Designing Mutation Operators for Android Device Components:
A View Through Bluetooth and Location API’s

Pedro Henrique Kuroishi
Department of Computing
Federal University of Sdo Carlos
Sao Carlos, Brazil
phk@ufscar.br

José Carlos Maldonado
Institute of Mathematics and Computer Science
University of Sdo Paulo
Sao Carlos, Brazil
jemaldon@icmc.usp.br

ABSTRACT

Context: Mutation operators play a crucial role during the muta-
tion testing process due to their capability to model common faults
to be injected into an application under test. In the context of the
Android OS, the academic literature shows that different studies
propose mutation operators, especially focusing on the GUI and
configuration. On the other hand, few devise mutation operators
for specific Android device resource components such as connec-
tivity, location, and sensors. Objective: Therefore, this paper aims
to investigate the design and proposition of mutation operators
for Bluetooth, Location, and the third-party library AltBeacon. The
rationale is that this paper is carried out in an academia-industry
partnership, in which the company develops applications that rely
on these Android components. Method: The design process used
a systematic approach named HAZOP to minimize any possible
bias. Results: This systematic process helped in deriving a set
of 16 mutation operators. Next, the paper provides an empirical
cost evaluation that assesses the number of generated mutants for
two applications and the number of generated mutants per oper-
ator, showing the feasibility of the mutation operators and their
capabilities in modeling real faults. Conclusion: Finally, the paper
discusses the future perspectives of extending the operators to other
device resource components such as Wi-Fi, NFC, and sensors, as
well as automation perspectives by envisioning the implementation
and validation of the mutation operators.

KEYWORDS

mutation testing, mutation operator, Android, Android mutation
operator, HAZOP, Bluetooth, Location, AltBeacon

1 Introduction

Mutation testing (or mutation) is a test criterion commonly adopted
to assess the quality of a given test suite based on its fault detec-
tion capabilities [7, 37]. The traditional mutation testing process
starts with the generation of faulty versions, named mutants, of
the original application under test (or AUT). Then, the test suite is
executed against each mutant, and the output is evaluated to check
whether the test suite can detect the fault injected in the mutant.
The quality metric is given by the mutation score, which is defined

Ana C. R. Paiva
INESC TEC, Faculty of Engineering, University of Porto
Porto, Portugal
apaiva@fe.up.pt

Auri Marcelo Rizzo Vincenzi
Department of Computing
Federal University of Sdo Carlos
Sao Carlos, Brazil
auri@ufscar.br

by the ratio of killed mutants to non-equivalent ones. Observe that
a crucial step of mutation testing consists of generating the faulty
version of the AUT. To support this process, mutation testing relies
on mutation operators, i.e., a set of rules that modify the original
application by making a simple syntactic change [15]. For example,
an arithmetic operator changes the statementa=b+ctoa=b—c
anda="bx*c.

Over the years, many studies have proposed mutation operators
for different programming languages (e.g., C [1, 5], Java [3, 6, 17,
18, 27, 28], Python [10], JavaScript [29, 31, 33]) and system types
(e.g., Android [8, 9, 11, 14, 21, 25, 35], deep learning systems [26],
time systems [34], cyber-physical systems [43]). This paper focuses
on designing mutation operators for Android.

Android application testing differs from traditional software
(e.g., web and desktop applications). An Android app is designed
to run on a mobile device. Therefore, when testing an Android
app, one has to consider the limitations of the mobile device, such
as screen size and density, multiple sensors and connectivity, and
constrained resources [30]. Given these heterogeneous characteris-
tics, it is expected that the mutation operators will cover not only
the functionality of the app but also other aspects of the Android
ecosystem.

The mapping study of Silva et al. [41] showed that few studies
focus on mutation testing for Android apps. Consequently, only a
subset of the mapped studies proposed Android mutation operators
focusing on adapting existing Java operators and designing specific
operators for GUI components. Additionally, only four studies [8, 11,
14, 21] present mutation operators for other Android components
such as sensors, connectivity, and location.

The present paper aims to propose the design of mutation op-
erators for Bluetooth [22] and Location [23] API, given the lack of
studies focusing on these specific Android components. For Blue-
tooth, this paper considers both the classic and low-energy APIs.
Moreover, the present study explores the design of mutation op-
erators for the third-party library AltBeacon [32]. For Location,
the operators are designed for the native and the Fused Location
Provider API provided by Google Play Services (or GMS) [24].

The rationale for selecting these specific components is that the
study is being carried out in an academia-industry partnership. In
this case, the company develops different applications that rely

SBES’25, September 22-26, 2025, Recife, PE

on these Android components. Therefore, the mutation operators
provided in this study are not only useful in enhancing the quality
of the apps developed by the company, but also benefit further
academic research and companies dealing with the same difficulties.

In general, the design of mutation operators relies on the experi-
ence and knowledge of the proponent [18]. Since there is still no
standardized method to facilitate the generation of operators, the
paper leverages a systematic technique called Hazard and Oper-
ability Studies (or HAZOP) [4, 18]. This approach originated in the
chemical industry, and the goal is to identify potential hazards and
deviations in the behavior of a system using a set of predefined
guide words to support determining the cause and consequences
of the deviations [2, 4, 18]. The rationale for using HAZOP is to
facilitate the design process and minimize any possible bias that
may arise.

In summary, this paper makes the following contributions:

o The design of 16 mutation operators for Bluetooth, AltBea-
con, and Location API’s.

e A cost evaluation of the proposed mutation operators.

o A discussion of future perspectives on extending the defined
set of mutation operators for other Android components and
automation aspects.

The remainder of the paper is organized as follows: Section 2
presents an overview of the concepts of this paper. Section 3 de-
scribes the study goals and design. Section 4 provides the steps
carried out to devise the mutation operators and a description and
examples of them. Section 5 presents the empirical cost evaluation
of applying the mutation operators. Section 6 describes the related
works. Finally, Section 7 presents future perspectives and concludes
the paper.

2 Background
This section provides a brief overview of the main concepts related
to the present work.

2.1 Mutation Operators for Android

Mutation operators play a crucial role during the mutation process
due to their capability of introducing a syntactic modification under
the AUT [1]. The academic literature proposes various mutation
operators that can be applied to different programming languages,
systems, and other purposes.

As mentioned, mutation operators can be described as a trans-
formation rule that injects a possible fault in the source code, mim-
icking the common mistakes of developers [15]. In general, these
operators can modify variables, replace operators from expressions,
delete statements, and so on.

In the context of Android, there are still few studies focusing on
mutation testing and, consequently, there is still a need to explore
this technique and the extension of the existing mutation opera-
tors [41]. Linares-Vasquez et al. [20] proposed an insightful taxon-
omy of Android bugs to support designing the mutation operators.
The authors categorized the existing bugs into fourteen categories:
Activities and Intent, Back-end Services, Collections and Strings,
Data/Objects Parsing and Format, Threading, Android Program-
ming, Non-functional Requirements, GUI, I/O, Device/Emulator,

Kuroishi et al.

API and Libraries, Connectivity, Database, and General Program-
ming. Moreover, the authors stated that the bugs affect not only
Android apps but also Java applications.

According to Silva et al. [41], most Android mutation opera-
tors are centered on the GUI and the specific configuration of the
Android APL On the other hand, few studies explore mutation oper-
ators for sensor and location. Additionally, few studies investigated
the design of mutation operators for the Bluetooth API, considering
connectivity.

