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a b s t r a c t

Mixed linear models are commonly used in repeated measures studies. They account for
the dependence amongst observations obtained from the same experimental unit. Often,
the number of observations is small, and it is thus important to use inference strategies
that incorporate small sample corrections. In this paper, we develop modified versions of
the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we
derive a Bartlett correction to such a test, and also to a test obtained from amodified profile
likelihood function. Our results generalize those in [Zucker, D.M., Lieberman, O., Manor,
O., 2000. Improved small sample inference in the mixed linear model: Bartlett correction
and adjusted likelihood. Journal of the Royal Statistical Society B, 62, 827–838] by allowing
the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow
for random effects nonlinear covariance matrix structure. We report simulation results
which show that the proposed tests display superior finite sample behavior relative to the
standard likelihood ratio test. An application is also presented and discussed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, repeated measures of data have been widely analyzed in many fields, including biology and medicine.
In such studies, the observations are obtained from different experimental units, each unit being observed more than once
(Brown and Prescott, 2006). In particular, some of these studies use longitudinal data (Verbeke and Molenberghs, 2000), in
which the observations are collected over time. Mixed linear models have been extensively used by practitioners to analyze
repeated measures, since they account for within units correlation . It is also noteworthy that there is available software,
specifically designed for the estimation of such models; see Pinheiro and Bates (2000) and Littel et al. (2006).
A common shortcoming lies in the fact that, in many studies, the sample size is small, which renders approximate

inferential procedures unreliable. Improved inference may be based on the theory of higher order asymptotics. Practical
applications of such theory may be found in Brazzale et al. (2007). The likelihood ratio test, which is commonly used to
make inference on the fixed effects parameters, quite often displays large size distortions when the sample size is small.
This happens because its null distribution is poorly approximated by the limiting χ2 distribution, fromwhich critical values
are obtained. It is possible to obtain a Bartlett correction factor and use it to modify the likelihood ratio test statistic in such
a way as to bring its null distribution closer to its limiting counterpart; the approximation error is reduced from O(n−1) to
O(n−2), where n is the sample size, thus making any size distortion vanish at a faster rate.
Another shortcoming relates to the effect of the nuisance parameters on the resulting inference on the parameters of

interest. Different modifications to the profile likelihood function have been proposed with the aim of reducing such effect.
For a review, see Severini (2000, Chapter 9); see also Sartori et al. (1999) and Sartori (2003). The adjustment proposed by
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Cox and Reid (1987) can be used whenever the nuisance and interest parameters are orthogonal. DiCiccio and Stern (1994)
have shown that the Cox–Reid test statistic can be Bartlett-corrected, just as the likelihood ratio test statistic. The combined
use of modified profile likelihoods and Bartlett correction can deliver accurate and reliable inference in small samples, as
evidenced by the results in Ferrari et al. (2004, 2005) and Cysneiros and Ferrari (2006).
Zucker et al. (2000) obtained improved likelihood ratio testing inference by deriving Bartlett corrections to the profile,

and modified (Cox–Reid) profile likelihood ratio tests on the fixed effects parameters in mixed linear models. Their results,
however, are only applicable for testing one parameter at a time, since they only allow for a scalar parameter of interest.
In many studies, nonetheless, practitioners wish to perform joint testing inference on a set of parameters, especially when
comparing three ormore treatments inmedical trials. Also, they derived the Bartlett correction to the profile likelihood ratio
test only for the situation where the covariance matrix for the random effects has a linear structure. Hence, their results are
not fully applicable inmany situations of interest (e.g. when the responses of a single subject are measured sequentially and
the errors are assumed to be autocorrelated). Our chief goal is to generalize their results so that they are valid in situations
where the parameter of interest is vector-valued and the covariance matrix for the random effects is allowed to have a non-
linear structure. We obtain the Cox–Reid profile likelihood adjustment, and also Bartlett correction factors for the profile
and adjusted profile likelihood ratio test statistics.
The paper unfolds as follows. Section 2 introduces the mixed linear model, Section 3 contains the three improved tests

(Cox–Reid and Bartlett-corrected tests), and Section 4 presents a simulation study on the finite sample behavior of the
standard likelihood ratio test and its modified counterparts. An application that uses real data is presented and discussed in
Section 5. Finally, Section 6 concludes the paper. Technical details are collected in two appendices.

2. Mixed linear models

The mixed linear model is given by

yi = Xiβ+ Zibi + εi, i = 1, . . . ,N, (1)

where yi = (yi1, yi2, . . . , yiτi)
> is a τi × 1 vector of responses on the ith experimental unit, β is an n-vector of fixed

effects parameters, Xi is a τi × n known matrix, bi is a random effects vector (q × 1), Zi is a known τi × q matrix, and
εi = (εi1, εi2, . . . , εiτi)

> is a τi × 1 vector of random errors. It is often assumed that εi ∼ Nτi(0, σ
2Iτi), where Iτi denotes the

τi × τi identity matrix and 0 is a vector of zeros. It is also assumed that bi ∼ Nq(0,G), where b1, b2, . . . , bN , ε1, ε2, . . . , εN
are independent and G = G(%) is a q × q positive definite matrix, % being an m × 1 vector of unknown parameters. Model
(1) can be written in matrix form as

