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ABSTRACT

In the last two decades, several studies have utilized biogeochemical models to evaluate the impact of different edaphoclimatic
conditions on soil carbon storage and the dynamics of soil organic carbon. At the same time, biochar, a carbon-rich material
obtained from the pyrolysis of biomass residues, has been identified as a promising carbon sequestration material. However,
current models do not adequately incorporate the role of biochar in soil management. In this context, the current state of research
on biogeochemical models that include the entry of biochar into soil has been characterized. The research indicated that the
development of studies on the topic “biochar” is widely explored, with 4259 papers being identified using the first search filter.
Specifically, searching for studies that mentioned terms related to biogeochemical models for estimating soil carbon stock, it was
observed that a small number of the studies (N=46) considered the entry of biochar into the models. Although most studies have
used the RothC model to simulate biochar within biogeochemical models, biochar inputs have also been implemented in APSIM,
EPIC, Century, DNDC, and other models, including those not primarily focused on soil carbon stock estimation. Among these
studies, the minority included the results of calibration and validation of the models, which are paramount for the model's cred-
ibility. Therefore, efforts must be concentrated on solving the lack of valuable data to validate the models. Data from long-term
field experiments that consider interactions between crop and climate conditions are highly desirable. The possibility of increas-
ing carbon stocks by incorporating biochar into the soil could promote environmental and financial gains, and biogeochemical
models that consider the incorporation of biochar are valuable tools for decision-makers.

1 | Introduction practices, can act as a source or sink of greenhouse gas (GHG)

emissions (IPCC 2019). Improving land use and soil management
Soil carbon (C) storage plays a crucial role for mitigating global in agriculture can increase soil C stocks and mitigate climate
climate change, and depending on the land use and management change (Ma et al. 2023). Several practices have been proposed

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

© 2025 The Author(s). GCB Bioenergy published by John Wiley & Sons Ltd.

GCB Bioenergy, 2025; 17:¢70037 1of 11
https://doi.org/10.1111/gcbb.70037


https://doi.org/10.1111/gcbb.70037
https://doi.org/10.1111/gcbb.70037
mailto:
https://orcid.org/0000-0002-1241-6236
mailto:joao.carvalho@lnbr.cnpem.br
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcbb.70037&domain=pdf&date_stamp=2025-04-25

worldwide as strategies to increase soil C stocks in the long
term, including the application of biochar (Paustian et al. 2016).
Biochar, the solid product of biomass pyrolysis, is considered a
highly viable climate-smart solution (IPCC et al. 2019; Joseph
et al. 2021; Lehmann 2007; Smith 2016; Fouché et al. 2023). In
addition to its contribution to C sequestration, biochar appli-
cation has been shown to enhance soil fertility and positively
influence agricultural productivity, as demonstrated by several
studies (Yang et al. 2025; Xu et al. 2025).

To understand why biochar supports soil C storage, it is nec-
essary to consider the photosynthetic process in which the
carbonaceous metabolites and biomass produced by plants re-
turn to CO, when the plant-derived materials are decomposed
(Figure 1). In the pyrolysis process, plant residues are thermally
degraded in an environment with limited oxygen, promoting
structural reorganization of the material, which promotes C
storage in a stable form.

Biochar consists of stacked polycondensed aromatic C struc-
tures, including crystalline graphene sheets and amorphous
aromatic structures (Conte et al. 2021). The mineralization of
this carbonaceous material back to CO, is extremely slow (Conte
et al. 2021; Lehmann et al. 2011). Estimating the potential for C
sequestration by incorporating biochar is necessary to predict
its stability in soils. While biochar properties are the primary
determinant of its persistence compared to the mineralization of
nonpyrolyzed biomass, edaphic and climatic factors also play a
significant role (Joseph et al. 2021). Therefore, a comprehensive
understanding of soil-crop-climate-biochar interactions at the
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systems level is essential to predict if C stock responses will be
positive, negative, or neutral (Archontoulis et al. 2016). Relying
solely on field measurements to grasp these intricate interac-
tions can be highly challenging and expensive.

