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Abstract: In ihis paper explicií and implicit BEMformulations are extended to incorporate

the analysis of bodies where localization phenomena occur. In order to overcome the

difftculties associated to local continua, a gradient plasticity model is used. This model
involves the second gradient of the cumulated plastic strain in the yield condition. Integral
representations for the stress ifeld in plasticity are derived for internai as well as for
boundary points. Algebraic systems derived from thè integral displacement and plastic
multiplier representations are coupled and solved simultaneously. Nimerical examples are

shown to illustrate the tise of BEM in dealing with localization phenomena. Expected mesh
dependency for local plasticity is underlined and first results with gradient model are
presented and discussed.
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1 INTRODUCTION

Along the last three decades, the Boundary Element Method (BEM) has proved to be
appropriate to deal with an enormous number of engineering problems. The technique is
nowadays a well-established procedure for the analysis of many practical engineering

' applications. In particular, the use of BEM to analyse non-Iinear problems has deserved
special attention.

Non-linear phenomena, such as plasticity and visco-plasticity for instance, were treated by
BEM in the early eighties'’^’^, after the correct obtention of the free term for the initial strain

tensor made by Bui'^. As the BEM formulations work on the stress space, it is expected that
numerical Solutions for non-linear analysis are better than other techniques that require
differentiation of shape functions to compute the stress field. The boundaiy element method

has already proved to be able to compute high gradients and stress and strain concentrations.

Thus, the BEM formulations might be recommended for non-linear analysis that exhibits the
mentioned characteristics.

Although proving to give good results, the BEM non-linear approaches, appearing before
this decade, were all based on the very simple explicit scheme accomplished by constant
matrix procedures. The results obtained by using those simple models seemed to be precise
and may suggest that BEM does not require to use better approaches.

Implicit approaches have been proposed more recently. Jim et al.^ have used implicit
integration for BEM fmite deformation plasticity. Telles & Carrer^’^ have also proposed an
implicit model to solve elasto-plastic problems in the context of dynamic analysis for which
they followed mass matrix approach. The CTO (Consistent Tangent Operator) has been
introduced recently in the boundary element technique by Bonnet & Mukheijee* using a
scheme similar to the one proposed by Simo & Taylor^ for fmite elements.

One aspect forgotten by the boundary element community up to now is concerned with
strain localisation phenomena. This problem is certainly appropriate to be analysed by BEM;
it exhibits small areas of interest inside the body, where the dissipation of energy occurs, as

well as rather large displacement gradients. Analysis of strain localization has been an

important subject in the attempt to improve numerical simulation of structural failures.

Material behaviours characterised by constitutive relations that exhibit a softening branch (or
a non-associated behaviour) bring great difficulties to classical (local) continuum theories in

the description of localisation phenomena*®. The associated boundary value-problem is
actually no longer mathematically well posed** after .the onset of localisation, and local

continua allow for an infinitely small bandwidth in shear or in front of a crack tip. At the
numerical levei, these difficulties translate into pathological mesh dependence of
Solutions 10,12

. Different approaches have been proposed to overcome these difficulties. One

idea is to enrich the continuum with non conventional constitutive relations in such a way that

an internai or characteristic length scale is introduced. Cosserat continua*®, higher gradient
theories*®, non-local theories

In this paper, explicit and implicit BEM formulations will be presented regarding their
ability to describe localisation phenomena. In the implicit case, and for J2 elasto-plastic
problems, the consistent tangent operator is constructed. In order to overcome the difficulties

16,17,18,19
are among such enrichments.
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associated to local continua, a gradient plasticity model is adopted. In finite element context,
gradient plasticity has received a great amount of attention in the last years, however, there

has been none or only limited interest to apply BEM to analyse this kind of problems, without
results published so far^°.

Examples are solved to illustrate classical pathological mesh dependence associated to
local continua. Afterward, numerical examples are shown to illustrate the proposed BEM
gradient plasticity formulations.

2 CONSTITUTIVE EQUATIONS FOR GRADIENT PLASTICITY

The small strain gradient plasticity model taken for this work is a simple modification of
the flow theory of plasticity**’^'. This classical approach is given by the following relations:

- The Cauchy stress tensor increment is given by

c = C :(z -é^) (1)

where s is the total strain rate, s ^ stands for the plastic strain rate and C is the matrix of
elastic moduli.