Y = Xβ+ Zb+ ε, (2)

where Y = (y>1 , y
>

2 , . . . , y
>

N )
> is T × 1, with T =

∑N
i=1 τi, X = (X

>

1 ,X
>

2 , . . . ,X
>

N )
> is a T × nmatrix, Z is a T × Nq diagonal

matrix given by Z = diag(Z1, Z2, . . . , ZN), b = (b>1 , b
>

2 , . . . , b
>

N )
> is an Nq-vector and ε = (ε>1 , ε

>

2 , . . . , ε
>

N )
> is T ×1. Thus,

b ∼ NNq(0, IN ⊗ G), where⊗ denotes the Kronecker product and ε ∼ NT (0, σ 2IT ); b and ε are independent.
It is possible to write model (2) as

Y = Xβ+ e, (3)

where e = Zb + ε. Hence, e ∼ NT (0,6), where 6 = 6(ω) = Z(IN ⊗ G)Z> + σ 2IT , ω = (%>, σ 2)> being an (m + 1) × 1
vector of unknown parameters. Hence, the log-likelihood function for model (3) can be expressed as

`(β,ω; Y) = −
T
2
log(2π)−

1
2
log |6| −

1
2
(Y− Xβ)>6−1(Y− Xβ), (4)

where | · | denotes matrix determinant.
Let θ = (ψ>, ς>,ω>)> be the (n + m + 1)-vector of parameters, where ψ = (β1, β2, . . . , βp)

> is the p-vector
(p ≤ n) containing the first p elements of β and (ς>,ω>)> is the (n − p + m + 1) × 1 vector of nuisance parameters
with ς = (βp+1, βp+2, . . . , βn)

>. In what follows, we shall focus on fixed effects inference. In particular, we wish to test
H0 : ψ = ψ

(0) againstH1 : ψ 6= ψ(0),whereψ(0) is a given p-vector.
We follow Zucker et al. (2000) and use a reparameterization in which the nuisance ((ς>,ω>)>) and interest (ψ)

parameters are orthogonal. In particular, we transform θ = (ψ>, ς>,ω>)> into ϑ = (ψ>, ξ>,ω>)>, with

ξ = ς+ (̃X>n−p6
−1X̃n−p)−1X̃>n−pΣ

−1X̃pψ, (5)

where X̃p denotes thematrix formed out of the first p columns of X and X̃n−p contains the remaining (n−p) columns of X . It is
easy to show thatψ is orthogonal toφ = (ξ>,ω>)>, i.e., the expected values of ∂2`(ϑ; Y)/∂ψ∂ξ> and ∂2`(ϑ; Y)/∂ψ∂ωj, for
j = 1, 2, . . . ,m+1, arematrices of zeros. By partitioningX as (̃Xp, X̃n−p) andβ as (ψ>, ς>)>, we canwriteXβ = X̃pψ+X̃n−pς.
Using (5) we obtain

Xβ = X̃ ′pψ+ X̃n−pξ,
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where X̃ ′p = [IT − X̃n−p(̃X
>
n−p6

−1X̃n−p)−1X̃>n−p6
−1
]̃Xp. It follows that the log-likelihood function in (4) can be written as

` = `(ϑ; Y) = −
T
2
log(2π)−

1
2
log |6| −

1
2
z>6−1z, (6)

where z = z(Y, X, ϑ) = Y− X̃ ′pψ− X̃n−pξ.

3. Improved likelihood ratio tests

3.1. Bartlett correction

The profile likelihood function, which only involves the vector of parameters of interest, is defined as `p(ψ) =
`(ψ, φ̂(ψ)), where φ̂(ψ) is the maximum likelihood estimator of φ for a fixed value of ψ. The likelihood ratio statistic
for testingH0 is

LR = LR(ψ(0)) = 2
{
`p(ψ̂)− `p(ψ

(0))
}
,

where ψ̂ denotes the maximum likelihood estimator of ψ. Under the standard regularity conditions and under H0, LR
converges in distribution to χ2p . This first order approximation may not work well in small samples, however. In order
to achieve more accuracy, Bartlett (1937) proposed multiplying LR by a constant, (1+ C/p)−1, thus obtaining what is now
known as the Bartlett-corrected test statistic:

LR∗ =
LR

1+ C/p
,

where C is a constant of order n−1 chosen such that, underH0, E(LR∗) = p+ O(n−3/2). In regular problems, and under the
null hypothesis LR∗ is χ2p distributed up to an error of order n

−2; see Barndorff-Nielsen and Hall (1988). A general expression
for C in terms of log-likelihood cumulants up to the fourth order was obtained by Lawley (1956).
One of our goals is to obtain the Bartlett correction term C for testingH0 : ψ = ψ

(0) againstH1 : ψ 6= ψ (0) for mixed
linear models. This is done in Appendix A using Lawley’s results; see (A.1). For simplicity, here we only give the expression
for C when the ψ (0)

= 0, which is common in practical applications:

C = tr
(
D−1

(
−
1
2
M +

1
4
P −

1
2
(γ + ν) τ>

))
, (7)

where tr(·) is the trace operator. Here, D,M and P are (m+ 1)× (m+ 1)matrices given by

D = {(1/2) tr(6̇j6̇k)},

M = {tr((̃X ′>p 6
−1X̃ ′p)

