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Abstract

In this work, we introduce the class of quantum mechanics superpotentials
W) = ge(x)x* and study in detail the cases n = 0 and 1. The
n = 0 superpotential is shown to lead to the known problem of two
supersymmetrically related Dirac delta potentials (well and barrier). The n = 1
case results in the potentials Vi (x) = g°x* £2g|x|. For V_, we present the exact
ground-state solution and study the excited states by a variational technique.
Starting from the ground state of V_ and using logarithmic perturbation theory,
we study the ground states of V. and also of V(x) = g’x* and compare the
result obtained in this new way with other results for this last potential in the
literature.

PACS numbers: 03.65.—w, 11.30.Pb, 11.15.Wx, 03.65.Ge

1. Introduction

Supersymmetric quantum mechanics (SUSY QM) was first introduced by Witten [1, 2], as a
simplified model (a (0+4-1)-dimensional field theory) to study the possibility of SUSY breaking.
Soon it became a research branch in itself, a way of obtaining new solutions to problems in QM
[3-6]. Of particular interest to our work, we cite many papers in the literature [7-14] devoted
to the development of techniques for treating the anharmonic oscillator V (x) = w?x? + g2x*,
and other related potentials, which in general do not have exact solutions.

In this work, we present a new simple class of superpotentials in SUSY QM, in the
form W(x) = ge(x)x** with n = 0, 1,2, .... The first example of this class, i.e. the case
n = 0, was studied long ago in [15] and revisited in [16, 17]. One of our results is an analytic
solution for the ground-state wavefunction of the potential V (x) = g*x* — 2g|x|, an amazing
result, considering that analytic solutions do not exist for anharmonic oscillators. Another
result is a new perturbative solution for the ground state of the potential V (x) = gx*, starting
from the solution for the potential V (x) = g’x* — 2g|x|. The excited states of the potentials
Vi(x) = g°x* & 2g|x| are also studied by a variational approximation.

This paper is organized as follows. In section 2, we make a brief introduction to the
well-known case of superpotentials, which are monomials of odd powers of x, as well as to
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the SUSY breaking ones, which are monomials of even powers of x. More details of these
solutions can be found in [3, 18]. In section 3, we study solutions related to the class of
simple superpotentials of the form W (x) = ge(x)x*" (n = 0, 1, 2, ...), where £(x) is the sign
function. The simple analytical solution for the ground state of the corresponding SUSY system
is shown, the already known case n = 0 is revised and the case n = 1 is studied in more detail.
The first one is the illustrative example of the Dirac delta well and barrier potentials, which
are shown to be SUSY partner potentials associated with the superpotential W (x) = ge(x).
The second one, W (x) = ge (x)x?, allows us to find an analytical solution for the ground state
of the potential V (x) = g°x* — 2g|x|. In sections 3.1 and 3.2, we study the excited states of the
potentials Vi (x) = g2x* £ 2g|x|, which are derived from W (x) = ge(x)x?. After discussing
that exact solutions for the excited states cannot be obtained, we apply a variational method
(section 3.1) to find approximate solutions for the energy levels and the wavefunctions. In
section 3.2, a new perturbative approach to the ground state of the potentials V (x) = gx* and
V (x) = g>x* + 2g|x| is presented. Finally, a discussion of the results is presented in section 4.

2. Our notation and definitions on SUSY QM

Let us briefly summarize some main concepts in SUSY QM. For simplicity, we will work in a
system of units with Planck’s constant set as &2 = 1 and the particle mass set as m = 1/2 (i.e.
2m = 1). We start by defining the operators A" and A:

Al =W(x) —ip and A=W(x) +ip, (1)
where W (x) is a given function of x and p = —id/dx is the momentum operator. From these
operators, we can construct two Hamiltonians:

H_=A"A and H, =AA", )

which in terms of p and W (x) result in Hy = p? + V.. The potentials V.. are given by the
equations (W' = dW/dx)

Vi(x) = Wx)? £ W (x), 3)

which are Riccati’s equations.