- The yield criterion reads

f(a,R(p))<0 (2)

where R is the size of the yield surface and p the cumulated plastic strain defined by:

p = ^jé^

- Plastic flow is given by the normality rule to the plastic potential F, i.e.

(3)

(4)
õa

where X is the plastic multiplier;
- The complementary rule

- ÕF
p = X (5)

ÕR

The plastic multiplier in equations (4) and (5) satisfies the Kuhn-Tucker conditions;

f^O,

When X is positive, it is obtained by the consistency condition, i.e.

Xf = 0 (6a,b,c)

(7)f = 0

Then, using relations (l)-(5), one obtains;
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.; C .• e
ca

X = (8)
h +

daoa

where we have defined the plastic modulus h,

õf õR õF

ÕR õp ÕR

Hardening behaviour is defined by a function R(p).
The small strain gradient plasticity is obtained just by modifying equation (2), to make R

dependent on p, as well as on its successive gradients. For the sake of simplicity, we consider

that R depends just on p and its Laplacian therefore the yield criterion becomes:

f(a.p,V^) = 0.

Thus an explicit form for X similar to equation (8) can not be derived. From the

consistency condition, one is rather able to derive the following partial differential equation

h = - (9)

(10)

# .; C ; 8 -HX +coV^A, = 0 (11)
õa

where

õa õa

^ ãi
H = h + (12a,b)o =

õRõ(V^p) ÕR

From equation (12) one can realise that the dimension of co is times squared length,

which gives being l a characteristic length and a a material parameter.

One important aspect to discuss here is the boundary conditions to be assumed to solve the

above partial differential equation. There are clearly two types of boundaries to consider: the
region where the plastic zone reaches the actual boundary of the body and the interface

between the elastic and plastic regions. For the first case, we assumed that the outward normal

flux is zero, while the plastic multiplier boundary values are unknown. In the second case, we

assume that the plastic multiplier values are zero, while the normal fluxes are unknown.

Along the actual body boundary and along the internai plastic zone interface one can

assume the following boundary conditions, respectively:

X = 0 (13)and= 0
õn

For this work here, we consider a plasticity model where the yield condition is given by

f(a,p,iSp) = J^(a )-Hp + (aV^p

with the hardening parameter H and co constants.

(14)
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3 INTEGRAL REPRESENTATION FOR GRADIENT PLASTICITY

3.1 Integral representation of displacements and stresses

Let us first consider an elastic body associated with many possible elastic States satisfying
the Navieds equations, i.e.:

G
= b. (15)u

l’li
l-2v

where w^^represents the components of the displacement field; G is the shear modulus and v is
Poisson’s ratio.

For a domain O with boundary F, standard integral representation s are derived by applying
Green's second identity (Betti's principie). Particularly, displacement and stress integral
representations are easily derived and may be found in Brebbia^:

(16)
n

Pa,=-Js
r

+J + \D,^,b,dQ. (17)ijk

Pk and bk are traction and body force components respectively; the Symbol

fundamental solution corresponding to a Dirac delta load applied in the collocation point (the
second considered elastic State); the free terms c,t and p are dependent upon the boundary

geometry; Dijk and Sijk are kemels derived from equation (16).
For non-linear problems, Betti's principie can not be directly applied. Moreover, in

plasticity, the State variables are history dependent. In this case, splitting the total strain into
its elastic and plastic components, the Navier operator applies only to the elastic part, so that
equation (15) becomes:

ll^lt is related to the

LyÚj - b- j (18)

where is the plastic strain tensor.

In equation (18), the plastic strains act therefore as fictitious body forces. This is referred
as the initial stress method and usually equation (18) is written as

-Lyúj

Thus, Green's second identity is now applied, leading to the Somigliana's identity for

plasticity based on the initial stress approach, as follows;

Pl^kd^ + J ^Ib.dQ. + Je *,c ^^dO.

(19)

(20)
n
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As for elasticity, the integral representation of stress rates can be obtained by

differentiating Green's second identity with respect to space co-ordinates and applying
Hooke's law. Thus, one obtains,

=\D,.,p,dr-\s,j,ú,dr +jz).^wn + j£..^d^c/n+gy(d^) (21)

where the kemel comes from the differentiation of the plastic integral and (o is a
free-term that appears due to the strong singularity of this kernel.