−1(̃X ′>p 6̈
jkX̃ ′p + 2Ẋ

′>

k 6̇
jX̃ ′p))},

P = {tr((̃X ′>p 6̇
jX̃ ′p)(̃X

′>

p 6
−1X̃ ′p)

−1(̃X ′>p 6̇
kX̃ ′p)(̃X

′>

p 6
−1X̃ ′p)

−1)}

and τ , γ and ν are (m+1)-vectors whose jth elements are tr((̃X ′>p 6
−1X̃ ′p)

−1(̃X ′>p 6̇
jX̃ ′p)), tr(D

−1A(j)) and tr((̃X>n−p6
−1X̃n−p)−1

(̃X>n−p6̇
jX̃n−p)), respectively. Note that we give the (j, k) element of eachmatrix. In our notation, A(j) is the (m+1)× (m+1)

matrix given by

A(j) = {(1/2) tr(6̇l6̈jk)− (1/2) tr(6̇
k
6̈jl)− (1/2) tr(6̇

j
6̈lk)}.

Also, 6̇j = ∂6/∂ωj, 6̇
j
= ∂6−1/∂ωj = −6

−16̇j6
−1, 6̈jk = ∂26/∂ωj∂ωk, 6̈

jk
= ∂26−1/∂ωj∂ωk = −26̇

k
6̇j6

−1
−

6−16̈jk6
−1 and Ẋ ′j = ∂ X̃

′
p/∂ωj = −X̃n−p(̃X

>
n−p6

−1X̃n−p)−1X̃>n−p6̇
jX̃ ′p.

It is noteworthy that (7) generalizes the result in Zucker et al. (2000, Eq. (3)). Their expression is only valid when the
parameter under test is scalar and the covariance matrix for the random effects has a linear structure and so does 6,
i.e.,6 =

∑
ωjQj, where Qj are knownmatrices. Note that when6 has a linear structure, we have 6̇j = Qj,∀j, 6̈jk = 0,∀j, k,

and Eq. (7) becomes

C = tr
(
D−1

(
−
1
2
M +

1
4
P −

1
2
ντ>

))
. (8)

Additionally, when ψ is scalar, our expression (8) reduces to Eq. (3) in Zucker et al. (2000). Also, when the null hypothesis
isH0 : β = β(0), (8) reduces to

C = tr
(
D−1

(
−
1
2
M1 +

1
4
P1

))
,
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where

M1 = {tr((X>6−1X)−1(X>6̈
jkX))}

and

P1 = {tr((X>6̇
jX)(X>6−1X)−1(X>6̇kX)(X>6−1X)−1)}.

3.2. Cox–Reid profile likelihood adjustment

Cox and Reid (1987) proposed an adjustment to the profile likelihood functionwhich can be usedwhen the nuisance and
interest parameters are orthogonal. The Cox–Reid adjusted profile log-likelihood function is given by

`pa(ψ) = `p(ψ)−
1
2
log

{∣∣−`φφ (φ̂(ψ))∣∣} ,
where `φφ is the matrix of second derivatives of `with respect to φ. The corresponding likelihood ratio test statistic is

LRCR(ψ(0)) = 2
{
`pa(ψ̃)− `pa(ψ

(0))
}
,

where ψ̃ is the maximizer of `pa(ψ).
The Cox–Reid test statistic is χ2p distributed underH0 up to an error of order n

−1, just like the standard likelihood ratio
test statistic. DiCiccio and Stern (1994) defined a Bartlett correction to this test statistic which reduces the order of the
approximation error to O(n−2). The corrected test statistic is

LR∗CR =
LRCR

1+ C∗/p
,

where C∗ is a constant of order n−1 such that, underH0, E(LR∗CR) = p+ O(n
−3/2). A general expression for C∗ can be found

in DiCiccio and Stern (1994, Eq. (25)). In Appendix B, we obtain C∗ for testingH0 in mixed linear models; see (B.1). Here, we
give the expression for C∗ for the case whereψ(0) = 0:

C∗ = tr
(
D−1

{
−M +

1
4
P + γ ∗τ>

})
, (9)

whereD,M , P and τ were given above and the jth element of the vector γ ∗ is tr(D−1C (j)), with C (j) being an (m+1)×(m+1)
matrix given by

C (j) = {−tr(6̇k6̇j6−16̇l)+ (1/2) tr(6̇
j
6̈kl)+ (1/2) tr(6̇

k
6̈jl)}.

Our expression for C∗ generalizes the result in Zucker et al. (2000, Eq. (4)), since their formula is only valid when p = 1.
We notice that their formula remains valid when the covariance matrix for the random effects has a nonlinear structure. As
expected, (9) reduces to equation (4) of Zucker et al. (2000)when p = 1. Also, for testingH0 : β = β

(0) againstH1 : β 6= β(0),
C∗ reduces to (9) withM and P replaced byM1 and P1, respectively, and τ replaced by τ1, with τ1 being the (m+ 1)-vector
whose jth element is tr((X>6−1X)−1(X>6̇jX)).
The expressions we give for C and C∗ in (7) and (9), respectively, only involve simple operations on vectors andmatrices.

Therefore, they can be easily computed with the aid of a programming language or software which can perform such
operations, e.g. Ox (Cribari-Neto and Zarkos, 2003; Doornik, 2006) and R (Ihaka and Gentleman, 1996). We note that C
and C∗ only depend on X , on the inverse covariance matrix 6−1, on the covariance matrix 6 and its first two derivatives
with respect to ω.