Given the complexity of the ecosystem and the need to explore
other Android components, we advocate for a broader investigation
of designing mutation operators for Bluetooth and Location apps.

2.2 Bluetooth and Location API

Many Android application relies on the information retrieved by
the sensors embedded in the mobile device. For instance, an app
may use Bluetooth to connect and exchange data with a peripheral
or an IoT device. Or may collect real-time information about the
user’s location or monitor the motion of a mobile device. Observe
that these types of applications resemble the ones developed by our
partner company.

According to the documentation [22], Android API supports two
types of Bluetooth API: classic and low-energy (BLE). The main
difference between these two types relates to energy consumption.
The first is commonly used for more battery-intensive operations,
whereas the latter is projected to consume less energy and transfer
a low quantity of data. The two types of Bluetooth may perform
the same operations: finding devices, connecting, and transferring
data.

BLE can be used in various contexts such as proximity-based
applications, communicating with IoT systems, and interacting with
BLE devices such as beacons [12]. The third-party Android Beacon
Library [32] supports functionalities to facilitate the interaction of
an Android device and beacons. It is worth noting that this library
implements the AltBeacon advertisement protocol and is adopted
by many applications [13, 19, 32].

Android API also offers support to create location-aware appli-
cations [23]. Similar to Bluetooth, the Location API offers a ton of
functionalities that facilitate collecting and processing information
about the location. A developer may leverage the native functional-
ities and also the API supported by Google Play services (or GMS)
to build location-aware apps. In this paper, the native and the GMS
are considered.

2.3 Hazard and Operability Studies - HAZOP

The process for designing and proposing mutation operators is com-
monly carried out based on previous experience and knowledge [17]
since there is still no standardized methodology to facilitate this
task. Kim et al. [17] designed mutation operators for the Java pro-
gramming language using a systematic approach named Hazard
and Operability studies (or HAZOP). This method originated in the
chemical industry to identify potential hazards and deviations in
the behavior of a system using a set of predefined guide words that
have to be adapted and interpreted according to the system con-
text [2, 4, 18]. In general, the following guide words are considered:

Designing Mutation Operators for Android Device Components: A View Through
Bluetooth and Location API’s

no/none, more, less, as well as, part of, reverse, and other than. Table 1
describes the interpretations of the guide words.

Table 1: Guide words interpretation adapted from [4, 17].

Guide word | Interpretation

no/none No part of the intention is achieved

more Quantitative increase

less Quantitative decrease

as well as The design of the intent is achieved but with additional results
part of Only some part of the intention is achieved

reverse Reverse the information flow

other than A result other than the original intent is achieved

Additionally, Chudleigh et al. [4] extends this list with four guide
words: early, late, before, and after. For the present paper, we con-
sidered the seven guide words from Table 1 and also early (i.e.,
earlier execution than intended) and late (i.e., delayed execution
than intended).

For example, Kim et al. [18] applied the HAZOP approach to
derive Java mutation operators by examining the language speci-
fication and identifying plausible deviations and their causes and
consequences. The operator Variable replacement operator can be
associated with the guide word Other than. It can replace variable
names of the same type (cause), leading to an anomalous behavior
of the system (consequence).

3 Study Setup
3.1 Study Goal

The main purpose of this paper is to investigate and design a mu-
tation operator for the Android Bluetooth and Location API The
rationale for selecting these two components is the following:

(1) As presented by Silva et al. [41], few studies focus on muta-
tion operators for specific Android components rather than
Java-specific or GUIL Therefore, we intend to provide an
investigation toward the viability of proposing mutation op-
erators for Bluetooth and Location apps and envision the
possibility for other connectivity components (e.g., Wi-Fi!
and NFC?) and sensors> (e.g., gyroscope and accelerometer).

(2) The present study is carried out under an academic-industry
collaboration. The company develops mobile applications
that interact with IoT devices using Bluetooth (both native
and AltBeacon) and Location features. Hence, this paper fo-
cuses on these two components and aims to enhance the
quality of the testing process of the company. For confiden-
tiality reasons, this paper will not provide any information
about the company or specific details of their applications.

3.2 Study Design

Figure 1 illustrates the steps carried out to guide the present study.

The process started by evaluating the Bluetooth, Location, and
AltBeacon API and identifying possible mutation points. Then,
the collected mutation points were assessed and grouped by their
actions to form an initial subset of mutation operators. The subset

!https://developer.android.com/develop/connectivity/wifi/wifiscan
Zhttps://developer.android.com/develop/connectivity/nfc
3https://developer.android.com/develop/sensors-and-
location/sensors/sensors_overview

SBES’25, September 22-26, 2025, Recife, PE

was then validated using the HAZOP approach. Next, the operators
were cross-checked against the existing mutation operators from
the academic literature to verify if the operators were previously
proposed. Whenever a mutation operator from the literature was
not considered in our analysis, it was added to the final set of
operators.

[API evaluation Ident|fy|n¢::; mutation
points
Y

Mutation operator ¢ Literature cross-]
{ design J check H Applying HAZOP J

Preliminary
refinement

Figure 1: Mutation operator designing process.

3.3 Empirical Cost Evaluation

After defining the mutation operators, this paper evaluates the
cost of applying the operators. To this purpose, two apps were
considered, and the mutants were manually generated to collect
information about (i) the number of mutants generated per applica-
tion and (ii) the number of mutants generated per operator.

This data provides insights into the viability of the mutation
operators in terms of mutant generation and helps us to understand
the rationale of the operators that eventually do not generate any
mutants.

It is worth noting that the mutants were manually generated
because it is still not implemented. That is, whenever a mutation
point was found, the source code was manually modified to mimic
a possible mutant, and the application was recompiled to check
the validity of the syntactic change. Section 7 provides a broad
discussion of the automation aspects.

4 Mutation Operator Description

The present section presents the design process carried out to
devise the set of mutation operators. Additionally, the section pro-
vides a broad description of the operators and examples to enlighten
their usage.

4.1 Designing Process

The first step of the designing process started with the API evalua-
tion as displayed in Figure 1. It encompasses an in-depth Bluetooth,
Location, and AltBeacon API documentation analysis to under-
stand whether it was reasonable to apply mutation testing in these
specific Android components.

During the analysis, it was possible to observe that some muta-
tion points could be categorized based on the component action
target. Android offers two types of Bluetooth API support: classic
and low-energy. In both cases, the mutation points could be related
to configuration, scan, connect/pair, and data/information transfer.
Altbeacon also has four action targets: configuration, transmitting,
ranging, and monitoring. Location can be divided into two types:
native API and GMS (i.e., API that is part of Google Play Services).

SBES’25, September 22-26, 2025, Recife, PE

In both cases, the mutation points could be related to configuration
and location-specific methods.

The next step consisted of identifying potential mutation points
for each component action target. Table 2 presents the number of
identified mutation points.

Table 2: Number of identified mutation points.