These equations can be understood in two ways. One way is: given W (x), we can define
the Hamiltonians Hy with potentials V4 (x). The other is: given the potential V_ (x) (or V4 (x)),
by solving one of the Riccati equations, W (x) can be found, the operators A and A can be
constructed and the partner potential V. (x) (or V_(x)) can be found.

The ground state of a SUSY system is defined as the zero energy state of H_ (this is
a choice; changing the function W(x) — —W (x) will change the roles of H_ and H,).
As H_ = A'A, its ground-state wavefunction ¥, (x) can be obtained by imposing that it is
annihilated by the operator A:

d
Ay (x) = (W(x) + a) Yy ) =0.

The solution is given by

¥y (x) = Nexp {—/ W) dY}' (4)

This is a good, physically meaningful solution, provided that the function (4) is normalizable.
Otherwise, a zero energy solution does not exist and SUSY is said to be broken. As is easy
to see, superpotentials obeying the rule of being positive (W (x) > 0) for x > 0 and negative
(W (x) < 0) for x < 0 shall manifest SUSY.
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Then, starting from W (x), we have two partner Hamiltonians H_ and H., one of them
(H_, in our choice) having a ground state v, with energy E; = 0 and a tower of other states:
bound states with energies £, > 0,n = 1,2, 3, ..., or scattering states with energies E~ > 0.
The Hamiltonian A has bound energy levels E;Q], n=1,2,3,..., with energies related to
the energies of H_ by the relation: E;” | = E, or scattering energies E* > 0. Moreover, the
eigenfunctions of H_ and H_ are related according to

=) Ay, )
vr = (EL) ATyl ©)

The simplest class of superpotentials manifesting supersymmetry are monomials of odd power
in x:

W) =g, n=0,1,2,.... (7)
Using the Riccati equation (3), we have, for the partner potentials,
Vi(x) = WE)2 £ W (x) = &x¥"2 + g2n + 1x*". (8)

The ground (normalizable) state of H_ = p* + V_, with the energy E; = 0 (see equation (4))
is given by

2n+2
_ —gx
=N =t 9
Vo (X) exp { 2n+2) } )
The first example of a superpotential of the class (7) is W (x) = gx. In this case, the associated
partner potentials are

Vilx) = gzx2 + g, (10)

which are simply the potentials of two harmonic oscillators of the same frequency, with a
constant energy shift g added or subtracted. The ground state of H_ have E; = 0. Its excited
states and the states of H, are givenby £ = E;“_l =2ng, forn=1,2,3,....

We will not pursue the study of this class of superpotentials because they are well known.
We only mention that the next example of this class, W (x) = gx*, corresponds to the potentials
Vi (x) = g2x®43gx? and their ground-state solution is given by (9) with n = 1.

On the other hand, the class of superpotentials that are monomials in even powers of x,
does not give a normalizable zero energy solution to (4) and SUSY is broken. However, we can
introduce the sign function ¢ (x) and consider superpotentials of the form W (x) = ge (x)x2".
For this class of superpotentials, a normalizable ground state exists and SUSY is not broken.
Thus, in the following, we study this class of superpotentials, specially the n = 0 and n = 1
cases.

3. The class of superpotentials of the form W (x) = ge (x)x*"

The case n = 0 must be treated separately. So, let us consider the superpotential
W(x) = ge(x), Y

where g is a positive constant. For this superpotential (11), the Riccati equations (3) give the
following SUSY partner potentials:

Vi(x) = Wx)2 £ W (x) = £2g8(x) + &, (12)

where §(x) is the Dirac delta function. V_ is a delta well, while V. is a delta barrier, with the
energy of the ground state displaced by g”. The corresponding Schrodinger equations are