4. Simulation study

In this sectionwe shall present the results of Monte Carlo simulation experiments in whichwe evaluate the finite sample
performances of the likelihood ratio test (LR), its Bartlett-corrected version (LR∗), the adjusted profile likelihood ratio test
(LRCR) and its Bartlett-corrected counterpart (LR∗CR).
The simulations were based on the following mixed linear model:

yij = β0 + β1tij + β2x1i + β3x2i + b0i + b1itij + εij,

for j = 1, 2, . . . , τiwith τi ∈ {2, 3, 4, 5, 6, 7, 8, 9} and i = 1, 2, . . . ,N . The values of tijwere obtained as randomdraws from
the standard uniform distributionU(0, 1); x1i and x2i are dummy variables. The fixed effects parameters are β0, β1, β2, β3.
Also, bi = (b0i b1i)> ∼ N2(0,G)with

G =
[
ω1 ω2
ω2 ω3

]
. (10)
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Table 1
Null rejection rates of the tests ofH0 : ψ = 0; entries are percentages.

N ω2 ω3 α = 5% α = 10%
LR LR∗ LRCR LR∗CR LR LR∗ LRCR LR∗CR

12 0 0.50 13.0 7.6 4.5 5.3 20.8 13.1 9.2 10.2
0 1 13.4 7.8 4.8 5.9 21.7 13.5 9.6 10.8
0.25 0.50 11.2 6.0 3.4 4.1 19.0 11.2 7.5 8.5
0.25 1 13.8 7.9 5.1 5.8 21.9 13.9 9.6 10.7

24 0 0.50 8.3 5.6 4.7 5.0 14.6 10.9 9.5 10.0
0 1 8.5 5.8 4.9 5.1 14.6 11.1 10.1 10.5
0.25 0.50 8.6 5.7 4.8 5.1 14.8 11.1 9.6 10.2
0.25 1 8.7 6.0 4.8 5.1 15.0 11.4 10.1 10.6

36 0 0.50 6.4 4.6 4.2 4.4 12.8 10.1 9.5 9.8
0 1 6.1 4.9 4.4 4.7 12.6 9.8 9.0 9.4
0.25 0.50 6.7 4.8 4.3 4.6 12.4 10.0 9.3 9.6
0.25 1 6.4 4.7 4.3 4.4 12.6 9.8 9.1 9.4

Fig. 1. Relative quantile discrepancies plot: N = 12, ω2 = 0 and ω3 = 0.50.

Additionally, the εij’s are independent from the bi’s, and εi ∼ Nτi(0, ω4Iτi). We testH0 : ψ = 0 againstH1 : ψ 6= 0, where
ψ = (β2 β3)

>.
All simulations were performed using the Ox matrix programming language (Cribari-Neto and Zarkos, 2003; Doornik,

2006). The number of Monte Carlo replications was 5000 and the sample sizes considered were N = 12, 24 and 36. The
parameter values are β0 = 0, β1 = 0.2, β2 = 0, β3 = 0, ω1 = 1, ω2 = 0 and 0.25, ω3 = 0.5 and 1, and ω4 = 0.05. All tests
were carried out at the following nominal levels: α = 5% and α = 10%.
The null rejection rates of the four tests under evaluation are displayed in Table 1. We note that the likelihood ratio test

is liberal. For instance, when ω2 = 0, ω3 = 0.50, N = 12 and α = 10%, its rejection rate exceeds 20%. It is noteworthy that
the three alternative tests outperform the standard likelihood ratio test. For N = 12 and N = 24, the two best performing
tests are LRCR and LR∗CR; LR

∗ is slightly oversized. For example, when ω2 = 0, ω3 = 0.50, N = 12 and α = 5%, the null
rejection rates of LRCR, LR∗CR and LR

∗ are, respectively, 4.5%, 5.3% and 7.6% (LR: 13.0%). It is not possible to single out a global
winner between LRCR and LR∗CR. When N = 36, the Cox–Reid and the two Bartlett-corrected tests still outperform LR; here,
LR∗ slightly outperforms the other two alternative tests, LR∗CR being the second best performing test.
Fig. 1 plots the relative quantile discrepancies against the asymptotic quantiles for N = 12, the smallest sample size,

where the corrections are mostly needed. Relative quantile discrepancies are defined as differences between exact and
asymptotic (χ22 ) quantiles divided by the latter. The closer to zero these discrepancies, the better the approximation used
in the test. We note that the test statistics with the smallest relative quantile discrepancies are LRCR and LR∗CR. We also note
that quantiles of LR are approximately 50% larger than the respective asymptotic (χ22 ) quantiles.
Note that the simulated model and the hypothesis under test have practical applications, for instance, when the

practitioner wishes to compare two different treatments and the experimental units are observed in different points in
time. Here, we assume that the time horizon of the study is limited. This is whywe used a bounded distribution for choosing
values for tij. We performed simulations under other situations. We varied the values of all the parameters and considered
a gamma distribution with mean 3 and variance 1.5 for choosing values for tij. Also, we considered an extended model in
which interactions between tij and the dummy variables were included. In this case, we tested the interactions effects. For
the sake of brevity, the results are not shown. In short, the Cox–Reid and the two Bartlett-corrected tests outperformed LR.
For instance, our simulation experiment with β0 = 0.2, β1 = 0.4, β2 = β3 = 0, ω1 = 1.5, ω2 = 0.05, ω3 = 1.2, ω4 = 0.10
and N = 24 yielded the following null rejection rates at the 10% nominal level: 14.7% (LR), 10.6% (LR∗), 9.4% (LRCR) and
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Fig. 2. Blood pressure against time for each rat.