Traditionally, basic empirical models have been employed to as-
sess biochar stability and the resulting C accumulation within
the soil. Seeking to enhance the biochar assessment framework,
Woolf et al. (2021) developed the model by incorporating a
broader analysis of existing research and expanding parameter-
ization for biochar persistence estimation. Their methodology,
relying on meta-analysis and curve fitting of incubation studies,
yields estimates of the fraction of biochar C retained in the soil
(Fperm) at 100, 500, and 1000years. This enhanced approach is
now integral to several biochar certification schemes, such as
the Puro. earth and Verra VCS.

Nonetheless, empirical equations for biochar stability as-
sessment have limitations, as recently highlighted by Sanei
et al. (2025) and Ringsby and Maher (2025). Specifically, current
models fail to adequately represent the complex biochar degra-
dation process, particularly the presence of a recalcitrant C frac-
tion with decomposition rates below the detection threshold in
short-term incubation studies. This discrepancy compromises
the correlation between biochar stability and the degree of car-
bonization, potentially leading to an underestimation of the C
sequestration potential. Therefore, the improvement and use of
biogeochemical mathematical models that consider the complex
interactions among soil, biochar, plants, and edaphoclimatic
conditions are essential.
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FIGURE1 | Conceptual perspective on the carbon cycle and benefits of biochar application in soil.
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Biogeochemical models such as the Rothamsted carbon model
(RothC)(Coleman et al. 1997), the Environmental Policy Integrated
Climate (EPIC) model (Williams et al. 1995), the Century Model
(Parton et al. 1994), DayCent (Del Grosso et al. 2005; Parton
et al. 1998), and DeNitrification-DeComposition (DNDC) (Li
et al. 1992a, 1992b) play a crucial role in long-term simulation of
soil C dynamics. They provide a reliable estimate and cost-effective
approach to address complex interactions within soil, plant, and
environmental dynamics, offering efficiency in both cost and time
(Jiang et al. 2023). The use of models is already being considered
by some certifiers for the commercialization of C credits, such
as Approach 1 (Measure and Model) (Davoudabadi et al. 2023).
However, these models face limitations due to the lack of extensive
feedback and validation data on detailed spatial and temporal C
patterns, primarily stemming from challenges in soil C monitor-
ing (Dwivedi et al. 2023).

The extended time frame required to evaluate changes in soil
C stocks can be considered an obstacle. Biogeochemical mod-
els offer an important approach to comprehending the drivers
of long-term soil C dynamics and provide an opportunity to de-
termine whether biochar addition to agricultural soil can yield
positive impacts (Oelbermann et al. 2023). Currently, biogeo-
chemical models incorporating biochar are still relatively scarce.
Here, we provide a concise overview of biogeochemical models
used to simulate soil C stocks with biochar input. The primary
objective of this study was to conduct a literature review to iden-
tify key findings from relevant studies and identify critical re-
search gaps. This review will guide future research directions
by highlighting areas where further investigation is needed to

explore the underlying mechanisms governing biochar-soil in-
teractions and their impact on simulation models.

2 | Materials and Methods
2.1 | Data Collection and Processing

This bibliometric analysis was performed using the Web of Science
(WoS) (Clarivate Analytics) platform. The search considered terms
mentioned in the “title, abstract, and keywords” (Topic field) of
each record and was limited to research articles published between
2000 and 2024. Figure 2 showed the retrieval terms used were:
Filter 1: TS=((Biochar) AND (biogeochemical models OR model
OR simulation) AND (soil organic matter OR carbon sequestra-
tion OR carbon stocks OR carbon OR soil carbon stock OR carbon
soil)). Filter 2: TS=((Biochar) AND (soil) AND (biogeochemical
models OR model OR simulation) AND (soil organic matter OR
carbon sequestration OR carbon stocks OR carbon OR soil carbon
stock OR carbon soil)). Filter 3: TS=((Biochar) AND (biogeochem-
ical models OR model OR simulation) AND (soil carbon stock)).
Filter 4: TS=((Biochar) AND (biogeochemical models OR model
OR simulation) AND (soil carbon stock) AND (tropical soil)).