=

API Type Action #
Configuration
Scan
Connect/Pair
Transfer
Configuration
Scan
Connect/Pair
Transfer
Configuration
Transmitting
Ranging
Monitoring
Configuration
Location-specific
Configuration
Location-specific

Classic

Bluetooth | BLE

AltBeacon

Native

Location

GMS

Bl o]] o] x| arf | | K = v wof =| =| | 00| | Z

Total

As can be seen, the previous step generated a larger number of
possible mutation points. Moreover, various mutation points had
the same code structure, that is, they could represent the same type
of mutation operator. Therefore, a refinement step was carried out
to aggregate the mutation points and form a more fine-grained
group type. After analysis, the 88 mutation points were clustered
into 16 groups, which represent the preliminary set of mutation
operators.

The name of each mutation operator represents the modeled
faults. In a first attempt, we envisioned using the keyword Sensor to
represent this type of mutation operator. However, Android offers
support for Sensor API that does not directly correlate to Bluetooth
and Location and hence, using this keyword would be misleading.
Since both cases rely on mobile device resources, we decided to use
the keyword Device to make a more generic name. Note that we
intend to extend the mutation operators, considering other mobile
device hardware components such as NFC, Wi-Fi, and sensors (e.g.,
gyroscope and accelerometer). Thus, it would be easier to aggregate
new operators using a generic classification. Table 3 presents the
preliminary set of mutation operators.

Next, the HAZOP approach was applied to validate the prelimi-
nary set of operators. Each operator was assigned to one or more
guide words. An operator was excluded from the set whenever
the association between the operator and the guide word did not
occur. Additionally, we describe the possible cause (i.e., the devia-
tion/mutation operator that should be applied) and the consequence
(i-e., system/code behavior when the operator is applied). Table 4
summarizes the results of applying HAZOP.

Nine mutation operators were associated with OTHER THAN
guide word, which consists of replacing the current instantiation,
properties, constants, and method call, causing unexpected behavior
or collateral effects. Two mutation operators associated with AS
WELL AS, that is, it inserts a code snippet without causing any loss
of information. Two operators associated with REVERSE may cause

Kuroishi et al.

Table 3: Set of devised mutation operators.

Operator Name Acronym
BuggyDeviceCallback BDC
TrapDeviceCallback TDC
BuggyDeviceListener BDL
TrapDeviceListener TDL
NullDevicelnstanceDeclaration NDID
DefaultDeviceBuilderInstanceDeclaration DDBID
SwitchConditionalDeviceMethod SCDM
ReplaceConditionalParameterDeviceMethod RCPDM
ShiftDeviceMethodCall SDMC
DeletionDeviceMethods DDM
DeviceVariablesOperator DVO
NullReferenceDeviceMethods NRDM
RandomActionIntentDeviceDefinition RAIDD
ReplaceCompatibleTypeDeviceGetMethods RCTDGM
RandomLocationProviderDeviceReplacement RLPDR
RandomLocationRequestBuilderPriorityDeviceReplacement | RLRBPDR

an expected result from the application by switching the boolean
value of a method or a method parameter. One operator associated
with EARLY and LATE causes an application error. One operator
is associated with MORE and LESS, which increase/decrease the
value of a scalar variable, causing an unexpected result. Finally, one
operator associated with NO/NONE leads to collateral effects. After
analysis, no mutation operators were left without an association
with the guide word. Thus, the final set of mutation operators is
those presented in Table 3.

In the last step, the 16 mutation operators were cross-checked
with the existing operators proposed in previous work. Accord-
ing to Silva et al. [41], four studies proposed mutation operators
for these Android components. Jabbarvand and Malek [14] de-
signed eight mutation operators for Location and four for Blue-
tooth. Linares-Vasquez et al. [20] proposed one mutation operator
for Location and two for Bluetooth. Deng et al. [9] contributed with
one Location operator and Liu et al. [21] designed one operator for
Location and one for Bluetooth. Table 5 presents the relationship
of the mutation operators from literature (see column Literature
Operators) and the ones devised in the present paper (see column
Related to).

The characteristics of the 18 mutation operators proposed in the
literature were compared with the 16 operators of this study. An
operator subsumes another if both have the same characteristic.
For instance, the mutation operators NullGPSLocation and Null-
BluetoothAdapter from [20] have the same characteristics as NDID.
Therefore, NDID subsumes both operators.

After analysis, the mutation operators presented in this paper
subsume all the operators proposed in the previous study, showing
the feasibility and generalizability of our operators.

4.2 Mutation Operator Description

Table 6 summarizes information on the proposed mutation opera-
tors.

As can be observed, six mutation operators are categorized as
Replacement (DDBID, DVO, RAIDD, RCTDGM, RLPDR, and RL-
RBPDR). Four mutation operators are categorized as Null (BDC,
BDL, NDID, NRDM). Two are grouped as Switch (SCDM and
SCPDM). Two operators are categorized as Trap (TDC and TDL).
DDM is categorized as Deletion and SDMC as Shift.

Designing Mutation Operators for Android Device Components: A View Through
Bluetooth and Location API’s

SBES’25, September 22-26, 2025, Recife, PE

Table 4: Results of HAZOP.

Acronym | Guide Word | Cause Consequence

BDC OTHER THAN | Changes the current instantiation of a callback method with a null value. Possible error, or the application may throw a NullPointerException.

TDC AS WELL AS Add a trap method to check the reachability of a callback method. No loss of information, i.e., the callback method is reachable.

BDL OTHER THAN | Changes the current instantiation of a listener method with a null value. Possible error, or the application may throw a NullPointerException.

TDL AS WELL AS Adds a trap method to check the reachability of a listener method. No loss of information, i.e., the listener method is reachable.

NDID OTHER THAN | Changes the current instantiation of a method with a null value. Possible error, or the application may throw a NullPointerException.

DDBID OTHER THAN | Changes the current instantiation of a method with a default instance. Possible error or a loss of object information.

SCDM REVERSE Reverts the current return value of a boolean method. Unexpected result or behavior of the application.

SCPDM REVERSE Reverts the current boolean parameter of a method. Unexpected result or behavior of the application.

SDMC EARLY/LATE | Makes an early/late call of a method. Possible application error.

DDM NO/NONE Deletes a declared method. Unexpected behavior or collateral effects, such as increasing energy consumption.
DVO MORE/LESS Increases/Decreases a numeric value. Possible unexpected result.

NRDM OTHER THAN | Changes the reference parameter of a method with a null value. Possible error or an unexpected result/behavior of the application

RAIDD OTHER THAN | Randomly changes the value of a declared action intent. Unexpected result or behavior of the application.

RCTDGM | OTHER THAN | Changes the declaration of a get method with a similar with the same return type | Possible application error.

RLPDR OTHER THAN | Changes the provider of a Location method. Unexpected behavior or collateral effects, such as increasing energy consumption.
RLRBPDR | OTHER THAN | Changes the priority of a LocationBuilder instantiation. Unexpected behavior or collateral effects, such as increasing energy consumption.

Table 5: Mutation operator subsumption.

A brief description of the operators is presented below, and Fig-

ure 2 illustrates an example of applying three replacement mutation

Table 6: Mutation operator categorization.

[]
Category Mutation Operator
DDBID
DVO
Reul . RAIDD
eplacement RCTDGM o
RLPDR
RLRBPDR
BDC
BDL
Null NDID
NRDM
. SCDM
Switch SCPDM .
Traj TDC
P TDL
Deletion DDM
Shift SDMC
The mutation operator marked with L refers to those that sub- *
sume an operator previously proposed in the academic literature.
A brief description of the relationship between the operators is also
provided.
4.2.1 Replacement Operators. This category groups six different
mutation operators: DDBID, DVO, RAIDD, RCTDGM, RLPDR, and 4.2.2

RLRBPDR. The main goal of this type of operator is to replace the
current value of variables, method calls, parameters, and constants,
or to instantiate an object with a different value instead of null.