9.8% (LR∗CR). Also, for an extended model which includes two parameters, β4 and β5, representing interactions between tij
and the dummy variables, we obtained 7.1% (LR), 5.4% (LR∗), 3.3% (LRCR) and 5.0% (LR∗CR) for α = 5% and N = 24. Here,
β0 = 0.2, β1 = 0.4, β2 = 0.3, β3 = 0.5, β4 = β5 = 0 and the same values for ω1, . . . , ω4 as before.

5. Blood pressure data

We shall now present an application that uses a real data set. The data consist of a randomly selected subset of the data
used by Crepeau et al. (1985). Heart attacks were induced in rats exposed to four different low concentrations of halothane;
group 1: 0% (control), group 2: 0.25%, group 3: 0.50% and group 4: 1.0%. Our sample consists of 23 rats. The blood pressure
of each rat (in mm Hg) is recorded over different points in time, from 1 to 9 recordings, after the induced heart attack. The
main goal is to investigate the effect of halothane on the blood pressure.
Fig. 2 shows plots of blood pressure versus time for each rat. Clearly, the profiles differ on the intercept. However, the

slopes are notmarkedly different. At the outset,we consider amodelwhere blood pressure varies linearlywith time, possibly
with different intercepts and slopes for each concentration of halothane, and with intercept and slope random effects to
account for animal-to-animal variation. As we will see later, the usual likelihood ratio test rejects the null hypothesis of
common slope at the 10% nominal level, unlike the modified tests.
The mixed linear model considered here is

yij = β0 + β1tij + γ02G2i + γ03G3i + γ04G4i + γ12G2itij + γ13G3itij + γ14G4itij + b0i + b1itij + εij, (11)

with i = 1, 2, . . . , 23 and j = 1, 2, . . . , τi, where yij is the blood pressure of the ith rat at time j, tij is the jth point
in time (in minutes) in which the ith rat blood pressure was recorded, and G2i is a dummy variable that equals 1 if the
ith rat belongs to group 2 and 0 otherwise. Also, G3i and G4i equal 1 for groups 3 and 4, respectively. We assume that

bi = (b0i b1i)>
i.i.d.
∼ N2(0,G), where G is given in (10). Additionally, εij

i.i.d.
∼ N (0, ω4), the εij’s being independent of

the bi’s.
The maximum likelihood estimates of the fixed effects parameters are β̂0 = 104.360, β̂1 = 0.004, γ̂02 = −0.719,

γ̂03 = 0.203, γ̂04 = −15.211, γ̂12 = 0.022, γ̂13 = 0.109 and γ̂14 = −0.019. We wish to make inference on γ12, γ13 and γ14.
More specifically, we wish to testH0 : ψ = 0 againstH1 : ψ 6= 0, where ψ = (γ12, γ13, γ14)>. Note that under the null
hypothesis, the mean slopes are equal for the different halothane concentrations. The adjusted profile maximum likelihood
estimates of γ12, γ13 and γ14 are γ̃12 = 0.020, γ̃13 = 0.101 and γ̃14 = −0.030, respectively. The test statistics assume the
following values: LR = 6.522 (p-value: 0.089), LR∗ = 5.678 (p-value: 0.128), LRa = 5.287 (p-value: 0.152) and LR∗CR = 6.168
(p-value: 0.104). The standard likelihood ratio test rejects the null hypothesis at the 10% nominal level, i.e., it suggests that
there are differences in mean slopes for different dosages. The three modified tests, however, suggest otherwise, i.e., the
null hypothesis is not rejected by these tests at the same nominal level.
We now consider the following reduced model:

yij = β0 + β1tij + γ02G2i + γ03G3i + γ04G4i + b0i + b1itij + εij,

with i = 1, 2, . . . , 23 and j = 1, 2, . . . , τi. Wewish to testH∗0 : ψ
∗
= 0 againstH∗1 : ψ

∗
6= 0, whereψ∗ = (γ02, γ03, γ04)>.

Note that we are testing whether the mean blood pressures are equal across the different dosages. The fixed effects
maximum likelihood estimates are β̂0 = 99.531, β̂1 = 0.006, γ̂02 = −0.525, γ̂03 = 2.318 and γ̂04 = −13.357. The adjusted
profile maximum likelihood estimates of γ02, γ03 and γ04 are, respectively, γ̃02 = −0.823, γ̃03 = 2.079 and γ̃04 = −12.573.
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We now have LR = 6.143 (p-value: 0.105), LR∗ = 5.174 (p-value: 0.159), LRa = 4.002 (p-value: 0.261) and LR∗CR = 4.167
(p-value: 0.244). All tests yield the same inference, namely: the null hypothesis is not rejected at the 10% nominal level.
Therefore, we conclude that there is no group effect. In other words, the analysis carried out using the modified tests

suggests that the blood pressure is not affected by the administration of halothane at the concentrations considered in the
experiment. This conclusion agrees with the findings of Crepeau et al. (1985).