— ¥ () £288 (YT (x) = (EF — Y™ (x). (13)
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Their solutions are well known [15-17]. The well (V_) has a single bound state with energy
level E; = 0, binding energy g* and wavefunction given by

Yy (x) = Jge M. (14)

All the other eigenstates are plane waves in continuous spectra of energies, the lowest one
starting with E = g?. Simple scattering solutions of the well V_ and the barrier V, can be
written as

Ui (x) = Axe™ + Boe ™, x <0, (15)

Y (x) = Cee™ + Dre ™, x>0, (16)

where k = \/ET — g2 with E* > g? and the respective constants are related according to the
boundary conditions ¥1(0) = ¥1(0) and v¥{;(0) = ¥{(0) £ 2g¥(0) required by the Dirac
delta potential.

In summary, the Hamiltonian H_ has one ground state with energy £, = 0 and continuum
of states with energies E~ > g*> and H, has a continuum of states with E* > g2,

To see the role of the supersymmetry in this system, let us consider a particle crossing the
well (or hitting the barrier), coming from x = —oo, such that we can choose D1 = 0. With
the appropriate boundary conditions through x = 0, we can determine B4 and CL, getting the
scattered and the transmitted solutions as functions of the incident amplitudes .A... The results
can be written as

[C5]
+ _ ikx | - k —ikx
Yy (X)—Ai[e +1—(1_i@)e } x<0 17
k
1 .
Ui () = Ay —— e, x> 0. (18)

(1-i%8)
It is easy to verify that the solutions ¥~ and ™ are related by the supersymmetry
equations (5) and (6). For example, by applying the operator A to ¥ (x), we obtain

— d i . g —i
Ay (x) (gs(x)+a> {ek"+1(] —kif)e kx}
=8

oc {eikx +1L,) e“”‘} o Y (x),

=8
(1-igf
explicitly showing the manifestation of the supersymmetry of the system.
Let us now consider the superpotential

W(x) = ge (02, (19)
where g is a positive constant. The two partner potentials are given by
Vi(x) = W(x)2 £ W (x) = gx* + 2g|x]. (20)

In these potentials, a term 8V = 42gx?§(x) has been dropped. The reason is that for the
wavefunctions involved in this problem its action is null. As the potentials V4 (x) — oo for
x — =00, the spectra of Hy. = p? + V. are discrete and their eigenfunctions are normalizable.
If §V is treated as a perturbative correction to Hy, its action would be non-null only if
ffo o dxx?8(x)|¥ (x)|*> # 0. But this condition requires a wavefunction that near x = 0
behaves like f(x)/x with f(0) # 0, which is non-normalizable and is not in the spectra of
H_. On the other side, treated as part of Hy, the term §V could give non-trivial boundary
conditions for dyr/dx at x = 0. To study this possibility, we must integrate the Schrodinger
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Vi(x)

V_(x)

Figure 1. Partner potentials V_ (x) and V. (x) associated with the superpotential W (x) = ge (x)x2.

equation in the interval x = (—e€,¢€), for € — 0. A non-null effect of 6V only comes if
[, dxx?8(x)yr (x) # 0, which would require v (x) behaving like f(x)/x* with (0) # 0 that
is also, out of the spectra of Hy.

A representation of these potentials is given in figure 1. As can be seen, V., is a single-well
potential and V_ is a double-well potential symmetric in x. The corresponding Schrédinger
equations read

2
(—27 + g+ 2g|x|> YE(x) = EXFyT(x). 21)

The wavefunction for the ground state of the double-well potential V_(x) = g°x* — 2g|x| has
the energy E; = 0 and is easily obtained from the equation

0=Ay = 2, 4
= wo—<g8(x)x +&> Yo.