DefaultDeviceBuilderInstanceDeclaration (DDBID): The
operator replaces the current instantiation of a Location or
Bluetooth class with a default implementation. These classes
can be instantiated with different parameters and/or prop-
erties. Therefore, this operator declares a builder instance
without these parameters/properties.
DeviceVariablesOperator (DVO) - L: The operator mu-
tates scalar variables. In this case, the scalar variable may
have its value incremented and decremented. It can be asso-
ciated with operators LUF and FDB designed by Jabbarvand
and Malek [14].
RandomActionIntentDeviceDefinition (RAIDD): The
operator replaces the current declaration of a Bluetooth or
Location action intent instance with a random value. It is
worth noting that the action intent is mutated with another
one of the same class.
ReplaceCompatibleTypeDeviceGetMethods (RCTDGM)
— L: The operator replaces the call of a get method of a given
return type with another get method of the same return
type and attached to the same object. This operator can be
associated with the operator LKL from Jabbarvand and Malek
[14] and LCM from Deng et al. [9].
RandomLocationProviderDeviceReplacement (RLPDR)
— L: The operator replaces the Provider constant parameter of
a Location instance with a custom String value or an existing
LocationManager provider. Observe that this operator is
specific to the Location and can be associated with operator
LRP from Jabbarvand and Malek [14].
RandomLocationRequestBuilderPriorityDeviceReplace-
ment (RLRBPDR): The operator replaces the Priority con-
stant parameter of a LocationRequest builder instance with a
custom String value or an existing Priority constant. Similar
to the previous operator, it is only applied to Location.

Ref | Literature Operators Related to operators.
LUF_T, LUF_D DVO
IRP C,LRP_A RLPDR .
RLU, RLU_P, RLU_D DDM
[14] [IKT RCIDGM
UAB SCDM
FDB_H, FDB_S DVO
RBD DDM
NullGPSLocation NDID
[20] | BluetoothAdapterAlwaysEnabled | SCDM
NullBluetoothAdapter NDID °
] | LCM RCTDGM
(21] NullLocation NDID
NullBluetoothAdapter NDID

Null Operators. This category encompasses those mutation

operators that replace the current instantiation of an object with a
null value. Following, a description of the operators is presented as
well as an example of applying two null operators (see Figure 3).

SBES

’25, September 22-26, 2025, Recife, PE

/
p

}

/
p

}

/
p

/ Example of DefaultDeviceBuilderInstanceDeclaration
rivate void example_DDBID() {
// ORIGINAL CODE
LocationRequest locationRequest = new LocationRequest
.Builder(LocationRequest.PRIORITY_HIGH_ACCURACY)
.setIntervalMillis(5000) // 5 seconds
.build();

// MUTANT
LocationRequest locationRequest = new LocationRequest();

/ Example of RandomActionIntentDeviceDefinition
rivate void example_RAIDD() {

// ORIGINAL CODE
Intent enableIntent = new
— Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

// MUTANT
Intent enableIntent = new
— Intent(BluetoothAdapter.ACTION_DISCOVERABLE);

/ Example of ReplaceCompatibleTypeDeviceGetMethods
rivate void example_RCTDGM() {

// ORIGINAL CODE
double latitude = location.getlLatitude();

// MUTANT
double latitude = location.getlLongitude();

Figure 2: Example of mutants generated by three different

Rep.

4.2.3

lacement operators.

e BuggyDeviceCallback (BDC): The operator changes the
current instantiation of a Bluetooth or Location callback to a
null value. That is, the callback has no response to an event
or user interaction.

e BuggyDeviceListener (BDL): The operator changes the
current instantiation of a Bluetooth or Location listener to a
null value. Similar to the previous operator, the listener has
no response to an event or user interaction.

e NullDeviceInstanceDeclaration (NDID): The operator
changes a current instance declaration of a Bluetooth or Lo-
cation class to a null value. This operator can be associated
with operators NullGpsLocation and NullBluetoothAdapter
from Linares-Vasquez et al. [20] and NullLocation and Null-
BluetoothAdapter from the study of Liu et al. [21].

o NullReferenceDeviceMethods (NRDM): The operator
changes the reference parameters of a method with a null
value. This operator tackles method overloading.

Switch Operators. This category encompasses two operators:

SCDM and SCPDM. This type of operator switches the boolean
value of a method parameter or changes the boolean return value
of a method call. A description of each operator is presented below.

Figu

re 4 shows an example of applying SCDM and SCPDM.

e SwitchConditionalDeviceMethod (SCDM): The operator
switches the boolean return value of a Bluetooth or Location
method to “true” and “false”. That is, the operator creates
one mutant with a “true” value and another with a “false”
value. Additionally, it can be associated with operators UAB

Kuroishi et al.

/
p

}

/
p

/ Example of BuggyDevicelListener
rivate void example_BDL() {

// ORIGINAL CODE
LocationListener locationListener = new LocationListener()
= {

@Override

public void onLocationChanged(Location location) {

}
b

// MUTANT
LocationListener locationListener = null;

/ Example of NullReferenceDeviceMethods
rivate void example_NRDM() {

// ORIGINAL CODE
locationManager.requestLocationUpdates(
LocationManager.GPS_PROVIDER,

5000,
10,
locationListener

)5

// MUTANT

locationManager.requestlocationUpdates(
LocationManager.GPS_PROVIDER,
5000,
10,
null

)5

Figure 3: Example of mutants generated by two different Null
operators.

from Jabbarvand and Malek [14] and BluetoothAdapterAl-
waysEnabled from Linares-Vasquez et al. [20].

e SwitchConditionalParameterDeviceMethod (SCPDM):
The operator switches the boolean parameter of a Bluetooth
or Location method. Similar to the previous operator, it
switches the value “true” to “false” and “false” to “true”.

// Example of SwitchConditionalDeviceMethod
private void example_SCDM() {

}

// ORIGINAL CODE
boolean btEnabled = btAdapter.isEnabled();

// MUTANT
boolean btEnabled = true;

// Example of SwitchConditionalParameterDeviceMethod
private void example_SCPDM() {

// ORIGINAL CODE
beaconManager.setEnableScheduledJobs(false);

// MUTANT
beaconManager.setEnableScheduledJobs(true);

Figure 4: Example of mutants generated by two different
Switch operators.

Designing Mutation Operators for Android Device Components: A View Through
Bluetooth and Location API’s

4.2.4 Trap Operators. This operator inserts a trap method to reveal
the reachability of a code in the application [1]. It is specifically
inserted into the callback or listener interface method. Whenever
the trap method is executed, the mutant is killed and hence, the
callback or listener method is reachable. A brief description of the
operators is presented, and Figure 5 exemplifies their application.

e TrapDeviceCallback (TDC): The operator inserts a trap
method inside a callback.

e TrapDeviceListener (TDL): The operator inserts a trap
method inside a listener method.