6. Concluding remarks

We addressed the issue of performing likelihood-based testing inference on the fixed effects parameters of mixed linear
models when the sample contains a small number of observations. The standard likelihood ratio test is liberal, as evidenced
by ourMonte Carlo results. We obtained three alternative tests, namely: an adjusted profile likelihood ratio test, its Bartlett-
corrected version and also the Bartlett-corrected likelihood ratio test. Our results generalize those in Zucker et al. (2000)
in two directions. First, we allow practitioners to test joint restrictions on one or more fixed effects parameters, whereas
their results only hold for tests on a parameter at a time. Second, unlike Zucker et al. (2000), we do not assume that the
covariance matrix of the random effects is linear when deriving the Bartlett correction to the profile likelihood ratio test.
Our main results are stated through closed-form formulas that only involve simple operations on vectors and matrices, and
hence they can be easily implemented in matrix programming languages and statistical software. The simulation study we
report clearly show that the proposed tests outperform the standard likelihood ratio test, especially when the sample size is
small. It shows that the three alternative tests yield reliable inferences even for unbalanced data. In particular, the adjusted
profile likelihood ratio test and its Bartlett-corrected version improve the type I error rate, especially when the number of
observations is small.
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Appendix A. Derivation of C

We use the following tensor notation for log-likelihood cumulants:

κrs = E
(

∂2`

∂ϑr∂ϑs

)
, κrst = E

(
∂3`

∂ϑr∂ϑs∂ϑt

)
and κrstu = E

(
∂4`

∂ϑr∂ϑs∂ϑt∂ϑu

)
,

ϑr being the rth element of ϑ . The notation used for derivatives of cumulants is the following:

(κrs)t =
∂κrs

∂ϑt
, (κrst)u =

∂κrst

∂ϑu
and (κrs)tu =

∂κrs

∂ϑt∂ϑu
.

In what follows, we shall use similar notation for derivatives ofmatrices formed out of cumulants. Note that−κrs is the (r, s)
element of Fisher’s information matrix; the (r, s) element of its inverse is denoted by−κ rs.
Lawley’s (1956) formula for C is

C =
∑
ψ,ξ,ω

(lrstu − lrstuvw)−
∑
ξ,ω

(lrstu − lrstuvw) = C1 − C2,

where C1 =
∑

ψ,ξ,ω lrstu −
∑

ξ,ω lrstu and C2 =
∑

ψ,ξ,ω lrstuvw −
∑

ξ,ω lrstuvw with

lrstu = κ rsκ tu
{
1
4
κrstu − (κrst)u − (κrt)su

}
and

lrstuvw = κ rsκ tuκvw
{
κrtv

(
1
6
κsuw − (κsw)u

)
+ κrtu

(
1
4
κsvw − (κsw)v

)
+ (κrt)v (κsw)u + (κrt)u (κsw)v

}
,

where the indices r, s, t, u, v, w refer to the components of ϑ = (ψ>, ξ>,ω>)>. Here,
∑

ψ,ξ,ω denotes summation over
all possible combinations of the n + m + 1 parameters in ϑ , and

∑
ξ,ω denotes summation over the combinations of the

n− p+ m+ 1 parameters in (ξ>, ω>)>. We use indices a, b, c, d in reference to the components of ψ , indices f , g for the
components of ξ , and indices j, k, l, o for the elements of ω. Further notation used here is given in Sections 2 and 3.
The first-order derivatives of the log-likelihood function in (6) are
∂`(ϑ; Y)
∂ψ

= X̃ ′>p 6
−1z,

∂`(ϑ; Y)
∂ξ

= X̃>n−p6
−1z,

∂`(ϑ; Y)
∂ωj

= −
1
2
tr(6−16̇j)−

1
2
z>6̇jz+ψ>Ẋ ′>j 6

−1z.
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The second-order derivatives are

∂2`(ϑ; Y)
∂ψ∂ψ>

= −X̃ ′>p 6
−1X̃ ′p,

∂2`(ϑ; Y)
∂ξ∂ξ>

= −X̃>n−p6
−1X̃n−p,

∂2`(ϑ; Y)
∂ψ∂ξ>

= 0,

∂2`(ϑ; Y)
∂ψ∂ωj

= (Ẋ ′>j 6
−1
+ X̃ ′>p 6̇

j
)z,

∂2`(ϑ; Y)
∂ξ∂ωj

= X̃>n−p6̇
j
(Y− X̃n−pξ),

∂2`(ϑ; Y)
∂ωj∂ωk

= −
1
2
tr(6̇j6̇k)−

1
2
tr(6−16̈jk)−ψ>Ẋ ′>k 6

−1Ẋ ′jψ+ψ
>(Ẍ ′>jk 6

−1
+ Ẋ ′>k 6̇

j
+ Ẋ ′>j 6̇

k
)z−

1
2
z>6̈jkz,

where

Ẍ ′jk =
∂ Ẋ ′j
∂ωk
= 2X̃n−p(̃X>n−p6

−1X̃n−p)−1X̃>n−p6̇
kX̃n−p(̃X>n−p6

−1X̃n−p)−1X̃>n−p6̇
jX̃ ′p − X̃n−p(̃X

>

n−p6
−1X̃n−p)−1X̃>n−p6̈

jkX̃ ′p.