The result (already normalized) is given by

3\ gl i
Yo (x) = <§> We g*/3. (22)

This is an interesting result. As is well known, exact analytic solutions for the ground (or any
excited) state of the potentials V (x) = g%x* or V(x) = w’x*> + g’x* cannot be obtained. So,
this exact solution for the potential V_ is somewhat surprising. Another characteristic of this
solution is that it represents a single-lump centered at x = 0 (which is a local maximum of
V_) and it is not in the form, as naively expected, of two lumps centered at the two symmetric
minima, x = £(1/2g)'/3, of V_ notwithstanding the fact that, in one dimension, any attractive
well supports at least a bound state. This happens because the ‘volume’ of each well is not
big enough to support a bound state. (This can be seen in a WKB analysis of the potential, or
even more simply, by the Heisenberg uncertainty principle. We should only observe that this
well size Ax(AE)'/? is independent of g.)

Let us now look for the excited states solutions. Inspired by the analytic method to solve
the one-dimensional simple harmonic oscillator and by the form of the solution (22), we try a
solution of the form'

W (x) = F(x)e &'/, (23)

! In the case of the simple harmonic oscillator, we suppose that the solutions are of the form H ()c)e”‘2 /2 and, imposing
that these solutions are square integrable, the functions H (x) become restricted to be the Hermite polynomials H, (2).

5
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Substituting (23) in the Schrédinger equation (21), it becomes
F" —2ge(x)x’F'(x) + EF (x) = 0. (24)

For the simple harmonic oscillator, the same steps would lead us to the Hermite equation.
In our case, we obtain equation (24), which is, for a particular choice of parameters, the
triconfluent Heun equation [19].

We can go on to look for solutions to equation (24) through a power series method.
Assuming that F'(x) can be written as

[o¢]
F(x) = Z ajxj (25)
j=0
and substituting this expression for F (x) in the differential equation (24), we find

o0 o0 [o¢]

Zj(j — l)ajxj_2 —2ge(x) Zjajxj+l +E Za_,-xj =0.

J=0 J=0 Jj=0
Renaming indices and rearranging terms, we have

o0
2a; + Eag+ Y _[(j +2)(j + Daji2 — 2g6(x)(j — Daj_1 + Ea;] = 0.
j=1
Then, given ay and a;, this equation is satisfied if the coefficients a;, j > 2, are given by the
three-term recursion relations:
E

a) = _an’ J = 2’ (26)

28 (x)(j — 3)a;_3 — Ea;
JjG—=1

The corresponding recursion relation for the the harmonic oscillator potential is a simple

two-term recursion relation. To obtain a normalizable solution, we choose the values of E so

as to terminate the series in a polynomial. In this way, we get the set of discretized values

of the energy spectrum and the corresponding wavefunctions that turn up to be the Hermite

polynomials (see footnote 1).

In our case, the recurrence relation (27) is a three-term recurrence relation and there is no
way of choosing a subset of values of E to terminate the series in polynomials, so as to have
a normalizable solution. Then, no analytic solution can be found, and in the next sections,
we move to looking for approximate solutions. In section 3.1, a variational approximation is
studied, and in section 3.2, a perturbative approximation is discussed, which will also allow
us to study solutions for the potential V (x) = gx*.

a; = . izs 27)

3.1. Looking for approximate solutions by a variational method

Let us first apply a variational method. The trial function that we are going to use is

m

P(x) =Y a;fi(x), (28)
j=1
where j = 1,2, ..., mandthe coefficients o; € C are the variational parameters. The functions
fj(x) are chosen to be
i) = x e, (29)
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This trial function corresponds to the one previously used in the power series method, with
the additional restriction of being a finite polynomial of degree m — 1, instead of an infinite
series in x.

For the harmonic oscillator with a very similar choice of the trial function we would find
exact solutions. In that case, the variational parameters would be, except for the normalization,
the coefficients of the Hermite polynomials H,, ).