Equation (21) was derived only for internai points. For boundary nodes, one must find the
limit when q, internai collocation point, goes to O, on the boundary. Several schemes have
already been discussed to derive the stress representation for boundary points. The simplest
scheme very often adopted consists of writing only the algebraic representation using traction

components (Cauchy's formula) and numerical differences of displacements. In order to
obtain more accurate results we are adopting a scheme to compute boundary stresses by using

a proper integral representation.
Although several altematives could be followed, depending on the way the hypersingular

terms are treated (reduced kernels, addition of an extra boundary value, etc.^^, we decided to
Work on the hypersingular term to transform it into a regularised one. For this scheme, the
continuity of the displacement derivatives at collocation points taken along the boundary must
be assumed (Guiggiani^^). Using this altemative, we have been forced to define stresses at

points inside the element. We can therefore apply the algorithm described by Guiggiani to

integrate the hypersingular kernel over the intrinsic space by using an expansion in terms of a
Laurent series at the source points.

It is important to mention that to complete the integral representation a new free term
corresponding to boundary points has been derived as well. The free term for smooth

boundary nodes is given in 2D situations by:

+(^-Ív)d;5j (22)

3.2 Integral representation of the plastic multiplier

In order to solve a gradient plasticity problem one has to take into consideration equation

(11) that governs the plastic multiplier. In this case, the scalar value X is not dependent only

upon the local State of stress, as assumed by the standard procedure, equation (8), but it
represents the solution of a scalar partial differential equation (11).

Transforming that differential equation (11) into an integral representation is not difficult.
One must only follow the usual steps given in well-known references^. For this work, we are
going to use the collocation formulation. Even choosing this simple formulation, we could
have several representations by adopting convenient different fundamental Solutions. For sake

of simplicity, we limit the analysis here to two-dimensional situations. Extension to three-

dimensional setting poses no difficulty.
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The fundamental solution to be adopted to derive an integral representation is given by the
following equation:

H
-V^X*(q,p) + X*(q.p)=b(q,p) (23)

Q

for the infmite 2D domain with an unit load applied at a single point q. Thus, the fundamental
solution for this case is given by

(24)■r)
H

where Ko is the modified zero-order Bessel function of the second kind and r is the distance

between load and field points (q,p).
From equation (11) one is able to derive an integral representation for the plastic multiplier

X as

dn

where c is a free term similar the one used in equation (16).

Equation (25) governs the plastic multiplier field in the plastic zone, i.e., over the region

where the plastic phenomenon takes place. Thus, the adopted boundary, Tp, in equations (25)
represents the plastic zone boundary, which can move during the loading process. This
integral equation is clearly the appropriate representation of a moving boundary problem, in

which the final position of Tp is also a problem unknown.

. f.. ÔX
CK= K

• 5/ .dr - A :E:édÇí (25)
dn õa

n

4 NUMERICAL FORMULATION

4.1 Explicit elastoplastic BEM

As it is well known, equations (18) and (19) of the precedent section can be transformed
into algebraic representations by approximating Uk and pk along the boundary duly divided

into elements, as well as bk and over the domain now divided into cells. One can write as

many algebraic equations as needed. Similarly, we can write an appropriate number of
algebraic stress equations, the ones where the stress values are required to solve the problem.
Moreover, without lost of generality, we continue this description removing the rate Symbol;
It is important to note that the final algebraic representations to be achieved can be applied to
corresponding rate or incrementai problems.

Thus, using shape functions to approximate all variables, equations (20) and (21) become^

HU = GP + TB + Ea” (26)

(27)a = -H'U + G'P + T'B + E'a‘’
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where U and P are vectors containing the nodal values for displacements and tractions,

respectively; a and aP are the stress and the initial stress vectors; H, H', G, G',T, T', E

and E' are the influence matrices arising from the numerical integration over elements and
cells.

Applying the boundary conditions, equations (26) and (27) become

AX = F + EaP (28)

(29)a = -A'X + F' + T'B + E'a'’

Where X is the vector of boundary unknowns;A and A' contain the coefficients of the

unknown boundary values and F and F' are independent vectors computed from the
prescribed boundary conditions and body forces.

Equations (28) and (29) can be reduced to:

X = M + Ra%

where M and N are the elastic Solutions (displacements and stresses); R and S represent the
influences of the initial stresses.

For elastoplastic Solutions, one must realise that the plastic stress increments are computed

following the proper elastoplastic relations given in section 2.

a = N + Sa'’ (30)

4.2 Implicit BEM formulation

Telles and Carrer^’^ were among the first to propose an implicit model to solve elasto
plastic problems. They proposed an algorithm based on a continuous tangent operator. After
that Bonnet and Mukherjee* have used, for the first time, the concept of consistent tangent
operator together with an initial strain approach.