4.2.5 Deletion Operator. This type of mutation operator deletes a
statement declaration of the application. Below is a description of
DDM and an example of its application (see Table 6).

e DeletionDeviceMethods (DDM): The operator deletes a
statement of methods that close, stop, and/or deallocate an
existing process or service. It may cause collateral effects
such as increasing the energy consumption of an application.
This operator is associated with operators RLU and RBD
from Jabbarvand and Malek [14].

4.2.6 Shift Operators. This type of mutation operator moves the
declaration of a method to another place in the source code. Fol-
lowing is a description of SDMC and an example of its application
(see Figure 7).

e ShiftDeviceMethodCall (SDMC): The operator shifts a
Bluetooth or Location method call to another part of the
source code. It can be shifted into the same method or in a
different method from the same class.

4.3 Discussion

In the previous section, all 16 mutation operators were properly
described. For space reasons, we did not present an example for
all mutation operators. See Section “Data Availability” to access
the URL link to the repository containing all supplementary data
collected in this work.

The 16 mutation operators were grouped into six categories (Re-
placement, Null, Switch, Trap, Deletion, and Shift) to mimic the
possible faults that may occur during development. Note that the
proposed operators may not cover all Bluetooth, AltBeacon, and Lo-
cation functionalities. To minimize this possible threat, we focused
on the main functionalities of each component. Additionally, the
mutation operators were designed to be generic and hence, it could
be extended for other functionalities and mobile device resources.

Additionally, we cross-checked the proposed operators against
those previously defined in the academic literature. As observed,
six of these operators (DVO, RLPDR, DDM, RCTDGM, SCDM, and
NDID) have subsumed the existing ones, whereas ten of them are
new contributions to the present work.

Finally, when observing the characteristics of the proposed muta-
tion operators, we found that parametrization is essential for some
operators. For example, the mutation operator RandomActionIn-
tentDeviceDefinition (RAIDD) requires a valid action intent from
the same class. That is, if the operator mutates an action intent
from “BluetoothAdapter”, it is expected that the mutation operator

SBES’25, September 22-26, 2025, Recife, PE

// Example of TrapDeviceCallback
private void example_TDC() {

// ORIGINAL CODE
private ScanCallback bleScanCallback = new ScanCallback() {
@Override
public void onScanResult(int callbackType, ScanResult result)
= {
super.onScanResult(callbackType, result);

3
3
// MUTANT
private ScanCallback bleScanCallback = new ScanCallback() {
@Override
public void onScanResult(int callbackType, ScanResult result)
= {
super.onScanResult(callbackType, result);
TRAP_ON_CALLBACK() ;
3
b

}

// Example of TrapDevicelListener
public void example_TDL() {

// ORIGINAL CODE

LocationListener locationListener = new LocationListener() {
@Override
public void onLocationChanged(Location location) {

3}
3
// MUTANT
LocationListener locationListener = new LocationListener() {
@Override
public void onLocationChanged(Location location) {
TRAP_ON_LISTENER() ;
3}
3}

Figure 5: Example of mutants generated by two different
Trap operators.

// Example of DeletionDeviceMethods

// ORIGINAL CODE
private void example_DDM() {

fusedLocationProviderClient. flushLocations();

}

// MUTANT
private void example_DDM() {

Figure 6: Example of a mutant generated by DDM.

g

replaces the intent with another one from the “BluetoothAdapter’
class.

Note that parametrization makes the approach more flexible
because it provides to the developer the possibility of creating a set

SBES’25, September 22-26, 2025, Recife, PE

// Example of ShiftDeviceMethodCall

// ORIGINAL CODE
private void example_SDMC() {
@Override
public void onCreate(Bundle savedInstanceState) {

}

@0verride
public void onPause() {
super.onPause();
bluetoothServerSocket.close();
}
}

// MUTANT
private void example_SDMC() {
@Override
public void onCreate(Bundle savedInstanceState) {

bluetoothServerSocket.close();

}

@Override
public void onPause() {
super.onPause();

3

Figure 7: Example of two mutants generated by SDMC.

of possible mutation operators to be applied. That is, the developer
controls the intent, methods, or values to be mutated.

5 Empirical Cost Evaluation

This section provides an empirical cost evaluation of applying the
mutation operators by assessing the number of mutants generated
per application and the number of mutants generated per operator.
For this evaluation, two subject apps were selected. Moreover, these
apps were adopted in other studies [14, 36]:

(1) a2dpvolume?: This app automatically adjusts the media
volume on connect and resets on disconnect.

(2) runnerup’: This app tracks sports activities using GPS from
Android devices.

Each app was carefully evaluated, and the mutants were man-
ually generated whenever a possible mutation point was found.
For this purpose, the mutation point was replaced with a possible
mutant, and the code was recompiled to check the validity of the
mutation. Note that all mutants compiled successfully.

In this analysis, only a single mutant was generated for the
mutation point that allows applying the same mutation operators
multiple times. For instance, the operator RAIDD may generate a
large number of mutants considering a mutation point, but only
a single mutant is considered in the analysis. Therefore, this anal-
ysis provides the lower boundary mutants generated per app as
presented in Table 7. From now on, we refer to the a2dpvolume
application as APP; and to the runnerup application as APP;.

As can be observed, the APP; is a smaller application but gener-
ates 35 more mutants than APP,. One plausible explanation is that
the APP, has fewer classes related to Location and Bluetooth that

*https://github.com/jroal/a2dpvolume
Shttps://github.com/jonasoreland/runnerup

Kuroishi et al.

Table 7: Number of mutants generated per app.

App Id | Name # Classes | # Mutated Classes | # Mutants
APP; a2dpvolume 22 7 86
APP, runnerup 150 12 51

can be mutated compared to APP;. Additionally, APP; generates
mutants for Bluetooth and Location, whereas APP, generates only
for Location. Moreover, none of the applications generated mu-
tants for the AltBeacon API, which may reflect the lack of mutant
generation for some mutation operators.

Next, Figure 8 presents the number of generated mutants per
operator.

W a2dp.Vol runnerup

BDC 1
TDC 9
BDL
TDL
NDID 14
DDBID
SCDM 1
RCPDM
SbmMcC
DDM 4
bvo 1
NRDM 1 3
RAIDD 6
RCTDGM 15 4
RLPDR 5 3
RLRBPDR

20

Mutation Operator

50 25 0 25 50

Figure 8: Number of mutants generated per operator.

The results show that the operator RCTDGM generates the
largest number of mutants for both apps. In the case of APPy, 41
mutants were generated, representing a total of 47% of mutants.
APP; generated 15 mutants, that is, 29% of all mutants. It is worth
noting that the mutation operator was applied once per mutation
location. Therefore, the number of mutants generated would in-
crease if the operator replaces the call of the get methods from an
object with all possible permutations.

The second operator that generated the most mutants was NDID.
For APP;, the operator generated 20 mutants (i.e., 23%) whereas
APP; generated 14 mutants (i.e., 27%). Additionally, five mutation
operators generated mutants for a single application. The operators
BDL and TDL only mutated APP; while the operators BDC, TDC,
and DVO mutated APP;.