Before proceeding, let us consider a convenient change of variables. As can easily be
seen, by making the rescaling x — g~!/3x, it is possible to factor out of the Hamiltonians H.
the constant g%/3:

2
Hy =g (—% +x*+ 2|x|> . (30)
So, in the rest of this section, we will work with ¢ = 1 and after finding the energy eigenvalues,
we can restore the dependence of the energy levels in g by multiplying the results by a factor
of g*/3. The restoration of the corresponding wavefunctions (or trial functions) can also be
obtained by rescaling x — g'/3x in the results.
To go on with the variational method, we construct the expectation value of the energy
with these trial functions:

£ GIHLD) D5, 2L e (il Hel fi) 31

(91¢) ket 2oie oke (fil fi)

and minimize E with respect to the parameters ;. This condition gives the system of linear
equations:

D (Hi)u — ESi)ou =0, (32)
=1

where we used the notation Hy; = (fi|H|f;) and Si; = (fx|fi). The values of E that minimize
the above system of equations are the eigenvalues of the matrix

My = (ESy — (Hi)w) (33)

and are obtained by solving the equation det M = 0. The wavefunctions corresponding to each
of these eigenvalues are obtained by substituting the value of E in the linear system above and
solving for the parameters ;. The matrix elements that we need to construct My, are

+o00
Su = (filf)) = dre 3P =2, (34)
+00
(Hu)u = (filHel fi) = dee S [— (1 = 1)l = 2T 4200 + D] (35)

For (k + I) odd, the integrands in (34) and (35) are odd functions and Sy; = (Hy), = 0.
Otherwise, for (k 4+ [) even, we find

kbl—4

3\ 3 k+1—-1
Su=1{-= r{—— 36
o (2) ( 3 ) (36)

(AT [U=DE=) - (£ Dk +1-3) k+1
He)y = 2<2> |: k13 ]F( 3 ) (37)
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Table 1. Energy values associated with H_ calculated for different numbers of variational

parameters.

m  Ejy* E; E; E; E; E; E; E;

1 0.00000

2 0.00000 2.04441

3 0.00000 2.04441 5.76541

4 0.00000 1.97852 5.76541 10.00191

5 0.00000 1.97852 5.54135 10.00191 1494174

6 0.00000 197115 554135 9.49446 1494174 20.37028

7 0.00000 197115 5.51302 9.49446 14.06558 20.37028 26.29953

8 0.00000 196991 5.51302 9.41370 14.06558 19.02962 26.29953 32.64399

9 0.00000 1.96991 5.50842 941370 13.90148 19.02962 24.43194 32.64399
10 0.00000 1.96963 550842 939868 1390148 18.73498 24.43194 30.18755

# For this level, the variational method provides the exact solution.

Table 2. Energy values associated with Hy calculated for different numbers of variational

parameters.
1 2.31447
2 231447 6.13324
3 2.04493 6.13324 10.54940
4 2.04493 5.63655 10.54940 15.63469
5 1.99066 5.63655 9.66470 15.63469 21.21933
6 1.99066 5.53888 9.66470 14.30956 21.21933 27.28556
7 197666 5.53888 9.46567 14.30956 19.36916 27.28556 33.76558
8 1.97666 5.51611 9.46567 1398107 19.36916 24.86727 33.76558
9 197235 5.51611 941524 13.98107 18.85787 24.86727 30.72924
10 1.97235 5.51007 941524 13.89369 18.85787 24.13659 30.72924
With these results, the matrix M (33) obtains the form
(M1)11 0 M1)13 (ML) 1m
0 (M+)22 0 (M )24 (Mx)2m
(M+)3 0 (M+)33 (M+1)3m
My = (38)
(M:t)ml (Mi)mZ (M:t)m?) (Mi)mél (M:t)mm

In this matrix, all elements in positions (%, [), such that (k + [) is odd are null, while those
with (k + [) even are given by (33) with Sy; and Hy,, respectively, given by (36) and (37). To
find the energy values, we must solve the equation det M = 0.

Tables 1 and 2 show some results found for different number (m) of parameters and for
g = 1. For different values of g, the values in the tables must be multiplied by a factor of g%/,
as observed above.