The formulation implemented in this work is similar to the one proposed by Bonnet, but
conveniently modified to work with initial stress fields.

Initially, we start by implementing a scheme to obtain implicitly the retum to the yield

surface. The scheme is developed here for the yield function given by equation (14). For this
situation, the procedure is easily derived. The prediction is defined iteratively, assuming first

the load increment entirely elastic(elastic trial), and then correcting if necessary (to return to
the yield surface by the radial algorithm.

For gradient plasticity we have to consider the following partial differential equation to
govera the plastic multiplier:

For gradient plasticity we have to consider the following the partial differential equation to
govem the plastic multiplier:

-^0 - m „ + o )„) - (5p - H)^x „ + ® A (W^X ),

Equation (25) can also be transformed into an algebraic representation following the
standard steps of the boundary methods as made to obtain equation (26).

Sí = 0 (31)n+1
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For the implicit scheme, the plastic multiplier given by the retum algorithm is used to
achieve the local consistent tangent operator to be used to correct the global matrix:

da
arr

(32)C‘p =
3 As

arr

where c comes from the retum algorithm.
Note that for the gradient plasticity case, can not be differentiated analytically. Its

derivatives can be only performed numerically by using equation (26) together with equation
(1).

To obtain the implicit algorithm using the CTO procedure we can start by writing equation

(30b) in its incrementai form. Then, the plastic stress tensor (f is now added to the both sides

of equation (30b), using properly relation (1) to give:

{Y(Ae.)} = -[C] {Ae.) + {N.}+[S]{[C][A£. ] - [Ac. ]}= 0 (33)

where [C] is the usual Hookean elastic tensor, [S] = [S] + [I] with [I] being the identity matrix,

A indicates increments and the subscript n gives the increment number.

The stress and strain tensor increments, Ae„ and Ao^, , that cumulate into the stress and

strain values at interaction n, lead to their up-dated values, as follows.

+Aa, (34a,b)En.i =E„+Ae

where a^i(Ae,^.,j) is achieved by the retum algorithm and is given by the BEM algebraic
relation.

Rearranging equation (33) to take into account relations (34), the following expression is
found;

n ’

{Y(Ae. )} = -[C]{Ae.) + {N. } +[S]ÍC][A£. ]- {o", ) + [c. ]}= 0 (35)

Equation (38) can be solved using the Newton Raphson scheme. For that one needs to

define:

Asf ’ = Ae‘ + ÔAe (36)

where the superscript i gives the iteration.

Considering only the first variation of {Y(A£„)}, equation (35) becomes:

{y(ae[)}= lrc]-[S]]ici-[ao" ■*' /8ae[]}Í8ae[)
where the term between parenthesis in the right hand side is the consistent tangent operator

for BEM elastoplastic formulation, i.e..

(37)

arr i+1

/3Ae:]

Note that, for the initial stress algorithm, the elastic tensor must multiply the results of
equation (37).

[C>’] = [[C]-[S]|[C]-[3o (38)
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It is also important to notice that the system of equations (38) can be solved just for the
nodal points with a non-zero plastic component of the current strain increment. This is

because C®^=C for elastic points, allowing a block decomposition. The correction for elastic
points can be calculated once the plastic values are known, saving computation time.

5 NUMERICAL ANALYSIS

In this section, a classical example in localisation studies is analysed in the framework of
BEM. A rectangular block subjected to compression loading as shown in figure 1 is
considered. The block is analysed in plane conditions with a zero poisson’s ratio. In order to
trigger localisation, an internai small region near the center of the block is weakened by
reducing its yield stress. The yield stress of the material is equal to 2.0Mpa everywhere except
in the weaker internai square. The reduction is 0.2Mpa at the central nodes and varies linearly
from the center to the square region boundary. Discretizations exhibiting from 128 to 2048

cells have been used, even though not all of them are presented here. The Young modulus
assumed was E= 2,000.OON/mm^, while the softening modulus was taken as h= -0.0125 E.

The block is loaded by applying a uniform displacement ô=-0.24mm as shown in Figure 1.
Several increment sizes have also been tested to analyze how the developed procedure
behaves.

120 mm

60mm

E = h = -0.0125 E

a * 2 N/ mm* (at the weaker points: 1.8 N/ mní )

Figure 1. Rectangle; Size and discretizations.

