝜆−1)2(𝜂 + 𝜂−1)2

=
1

2
(4 + 𝜖2)(1 + 𝜖−2).

Therefore, 𝑘Γ = ℚ(4 + 𝜖2, (4 + 𝜖2)(1 + 𝜖−2)) = ℚ(𝜖) = 𝐾.
Since [𝐴, 𝐵] has order three, we get tr([𝐴, 𝐵]) = ±1which implies that tr([𝐴, 𝐵]) − 2 = −1 ⋅ 𝜏2,

for 𝜏 ∈ 𝐾. Hence, by the general property that
(
𝑎𝑢2,𝑏𝑣2

𝑘

)
≅
(
𝑎,𝑏

𝑘

)
for any 𝑢, 𝑣 ∈ 𝑘, we have

𝐴Γ =

(
4 + 𝜖2, −(1 + 𝜖−2)

𝑘Γ

)
≅

(
4 + 𝜖2, −(1 + 𝜖2)

𝑘Γ

)
.

We use [17, Theorem 4.3.1] to conclude that 𝐴Γ ≅ M(2, 𝐾), because the equation (4 + 𝜖2)𝑥2 −

(1 + 𝜖2)𝑦2 = 1 has 𝑥 = 𝑦 = 1√
3
as a solution in 𝐾.

We claim that Γ is semi-arithmetic. Indeed, 𝑘Γ is a totally real number field. From the com-
putation above, we obtain that the traces of 𝐴, 𝐵 and 𝐴𝐵 are algebraic integers. Thus by [17,
Lemma 3.5.2], the traces of the elements of Γ are algebraic integers.
For every non-trivial unit of the form 𝜖 = 𝜖𝑛

0
, for 𝑛 ∈ ℕ, where 𝜖0 is the fundamental unit of

the field, we can reproduce the same construction. This gives a semi-arithmetic Fuchsian group
Γ𝑛 with invariant trace field 𝐾 and invariant quaternion algebra M(2, 𝐾). Note that none of
the groups groups Γ𝑛 is arithmetic, as their arithmetic dimension is equal to the degree of 𝐾,
which is 2. Each Γ𝑛 has coarea

𝜋

3
and arithmetic dimension 2. Moreover, the stretch 𝛿(Γ𝑛) goes
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to infinity as 𝑛 grows: by using the same notation as above, if we fix a unit 𝜖 = 𝜖𝑛
0
, the corre-

sponding hyperbolic element (𝐵𝐴)2 ∈ Γ
(2)
𝑛 has 𝜏𝑛 = 𝜂2 = 1 + 2𝜖−2 + 2𝜖−1

√
1 + 𝜖−2 as its biggest

eigenvalue. This is an algebraic integer of degree four whose conjugates are 𝜏𝑛, 𝜏−1𝑛 , 𝜔𝑛 and 𝜔−1𝑛 ,
where . Thus, by Proposition 3.3, we have the estimate:

Since and 𝜏𝑛 → 1, we get lim 𝛿(Γ𝑛) → ∞. As the stretch is invariant by conjugation, there
must exist infinitely many of the groups Γ𝑛 which are pairwise non-conjugate.
The same construction works for any totally real number field 𝐾 which contains ℚ(

√
3).

It is worth mentioning that in [32], Vinberg gave an answer to a question by A. Rapinchuk
about the existence of an infinite family of non-commensurable (up to conjugacy) non-arithmetic
Fuchsian groups with the same quaternion algebra. Another construction providing an infinite
family of non-commensurable Fuchsian groups with the same algebra was given later by Nor-
fleet [25]. The groups constructed by Vinberg and Norfleet sit in SL(2, ℚ), they have arithmetic
dimension 1 and are quasi-arithmetic. The question about existence of infinite families of lattices
in the group of quaternions of norm 1 of quaternion algebras over other fields remained open. Our
construction allows us to obtain many examples of this kind:

Proposition 5.1. Given a totally real field extension 𝐾∕ℚ(
√
3) of degree 𝑑 ⩾ 1, there exist infinitely

many non-commensurable semi-arithmetic cocompact Fuchsian groups contained in PSL(2, 𝐾).

Proof. Given a field𝐾 and the algebra𝐴 = M(2, 𝐾), we consider the groups Γ𝑛 constructed above.
Pairwise non-commensurability of infinitelymany of these semi-arithmetic groups follows imme-
diately from Proposition 3.2. The non-commensurability can also be checked by a more direct
argument. To this end we note that each group Γ𝑛 is a maximal lattice. Indeed, since Γ𝑛 is a
non-arithmetic two generator Fuchsian group, we can apply [18, Proposition 2.1] to conclude
that its commensurator, which is the maximal element in its commensurability class, must be
either the group Γ𝑛 itself or a triangle group. However, by the complete description of triangle
groups that contain two-generator subgroups given in [18], no non-arithmetic group of signature
(0; 2, 2, 2, 3; 0) (which is the case of Γ𝑛) is contained in a triangle group. Therefore, the groups
Γ𝑛 are maximal Fuchsian groups. They are pairwise non-conjugate, hence by maximality and
non-arithmeticity they must be non-commensurable. □
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