The results in tables 1 and 2 reflect the manifestation of SUSY in the system, at least
with respect to the equality between the energy levels E,” and E:_l, n > 0,of H_ and H,..
As expected, the ground-state energy of H_ is zero and it is not equal to any energy of H,.
Moreover, for n > 0, increasing the number of variational parameters, we find, mainly for the
first levels, energies E,” more and more closer to E;: 1

8
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\ E7y ~ EB*s /
gt Yottt ottt ettty = _
\ Vi(x)
\
/
\ E-, ~ B, T V_(x)
\ /
\ /
E-, ~ E*
,,,,,,, \_ L
AN : /
AN /
NET, ~ EY s
~ —
~ —
E_U ~— —

Figure 2. Scheme for the first five levels of H_ (and first five levels of H) using six variational

parameters.

(a) Eigenfunctions of F__

(b) Eigenfunctions of H

Figure 3. Eigenfunctions of the first levels of H_ and H for six variational parameters.

Therefore, the better the trial we make, the closer we are to satisfying the equality between
energy levels. Moreover, because the one parameter trial function for the ground state of H_
has the same form of the exact (analytical) solution, the value E; = 0 found is exact and the
condition of having a zero energy ground state is naturally satisfied.

Figure 2 shows the first energy levels of H_ and H,. We must remember that the values
found are better for the increasing number of variational parameters and for the lowest levels.
Thus, for instance, we are supposed to find, for the level n = 4, a worse approximation than

for the level n = 1.

The graphics in figure 3 show the approximations for the first levels eigenfunctions of H_
and H., respectively. These approximations were found using six variational parameters.

As expected, we note that the eigenfunctions found have well-defined parity, interchanging
even and odd solutions with even solutions for the ground states.
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3.2. Looking for approximate solutions by a logarithmic perturbation theory

We now apply a variant of the logarithmic perturbation theory (LPT) to our problem. The LPT
is explained in more detail, e.g., in [3, 7-9, 11].

Starting from the known solution ;" of V_, we can perturbatively obtain the ground state
of V., or, e.g., of the anharmonic potential V (x) = x*. We start by writing

V(x; 8) = Vo(x) + Vi (), (39)
where

Vox) = V_(x) = x* — 2|« (40)

Vi(x) = 4]x]. 41)

Observe that V(x; 8 = 1) = V, and that V(x; § = 1/2) = x*. As we only know the ground
state of V_, we cannot go beyond the first order in the Rayleigh—Schrodinger perturbation
theory. To bypass this difficulty, we will use the so-called LPT, where only the knowledge
Y, is required to calculate the ground-state energy level of V (x; §) to any order in & (at least
numerically). For that aim, we consider the perturbed Schrédinger equation

— V' + (Vo + V)V = EV (42)
and write the expansions

E=Ey+0E +8FE+--- (43)

W = exp (So + 88 + 8285 + -+ ), (44)

where S, S, etc, are functions and Ej, E», etc, are numbers to be determined. By substituting
these expressions in the Schrodinger equation above and equating the terms of the same powers
in 8, we obtain the set of equations:

Sy + S = —Ey+ Vs, (45)
S +28,S, = —E; + V1, (46)
Sy + 2508, + Sf = —Es, 47)
Sy + 28085 + 28,85 = —E;, (48)

Starting with Ey = 0 and So = —|x|*/3 (i.e., Wo(x) = ¥, = N e 1/3), these equations can
be recursively solved to obtain Ej and S; to the desired order in 6.
Equation (46) can be rewritten as

(S} exp (250)) = (Vi — E1) exp (250). (49)
By substituting Sy = —|x|*/3 and V; = 4|x| in this equation, integrating both sides in
the interval x = (—o00, +00) and observing that the integrand of the left-hand side tends
exponentially to zero at both ends of the integration range, we obtain for E; the result