Figure 2 gives the displacement x reaction curves captured for the two finest

discretizations, 512 and 2048 cells, respectively. The total reactions along the clamped end

were computed by integrating the obtained tractions. The mesh dependence is clearly
demonstrated in this figure for the local plasticity model. Using other courser meshes different

curves, for the softening branch, have been captured. The results obtained by following the

consistem tangent operator if far better when compared with the ones computed by the
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classical constant matrix BEM. Using the standard scheme the mesh dependence can also be
detected, but the results are more unstabie in comparison with the previous scheme.

1ZO

100

ao

so

40

20

0

cã >(>

DisplacemerU (XI000 mm)

Rj ;o «5

— >
cv!

Tf (O n>

Figure 2. Reaction versus displacement curve for the 512 and 2048 cell cases.

IjO

I
0^ 1

0.0

-0.S

~1.0

-16

Plastic Displacement (X3000)

Equivalent Strain

Figure 3. a) Plastic displacements and normal stress component distribution.

b) 3D visualization for the final equivalent plastic strain field.

Another important aspect of this BEM analysis is concemed with the final plastic strain

configuration achieved. Again, the solution obtained by using the CTO scheme is the

expected one, with a clear localized inclined narrow zone. This narrow zone is always
precisely defined over a row of cells. Thus, the width of this zone is exactly the mesh size.
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This solution is given in Figure 3b, where the concentration of the plastic strain over the
narrow band across the body is clearly defined. No plastic strain develops outside that zone.
On the other hand, using the classical BEM approach with constant matrix the localized zone

can be achieved, but they are not well defined (for some discretization more than one

localized zones have been detected). We have obtained, for all discretizations tested, plastic
strain developed over a much wider zone, when the explicit scheme was used together with
constant matrix.

Figure 3 a illustrates as well the capability of the proposed BEM scheme. One can see that
stress field is disturbed only over the narrow dissipation zone. In addition, this figure shows
that the body is split into two elastic parts with no displacement due to plastic strain evolution
inside the narrow band.

120 —

100 —

80

•4 eo —
ü

£ 40

20

I I I I I I I I I I I I I II I I
0

N O)

Di^-plao^TTient (XI000 mmj

c
Cv? «o N o CVI
O O O

Ci o o o Q
o o o o o o

o Cí 6 6 o oi

to Oi>
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Fguivalent Strain
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^ 40
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Figure 4. Comparison between the local and gradient plasticity models.
a) Local plasticity (above). b)Gradient plasticity (below).
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Figure 4 illustrates the effect of the gradient plasticity on the solution. The local scheme

(fig. 4a) is not capable to capture precisely the criticai solution. The concentration of plastic
strain clearly occur and consequently the mesh dependency. Using the gradient plasticity
model (fig. 4b) gives a much larger dissipation band with less concentrated plastic strains.

6 CONCLUSIONS

Application of BEM to analyse localization phenomena has been considered in this paper.
In order to overcome some difficulties observed with local continua, a gradient plasticity
model was used. An integral representation for boundary stress evaluation was used to avoid

inaccurate calculation of the stress field. Implicit and explicit elastoplastic BEM formulations
have been discussed for both classical and gradient plasticity. The implicit schemes were
proposed together with the definition of a consistent tangent operator. The integral

representation of the plastic multiplier field has been discussed for gradient plasticity with
explicit and implicit schemes. Numerical strategies for the solution of the BEM algebraic

equations of the plastic multiplier were also discussed.
Numerical examples, for explicit and implicit BEM formulations and local elastoplasticity,

have been performed to verify their capability of achieving accurate stress field for problems

exhibiting strain concentrations and employing coarse and fme discretizations. It has been

found that only implicit BEM is able to capture precisely plastic strain concentrations. This
scheme was also able to exhibit clearly the classical problem of mesh dependence. On the
other hand the standard procedure, based on explicit scheme and constant matrix, does not

present the same accuracy; therefore it is not recommended to investigate elastoplastic

problems exhibiting plastic strain concentrations.
Although explicit scheme is not very accurate, its was used, together with a simple strategy

to consider gradient plasticity. The adopted scheme, although simple, was used to illustrate
how gradient plasticity can affect the solution of numerical examples.

Implementations of all the schemes and strategies discussed are currently in progress and
possible altematives are under investigation or evaluation.
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