Additionally, the third-order derivatives are

∂3`(ϑ; Y)
∂ξ∂ξ>∂ωj

= −X̃>n−p6̇
jX̃n−p,

∂3`(ϑ; Y)
∂ψ∂ψ>∂ωj

= −X̃ ′>p 6̇
jX̃ ′p,

∂3`(ϑ; Y)
∂ψ∂ξ>∂ξf

=
∂3`(ϑ; Y)
∂ψ∂ξ>∂ωj

= 0,
∂3`(ϑ; Y)
∂ξ∂ωj∂ωk

= X̃>n−p6̈
jk
(Y− X̃n−pξ),

∂3`(ϑ; Y)
∂ψ∂ωj∂ωk

= (Ẍ ′>jk 6
−1
+ Ẋ ′>k 6̇

j
+ Ẋ ′>j 6̇

k
+ X̃ ′>p 6̈

jk
)z,

∂3`(ϑ; Y)
∂ωj∂ωk∂ωl

= −
1
2
(tr(6̈lk6̇j)+ tr(6̇

k
6̈lj)+ tr(6̇

l
6̈jk)+ tr(6−16̈jkl)+ z>6̈jklz)

+ψ>(Ẍ ′>lk 6̇
j
+ Ẋ ′>k 6̈

lj
+ Ẍ ′>jk 6̇

l
+ Ẍ ′>lj 6̇

k
+ Ẋ ′>j 6̈

lk
+ Ẋ ′>l 6̈

kj
+ Ẍ ′>jkl 6

−1)z,

where 6̈jkl = ∂Σ̈jk/∂ωl and Ẍ ′jkl = ∂ Ẍ
′

jk/∂ωl. Finally, the fourth-order derivatives can be shown to be

∂4`(ϑ; Y)
∂ψ∂ψ>∂ωj∂ωk

= −2Ẋ ′>k Σ̇
jX̃ ′p − X̃

′>

p 6̈
jkX̃ ′p,

∂4`(ϑ; Y)
∂ψ∂ψ>∂ξf ∂ξg

=
∂4`(ϑ; Y)

∂ψ∂ψ>∂ξf ∂ωj
=

∂3`(ϑ; Y)
∂ψ∂ψ>∂ξf

= 0.

Taking expected values of second, third and fourth derivatives, we obtain

Kψψ = E
(
∂2`(ϑ; Y)
∂ψ∂ψ>

)
= −X̃ ′>p 6

−1X̃ ′p,

Kξξωj = E

(
∂3`(ϑ; Y)
∂ξ∂ξ>∂ωj

)
= −X̃>n−p6̇

jX̃n−p,

Kψψωjωk = E
(

∂4`(ϑ; Y)
∂ψ∂ψ>∂ωj∂ωk

)
= −2Ẋ ′>k 6̇

jX̃ ′p − X̃
′>

p 6̈
jkX̃ ′p.

In similar fashion, it follows that

Kξξ = −X̃>n−p6
−1X̃n−p, Kξωj = X̃

>

n−p6̇
jX̃ ′pψ, Kψωj = 0,

Kψψωj = −X̃
′>

p 6̇
jX̃ ′p, Kψξξf = Kψξωj = 0,

Kψωjωk = 0, Kξωjωk = X̃
>

n−p6̈
jkX̃ ′pψ, Kψψξf ξg = Kψψξf ωj = 0.

Additionally,

κjk =
1
2
tr(6̇j6̇k)−ψ>Ẋ ′>j 6

−1Ẋ ′kψ,

κljk = −2 tr(6̇
l
6̇k6

−16̇j)+
1
2
tr(6̇j6̈lk)+

1
2
tr(6̇k6̈lj)+

1
2
tr(6̇l6̈jk).

Consider the following matrices formed out of minus Fisher’s information inverse: Kψψ = K−1ψψ , K
ωω
= (Kωω −

K>ξωK
−1
ξξ Kξω)

−1, K ξξ = K−1ξξ + K
−1
ξξ KξωK

ωωK>ξωK
−1
ξξ and K

ξω
= Kωξ> = −K−1ξξ KξωK

ωω>, where the jth column of Kξω is
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Kξωj and the (j, k)th element of Kωω is κjk. It can be shown that(
Kψψ

)
j = −X̃

′>

p 6̇
jX̃ ′p,

(
Kψψ

)
jk = −2Ẋ

′>

k 6̇
jX̃ ′p − X̃

′>

p 6̈
jkX̃ ′p,(

Kξξ
)
j = −X̃

>

n−p6̇
jX̃n−p, (Kξωj)k = X̃

>

n−p6̈
jkX̃ ′pψ+ X̃

>

n−p6̇
jẊ ′kψ,

(κjl)k = −tr(6̇
l
6̇j6

−16̇k)+
1
2
tr(6̇j6̈lk)+

1
2
tr(6̇l6̈jk).

It follows from the orthogonality between ψ and (ξ>, ω>)> that κaf = κaj = (κaf )jb = (κaj)fb = 0. Also, κjfa = κjfab = 0.
Hence,

C1 =
∑(

labcd + labfg + labfj + labjf + labjk + lfgab + ljkab
)
,

where
∑
ranges over all parameter combinations induced by the indices a, b, c, d, f , g, j, k. It is possible to show that

labcd = labfg = labfj = labjf = lfgab = 0. Thus,

C1 =
∑(

labjk + ljkab
)
=

∑{
κabκ jk

(
1
4
κabjk −

(
κabj
)
k

)
+
1
4
κ jkκabκjkab

}
.