+ 24P
o _ WolVi@lpo) _ [T dee > 4l
| = =
Wolo) [ dve3h

1/3
=4 <§) re/s3) =2.31447. (50
2 r'(1/3)
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Inserting this result for E; back into the same equation and integrating now in the interval
y = (0, x) we obtain

S1(x) = |y (x)| 2 fo dylvo P [E — Vi()]

2o [* 313 3\'? r2/3)
§|X\ —gM — —
e /0 dye |:4 (2) T(1/3) 4|yl

-2 (g)m ek’ [F(Z/S)r(m 2x°/3) = T'(2/3,2x /3)} oD
3 I'(1/3)

where I'(«, x) = fx ° dre~"t*~! are the upper incomplete gamma functions [20].
The second-order equation (47) can also be written in the form
(Shexp (250)) = (=S)? — Ey) exp (2S). (52)

Integrating this equation in the interval x = (—o00, 4-00), and observing that the integrand
of the left-hand side tends to zero at both ends of the integration range, we obtain E, as an
integral over S):

(YolS; 0o} ( )”3 / e 2
B=- = dxe 3] ()2, 53
’ {Wolvo) r(1/3) e S () (53)

Substituting (51) into (53), we find

4 2\*? r(2/3)21 LIy, (22)_,rem, (12
“Ta/3) <§> {F<1/3>2 2”(3 3)+ 2/3<3 3)‘ T(1/3) 2/3<3 3>}

(54)

where
(o]
Iy (x,y) =/ dte't™ T (x, ) (v,1), x>0, y>0, O<a<l1. (55
0

Evaluating the integrals, expression (54) gives £, = —0.438 17.
In summary, up to the second order, the ground-state energy of V (x; 8) is given by
E(8) = Ey + 3E| + 8°Es, (56)
with Ey = 0, E; = 2.31447 and E, = —0.438 17.

For § = 1, we obtain for the ground-state energy of V., the result Egr = 1.87630.

For 6 = 1/2, we find the result E()f = 1.047 69 for the ground-state energy of the the
quartic anharmonic potential V (x) = x*. This result can be compared with the exact one given
. . . - . . ~ s (W33
in [3], noting that our ‘coupling’ constant g is related to their constant g by g%/ = ( 4) g/°.
Thus, multiplying our result by (}—‘)1/3, we find 1534 = 0.660 00, differing that of [3] only by
about 1.2%.

On the other hand, comparing the value of E; found here with the most accurate result
of the variational method (see table 2), we see that they differ by about 4.9%, what does not
seem very good. But, following the suggestion of [8] or [21], and substituting expression (56)
by the corresponding [1, 1] Padé approximant in §, we find

EoE) + (E} — EoE»)$
E(s) = Db (E; 02)7 57)
E, — E)$
which results (for § = 1) in EJ“ = 1.94605. This result now differs from the result of
table 2 only by 1.3%. Doing the same for § = 1/2 (and then multiplying by (%)1/3), we find

E{f = 0.665 97, differing from the result of Cooper et al [3] by only 0.03%. A pretty good
result.
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4. Conclusions

In this paper, we studied the class of superpotentials W (x) = &(x)x*" in SUSY QM. After
revisiting the case n = 0, we continued studying in detail the case W (x) = £(x)x’. As a result
we obtained the exact solution for the ground state of the potential V_ (x) = x* — 2|x|, showed
that exact solutions do not exist for the excited states and studied these states by a variational
method. Finally, starting from the known ground state of V (x) = x* — 2|x|, we obtained the
ground states for the potentials V (x) = x*and V (x) = x* + 2Jx], using the LPT. Comparison
with other known results in the literature and in the paper were made.

Some other approaches and improvements can be used to study this class of
superpotentials. In a forthcoming paper, we analyze the solutions for the ground states of
Vi (x) = x* £ 2|x| by starting with the solutions of V. = x> & C and using the LPT and the §
expansion of Bender [7] and Cooper [8].
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