On the other hand, four operators did not generate any mutants
for the two applications: DDBID, RCPDM, SDMC, and RLRBPDR.
Note that this does not imply that these are useless mutation oper-
ators. For instance, the RCPDM operator is useful for applications
that rely on the AltBeacon library due to the API structure. Similar
to RLRBPDR, which requires the instantiation of a LocationRe-
quest.Builder method to generate the mutant. In this case, it was
possible to observe that the subject apps did not implement those
functionalities that the operators mutate and hence, the statistics
may change if a broader set of subject apps is considered.

Observe that this analysis only focuses on the viability of the
mutation operators, i.e., if they are capable of generating mutants

Designing Mutation Operators for Android Device Components: A View Through
Bluetooth and Location API’s

for Bluetooth and Location applications. Therefore, it is expected
that in the future, an in-depth evaluation of the proposed mutation
operators regarding their usefulness, i.e., subsumption, equivalence,
and triviality [16].

6 Related Work
6.1 Android Mutation Operators

Silva et al. [41] presented a systematic mapping study assessing
the studies related to mutation testing for mobile applications. As
a result, the study found that a total of 138 mutation operators
were proposed across 16 primary studies, as the majority focus on
configuration and GUI aspects.

On the other hand, few studies focus on other mobile device
components such as connectivity, location, and sensors. That is,
only four studies proposed at least one mutation operator for these
components. Jabbarvand and Malek [14] investigated mutation
operators aiming at energy consumption. That is, the faults are
modeled to verify whether they may result in a difference in energy
consumption between the mutant and the original AUT. In total,
50 mutation operators were designed, of which eight related to
Location and four related to Bluetooth.

Linares-Vasquez et al. [20] proposed an in-depth study that de-
fines a taxonomy of the main Android faults. Then, 38 mutation
operators were devised based on the taxonomy. One operator re-
lated to the Location injects a null GPS location. Additionally, two
mutation operators are associated with Bluetooth: one makes the
“BluetoothAdapter” instance always enabled, whereas the other
instantiates “BluetoothAdapter” with a null value.

Deng et al. [9] designed 17 mutation operators categorized as:
Event-based, Component Lifecycle, XML-related, Common Faults,
Context-aware, Energy-related, and Network-related. From this
set, only one relates to Location, which mutates attributes such as
latitude, longitude, altitude, and speed.

Finally, Liu et al. [21] proposed 32 mutation operators divided
in Android-specific operators and Java-specific operators. Only
one Bluetooth mutation operator was proposed that instantiates
“BluetoothAdapter” with null, similar to the operator proposed
by Linares-Vasquez et al. [20].

6.2 HAZOP for Mutation Operators Design

As discussed, there is still no standardized methodology for muta-
tion operator design. However, some initiatives try to use existing
systematic approaches aiming at minimizing any possible bias.
The Hazard and Operability approach, or HAZOP, was applied
in some studies to facilitate the mutation operator design. Kim et al.
[18] uses HAZOP to devise mutation operators for Java programs.
Araujo et al. [2] applied HAZOP to design mutation operators
for Dynamic System Models totaling 12 operators. Savarimuthu
and Winikoff [40] applied HAZOP for the GOAL language, devising
21 mutation operators. Zhang et al. [45] proposed 191 mutation
operators for Restricted Use Case Modelling (or RUCM).

7 Conclusion

This paper provided an initial investigation of the design of Android
mutation operators for specific components, i.e., Bluetooth and
Location. This study considered the Android native API and the

SBES’25, September 22-26, 2025, Recife, PE

third-party library AltBeacon. The rationale is that the present
study is being conducted in an academia-industry partnership in
which the company develops applications that heavily rely on these
components.

Overall, this work resulted in 16 different Bluetooth and Loca-
tion mutation operators by using a systematic approach named
HAZOP. The operators were categorized based on their types: Re-
placement, Null, Switch, Trap, Deletion, and Shift. Additionally, we
validated the mutation operators by manually generating the mu-
tants, considering two Android applications showing the validity
and feasibility of the operators, i.e., their capabilities of generating
real faults related to these two components.

By providing a generic set of mutant operators, we advocate that
the extension of the mutation operators for other mobile device
components, such as Wi-Fi, NFC, and sensors, would be easily
carried out. All these components have an API structure similar to
Bluetooth and Location, thus, many operators can be reused for
these device resources. For instance, they rely on callback or listener
functions to handle events or actions, thus, it is possible to extend
the operators BDC, BDL, TDC, and TDL to handle these device
components. Therefore, we intend to extend the set of mutation
operators once they are validated in a controlled experimental
environment and an industrial scenario.

Regarding automation aspects, we intend to implement the mu-
tation operators for automatic generation and execution of the
mutants. As presented by Silva et al. [41], there are still few tools
that support mutation testing for mobile applications. In fact, only
three of them support all stages of mutation testing: generation,
execution, and analysis. Recently, Vincenzi et al. [44] proposed
METFORD, a mutation testing framework that implements a set
of mutation operators considering the Mutation Schemata [39, 42]
and traditional approach.

In an initial analysis, METFORD appears to address the imple-
mentation requirements of the proposed operators, as it is an open-
source tool that supports the parametrization of mutation operators.
That is, it allows the tester to set mutation operators to be applied
and their parameters. For instance, one can set the scalar values
to be incremented and decremented from the DVO operator. This
provides a more controllable environment for the tester to inject all
the desired faults. Additionally, this approach also benefits the reuse
of the proposed mutation operators for other device components
without enlarging the existing set.

We intend to validate the mutation operators through experi-
mentation using open-source Android applications and conduct
case studies in an industrial scenario. The main difficulty is find-
ing Bluetooth, Location, or AltBeacon apps with implemented
tests. Pecorelli et al. [38] conducted an empirical study and found
that few Android applications (approximately 40% of the evaluated
apps) contain at least one test suite. Moreover, Vincenzi et al. [44]
showed the poor quality of existing test suites of Android applica-
tions, given the defect models proposed in their work. Therefore, we
will explore strategies to establish a viable benchmark for validating
the mutation operators.

SBES’25, September 22-26, 2025, Recife, PE

ARTIFACT AVAILABILITY

The following repository contains all the supplementary data col-
lected from this work: https://github.com/phkuroishi/paper-sbes-
device-mutation-operator.

ACKNOWLEDGMENTS

The authors would like to thank the funding agencies that helped
carry out this work: CAPES (Grant n° 001 and 88887.888653/2023-
00), CNPq (Grant n° 141137/2021-5 and 140435/2025-5), and FAPESP
(Grant n° 2019/23160-0 and 2023/00001-9).

REFERENCES

[1] Hiralal Agrawal, Richard A DeMillo, R_ Hathaway, William Hsu, Wynne Hsu,
Edward W Krauser, Rhonda J Martin, Aditya P Mathur, and Eugene Spafford.
1989. Design of mutant operators for the C programming language. Technical
Report. Technical Report SERC-TR-41-P, Software Engineering Research Center,
Purdue.

Rodrigo Fraxino Araujo, José Carlos Maldonado, Marcio Eduardo Delamaro,

Auri Marcelo Rizzo Vincenzi, and Francois Delebecque. 2011. Devising mutant

operators for dynamic systems models by applying the HAZOP study. In Inter-

national Conference on Software Engineering Advances - ICSEA 2011. IARIA - The

International Academy Research and Industry Association, Barcelona, Spain,

58-64.