Since κabjk =
(
κabj
)
k = κjkab, C1 reduces to

C1 = −
1
2

∑
κabκ jkκabjk.

As for C2, we have that

C2 =
∑

(labcdjk + labjkcd + ljkloab + ljkablo + ljkabcd + lfjgkab + lfjkgab + lfjklab
+ ljkfgab + ljkflab + ljklfab + ljfabgk + ljfabkg + ljfabkl + ljkabfg + ljkabfl + ljkablf )

=

∑{
−
1
4
κabκcdκ jkκabjκcdk +

1
2
κabκ fgκ jkκabjκfgk

− κabκ fjκklκabj

(
2(κfk)l −

3
2
κfkl

)
+
1
2
κabκ jkκ loκabj (κklo − 2(κkl)o)

}
.

Therefore, C reduces to

C =
∑{

−
1
2
κabκ jkκabjk +

1
4
κabκcdκ jkκabjκcdk −

1
2
κabκ jkκ loκabj (κlok − 2(κlo)k)

+ κabκ fkκ jlκabj

(
2(κfk)l −

3
2
κfkl

)
−
1
2
κabκ fgκ jkκabjκfgk

}
.

We now arrive at the matrix expression given by

C = tr
(
Kωω

{
−
1
2
M +

1
4
P −

(
1
2
ρ − δ +

1
2
η

)
τ>
})

. (A.1)

Here, ρ, δ and η are (m + 1)-vectors whose jth elements are, respectively, tr(KωωA(j)), tr(K ξω>B(j)) and
tr(−K ξξ (̃X>n−p6̇

jX̃n−p)). In our notation, B(j) is amatrix that contains them+1 column vectors (1/2X̃>n−p6̈
jkX̃ ′p+2X̃

>
n−p6̇

jẊ ′k)ψ
and A(j) is defined in Section 3.1. For testingH0 : ψ = 0, C reduces to Eq. (7).

Appendix B. Derivation of C∗

We shall now obtain C∗, which is used to Bartlett-correct the adjusted profile likelihood ratio test statistic. DiCiccio and
Stern (1994, Eq. (25)) give the following general expression:

C∗ =
∑
ψ,ξ,ω

{
1
4
τ ruτ stκrstu − κ

ruτ st(κrst)u +
(
κ ruκ st − νruνst

)
(κrs)tu

−

(
1
4
κ ruτ stτ vw +

1
2
κ ruτ swτ tv −

1
3
τ ruτ swτ tv

)
κrstκuvw +

(
κ ruτ stκvw + κ ruκ swκ tv − νruκ swνtv

)
κrst (κuv)w

−
(
κ ruκ stκvw − νruνstνvw

)
(κrs)t(κuv)w −

(
κ ruκ swκ tv − νruνswνtv

)
(κrs)t(κuv)w

}
,
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where νrs = κ rs − τ rs, τ rs = κ rbκ saσab, σab being the (a, b) element of the inverse of Kψψ . From the orthogonality between
ψ and φ we have that τ fg = τ jk = τ fj = τ af = τ aj = 0. Also, τ ab = κab. Thus,

C∗ =
∑{

1
4
κadκbcκabcd − κ

ruκab(κrab)u +
(
κ ruκ st − νruνst

)
(κrs)tu −

(
1
4
κ ruκabκcd +

1
2
κ ruκadκbc

)
κrabκucd

+ κ ruκabκvwκrab (κuv)w +
(
κ ruκ tv − νruνtv

)
κ swκrst (κuv)w

}
.

We have that κ ruκ tv − νruνtv = κ ruτ tv + κ tvτ ru − τ ruτ tv and (κbd)k = κbdk. Hence,∑(
κ ruκ tv − νruνtv

)
κ swκrst (κuv)w =

∑
κabκcdκ jkκajcκbdk.

Since κabcd = κabc = κfab = (κac)bu = (κaf )tu = (κaj)tu = 0, it follows that C∗ reduces to

C∗ =
∑{

−κabκ jkκabjk +
1
4
κabκcdκ jkκabjκcdk + κ

abκ jkκ loκabj(κkl)o + κ
abκ fjκgkκabjκfgk + 2κabκ fjκklκabj(κfk)l

}
.

We then arrive at the matrix expression

C∗ = tr
(
Kωω

{
−M +

1
4
P + (ρ∗ + 2δ∗)τ>

})
+ τ>Kωξη∗, (B.1)

where the jth elements of the vectors ρ∗ and δ∗ are, respectively, tr(KωωC (j)) and tr(K ξω>F (j)), and the f th element of
the vector η∗ is tr(KωξG(f )). Also, C (j) is defined in Section 3.2, F (j) is a matrix that contains the m + 1 column vectors(
X̃>n−p6̈

jkX̃ ′p + X̃
>
n−p6̇

jẊ ′k
)
ψ and G(f ) is the (n − p) × (m + 1)matrix whose jth column is the f th column of−X̃>n−p6̇

jX̃n−p.
For testingH0 : ψ = 0, C∗ reduces to Eq. (8).
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