Jeremy S. Bradbury, James R. Cordy, and Juergen Dingel. 2006. Mutation Op-

erators for Concurrent Java (J2SE 5.0). In Second Workshop on Mutation Anal-

ysis (Mutation 2006 - ISSRE Workshops 2006). IEEE, Raleigh, NC, USA, 11-11.

doi:10.1109/MUTATION.2006.10

[4] M.F. Chudleigh, J. R. Catmur, Arthur D. Little, and F. Redmill. 1995. A Guideline
for HAZOP Studies on Systems which include a Programmable Electronic System.
In Safe Comp 95, Gerhard Rabe (Ed.). Springer London, London, 42-58.

[5] M.E. Delamaro, J.C. Maldonado, and A.P. Mathur. 2001. Interface Mutation: an
approach for integration testing. IEEE Transactions on Software Engineering 27, 3
(2001), 228-247. do0i:10.1109/32.910859

[6] Marcio Delamaro, Mauro Pezzé, and Auri Vincenzi. 2001. Mutant Operators
for Testing Concurrent Java Programs. In Anais do XV Simpésio Brasileiro de
Engenharia de Software (Rio de Janeiro/R]). SBC, Porto Alegre, RS, Brasil, 272-285.
doi:10.5753/sbes.2001.23994

[7] R.A. DeMillo, RJ. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (1978), 34-41. doi:10.1109/C-
M.1978.218136

[8] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. 2017. Mutation

operators for testing Android apps. Information and Software Technology 81 (Jan.

2017), 154-168. doi:10.1016/j.infs0f.2016.04.012

Lin Deng, Jeff Offutt, and David Samudio. 2017. Is Mutation Analysis Effective

at Testing Android Apps?. In 2017 IEEE International Conference on Software

Quality, Reliability and Security (QRS). IEEE, Prague, Czech Republic, 86-93.

doi:10.1109/QRS.2017.19
[10] Anna Derezinska and Konrad Halas. 2014. Analysis of Mutation Operators for
the Python Language. In Proceedings of the Ninth International Conference on
Dependability and Complex Systems DepCoS-RELCOMEX. June 30 — July 4, 2014,
Brunoéw, Poland, Wojciech Zamojski, Jacek Mazurkiewicz, Jarostaw Sugier, Tomasz
Walkowiak, and Janusz Kacprzyk (Eds.). Springer International Publishing, Cham,
155-164. doi:10.1007/978-3-319-07013-1_15

[11] Camilo Escobar-Velasquez, Mario Linares-Vasquez, Gabriele Bavota, Michele
Tufano, Kevin Moran, Massimiliano Di Penta, Christopher Vendome, Carlos
Bernal-Cardenas, and Denys Poshyvanyk. 2022. Enabling Mutant Generation
for Open- and Closed-Source Android Apps. IEEE Transactions on Software
Engineering 48, 1 (Jan. 2022), 186-208. doi:10.1109/TSE.2020.2982638

[12] Jonathan Fiirst, Kaifei Chen, Hyung-Sin Kim, and Philippe Bonnet. 2018. Eval-
uating Bluetooth Low Energy for IoT. In 2018 IEEE Workshop on Benchmarking
Cyber-Physical Networks and Systems (CPSBench). IEEE, Porto, Portugal, 1-6.
d0i:10.1109/CPSBench.2018.00007

[13] S. Gowrishankar, N. Madhu, and T. G. Basavaraju. 2015. Role of BLE in proximity

based automation of IoT: A practical approach. In 2015 IEEE Recent Advances

in Intelligent Computational Systems (RAICS). IEEE, Trivandrum, India, 400-405.

doi:10.1109/RAICS.2015.7488449

Reyhaneh Jabbarvand and Sam Malek. 2017. pDroid: an energy-aware mutation

testing framework for Android. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE 2017). Association for Computing

Machinery, New York, NY, USA, 208-219. doi:10.1145/3106237.3106244

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of

Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011), 649-678.

doi:10.1109/TSE.2010.62

&

=

=

[14

[15

Kuroishi et al.

[16] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring mutant utility from

program context. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA
2017). Association for Computing Machinery, New York, NY, USA, 284-294.
doi:10.1145/3092703.3092732

Sunwoo Kim, John Clark, and John Mcdermid. 2000. Class mutation: Mutation
testing for object-oriented programs. In Proc. Net. ObjectDays. 9-12.

Sunwoo Kim, John Clark, and John Mcdermid. 2000. The rigorous generation of
Java mutation using HAZOP. In In Proceedings of the 12 the International Con-
ference on Software and Systems Engineering and Their Applications (ICSSEA’99).
TBA, Paris, France.

M. Lakshmi, Alolika Panja, Naini, and Shakti Mishra. 2019. Customer’s Activity
Recognition in Smart Retail Environment Using AltBeacon. In Emerging Research
in Computing, Information, Communication and Applications, N. R. Shetty, L. M.
Patnaik, H. C. Nagaraj, Prasad Naik Hamsavath, and N. Nalini (Eds.). Springer
Singapore, Singapore, 591-604.

Mario Linares-Vasquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massi-
miliano Di Penta, Christopher Vendome, Carlos Bernal-Cardenas, and Denys
Poshyvanyk. 2017. Enabling mutation testing for Android apps. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 233-244. doi:10.1145/3106237.3106275

Jian Liu, Xusheng Xiao, Lihua Xu, Liang Dou, and Andy Podgurski. 2020. Droid-
Mutator: an effective mutation analysis tool for Android applications. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings (Seoul, South Korea) (ICSE "20). Association for Comput-
ing Machinery, New York, NY, USA, 77-80. doi:10.1145/3377812.3382134
Google LLC. 2025. Bluetooth overview. https://developer.android.com/develop/
connectivity/bluetooth/. (Accessed on 28/03/2025).

Google LLC. 2025. Location overview. https://developer.android.com/develop/
sensors-and-location/location. (Accessed on 28/03/2025).

Google LLC. 2025. Overview of Google Play Services. https://developers.google.
com/android/guides/overview. (Accessed on 28/03/2025).

Eduardo Luna and Omar El Ariss. 2018. Edroid: A Mutation Tool for Android
Apps. In 2018 6th International Conference in Software Engineering Research and
Innovation (CONISOFT). IEEE, San Luis Potosi, Mexico, 99-108. do0i:10.1109/
CONISOFT.2018.8645883

Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie,
Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepMutation: Mutation
Testing of Deep Learning Systems. In 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, Memphis, TN, USA, 100-111.
doi:10.1109/ISSRE.2018.00021

Yu-Seung Ma, Yong-Rae Kwon, and J. Offutt. 2002. Inter-class mutation operators
for Java. In 13th International Symposium on Software Reliability Engineering, 2002.
Proceedings. IEEE, Annapolis, MD, USA, 352-363. doi:10.1109/ISSRE.2002.1173287
Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. 2006. MuJava: a mutation system
for java. In Proceedings of the 28th international conference on Software engineering
(ICSE °06). Association for Computing Machinery, New York, NY, USA, 827-830.
doi:10.1145/1134285.1134425

Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2013. Efficient
JavaScript Mutation Testing. In 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation. IEEE, Luxembourg, Luxembourg, 74-83.
do0i:10.1109/ICST.2013.23

Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. 2012. Software
testing of mobile applications: Challenges and future research directions. In 2012
7th International Workshop on Automation of Software Test (AST). IEEE, Zurich,
Switzerland, 29-35.

Muneeb Muzamal and Aamer Nadeem. 2019. Improving test adequacy assessment
by novel JavaScript mutation operators. In 2019 16th International Bhurban Con-
ference on Applied Sciences and Technology (IBCAST). IEEE, Islamabad, Pakistan,
647-652. doi:10.1109/IBCAST.2019.8667222

Radius Network and David G. Young. 2025. AltBeacon overview. https://altbeacon.
github.io/android-beacon-library/. (Accessed on 28/03/2025).

Kazuki Nishiura, Yuta Maezawa, Hironori Washizaki, and Shinichi Honiden. 2013.
Mutation Analysis for JavaScriptWeb Application Testing.. In SEKE, Vol. 2013.
KSI Research Inc, Boston, Massachusetts, USA, 159-165.

James Jerson Ortiz Vega, Gilles Perrouin, Moussa Amrani, and Pierre-Yves
Schobbens. 2018. Model-Based Mutation Operators for Timed Systems: A Tax-
onomy and Research Agenda. In 2018 IEEE International Conference on Soft-
ware Quality, Reliability and Security (QRS). IEEE, Lisbon, Portugal, 325-332.
doi:10.1109/QRS.2018.00045

Ana C. R. Paiva, Jodao M. E. P. Gouveia, Jean-David Elizabeth, and Marcio E.
Delamaro. 2019. Testing When Mobile Apps Go to Background and Come
Back to Foreground. In 2019 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, Xi’an, China, 102-111.
do0i:10.1109/ICSTW.2019.00038

Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of Android applications.

https://github.com/phkuroishi/paper-sbes-device-mutation-operator
https://github.com/phkuroishi/paper-sbes-device-mutation-operator
https://doi.org/10.1109/MUTATION.2006.10
https://doi.org/10.1109/32.910859
https://doi.org/10.5753/sbes.2001.23994
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1109/QRS.2017.19
https://doi.org/10.1007/978-3-319-07013-1_15
https://doi.org/10.1109/TSE.2020.2982638
https://doi.org/10.1109/CPSBench.2018.00007
https://doi.org/10.1109/RAICS.2015.7488449
https://doi.org/10.1145/3106237.3106244
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1145/3106237.3106275
https://doi.org/10.1145/3377812.3382134
https://developer.android.com/develop/connectivity/bluetooth/
https://developer.android.com/develop/connectivity/bluetooth/
https://developer.android.com/develop/sensors-and-location/location
https://developer.android.com/develop/sensors-and-location/location
https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview
https://doi.org/10.1109/CONISOFT.2018.8645883
https://doi.org/10.1109/CONISOFT.2018.8645883
https://doi.org/10.1109/ISSRE.2018.00021
https://doi.org/10.1109/ISSRE.2002.1173287
https://doi.org/10.1145/1134285.1134425
https://doi.org/10.1109/ICST.2013.23
https://doi.org/10.1109/IBCAST.2019.8667222
https://altbeacon.github.io/android-beacon-library/
https://altbeacon.github.io/android-beacon-library/
https://doi.org/10.1109/QRS.2018.00045
https://doi.org/10.1109/ICSTW.2019.00038

Designing Mutation Operators for Android Device Components: A View Through
Bluetooth and Location API’s

In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Virtual Event, USA) (ISSTA 2020). Association for Computing

Machinery, New York, NY, USA, 153-164. doi:10.1145/3395363.3397354
[37

Elsevier, 275-378. d0i:10.1016/bs.adcom.2018.03.015
[38

1007/510664-021-10059-5

[39] Macario Polo-Usaola and Isyed Rodriguez-Trujillo. 2021. Analysing the combina-
tion of cost reduction techniques in Android mutation testing. Software Testing,

Verification and Reliability 31, 7 (2021), €1769. doi:10.1002/stvr.1769
[40

delberg, Berlin, Heidelberg, 255-273.
[41

doi:10.1002/stvr.1801
[42

139-148. doi:10.1145/174146.154265

[43] Enrico Vigano, Oscar Cornejo, Fabrizio Pastore, and Lionel C. Briand. 2023. Data-
Driven Mutation Analysis for Cyber-Physical Systems. IEEE Transactions on
Software Engineering 49, 4 (April 2023), 2182-2201. doi:10.1109/TSE.2022.3213041

Conference Name: IEEE Transactions on Software Engineering.

[44] Auri M. R. Vincenzi, Pedro H. Kuroishi, Jodo Bispo, Ana R. C. da Veiga, David
R. C. da Mata, Francisco B. Azevedo, and Ana C. R. Paiva. 2025. METFORD -
Mutation tEsTing Framework fOR anDroid. Journal of Systems and Software 222

(April 2025), 112332. doi:10.1016/j.js5.2024.112332
[45

doi:10.1145/2976767.2976784

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Chapter Six - Mutation Testing Advances: An Analysis and Survey.
In Advances in Computers, Atif M. Memon (Ed.). Advances in Computers, Vol. 112.

Fabiano Pecorelli, Gemma Catolino, Filomena Ferrucci, Andrea De Lucia, and
Fabio Palomba. 2021. Software testing and Android applications: a large-scale
empirical study. Empirical Software Engineering 27, 2 (14 Dec 2021), 31. doi:10.

Sharmila Savarimuthu and Michael Winikoff. 2013. Mutation Operators for the
Goal Agent Language. In Engineering Multi-Agent Systems, Massimo Cossentino,
Amal El Fallah Seghrouchni, and Michael Winikoff (Eds.). Springer Berlin Hei-

Henrique Neves Silva, Jackson Prado Lima, Silvia Regina Vergilio, and An-
dre Takeshi Endo. 2022. A mapping study on mutation testing for mobile
applications. Software Testing, Verification and Reliability 32, 8 (2022), e1801.

Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. 1993. Mutation
analysis using mutant schemata. SIGSOFT Softw. Eng. Notes 18, 3 (July 1993),

Huihui Zhang, Tao Yue, Shaukat Ali, and Chao Liu. 2016. Towards mutation anal-
ysis for use cases. In Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems (Saint-malo, France) (MOD-
ELS ’16). Association for Computing Machinery, New York, NY, USA, 363-373.

SBES’25, September 22-26, 2025, Recife, PE

https://doi.org/10.1145/3395363.3397354
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1007/s10664-021-10059-5
https://doi.org/10.1007/s10664-021-10059-5
https://doi.org/10.1002/stvr.1769
https://doi.org/10.1002/stvr.1801
https://doi.org/10.1145/174146.154265
https://doi.org/10.1109/TSE.2022.3213041
https://doi.org/10.1016/j.jss.2024.112332
https://doi.org/10.1145/2976767.2976784

	ABSTRACT
	1 Introduction
	2 Background
	2.1 Mutation Operators for Android
	2.2 Bluetooth and Location API
	2.3 Hazard and Operability Studies – HAZOP

	3 Study Setup
	3.1 Study Goal
	3.2 Study Design
	3.3 Empirical Cost Evaluation

	4 Mutation Operator Description
	4.1 Designing Process
	4.2 Mutation Operator Description
	4.3 Discussion

	5 Empirical Cost Evaluation
	6 Related Work
	6.1 Android Mutation Operators
	6.2 HAZOP for Mutation Operators Design

	7 Conclusion
	REFERENCES