Here, “TS” denotes the “theme subject” search within the
WoS database. Utilizing keywords, the TS retrieval technique
employs Boolean logic to efficiently locate a significant vol-
ume of literature pertinent to the topic (Mongeon and Paul-
Hus 2016). The data extracted underwent three main stages
of processing: removal of duplicate entries, elimination of

= Web of Science”

And [biogeochemical models] Or [ model ’ Or [ simulation I
Biochar - - carbon - -
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FIGURE 2 | Retrieval terms.
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irrelevant items, and consolidation of synonymous terms
(Waltman et al. 2010).

2.2 | Bibliometric Review

The results from filter 3 were analyzed using the “Analyzing
Results” tool from the WoS. The VOSviewer software was used
to generate bibliometric maps based on the co-occurrence of
the keywords, authors, citations, and other data (Waltman
et al. 2010). The results were presented through graphics, and
the most relevant works were explored in greater detail.

3 | Results
3.1 | Co-Occurrence Analysis of the Keywords

The application of the three query strings (Filters 1, 2, 3 and
4) resulted in 4259, 1238, 46, and 2 documents, respectively
(Table S1). By analyzing the co-occurrence of keywords in rele-
vant research papers, we can explore emerging research trends
and identify future directions for biogeochemical models that
account for biochar incorporation into the soil.

Considering occurrences of two keywords, the co-occurrence
map indicates the establishment of eight clusters (Figure 3A)
based on research themes concerning biochar. These clusters
can be identified as climate change, use in agriculture, C seques-
tration, C fluxes, use in soil, interactions, and applications. The
importance of research on climate change is evident, as is the
interdisciplinary nature of topics like C sequestration and dif-
ferent applications. When we expanded the occurrence of key-
words to five, only four clusters were identified (Figure 3B): C
sequestration, climate change, interactions, and use in soil. This
map serves as a valuable tool for understanding research trends
in biochar, illustrating the primary interactions among the most
frequently used terms in this field and the established clusters,
thereby emphasizing the most pertinent terms. Through net-
work analysis, keywords form clusters, with the size of each
circle determined by the weight of the corresponding item. A
larger circle indicates a higher weight. Lines connecting items
represent links, while the distance between two keywords re-
flects their relatedness regarding co-occurrence links.

As shown in Figure 3, the modeling does not appear in the iden-
tified clusters, as it has not been extensively explored. Biochar
modeling has only recently gained significant attention, with the
number of publications considerably lower than corresponding
experimental studies until recent years. As demonstrated in the
bibliometric map, most research related to “modeling” is linked
to “biomarkers,” including the capacity of biochar to improve
effects on soil microorganisms and “Anthrosols,” especially the
fertile soils known as “Amazonian Dark Earth,” characterized
by their darker color, higher nutrient content, and abundant
charcoal and artifacts—which served as the inspiration for the
initial biochar studies (Schmidt et al. 2023).

Although biogeochemical models offer a powerful means of
evaluating the effects of biochar on soil C dynamics, their use
remains limited (Zhao et al. 2022). Furthermore, according to

our research, biogeochemical models that consider the incorpo-
ration of biochar into tropical soils are scarce. The search using
Filter 4 returned only two results from academic research on
biochar and dissolved organic C in contexts that were not related
to modeling soil C stocks. This lack of studies in tropical soils
may be related to the scarcity of initial data necessary for the de-
velopment of new models and improvement of existing models.

3.2 | Overview of Biogeochemical Models of Soil
Carbon Stock With Biochar Input

Ecosystem models based on biogeochemical processes are used
to simulate how biotic variables interact over time and space to
determine the rates of biogeochemical fluxes. They simulate the
interplay of biological factors and environmental processes to
predict the rates of C and nutrient cycling. These models provide
valuable insights for decision-making on climate change, land
use, and water resource management (Berardi et al. 2020).

A recurring challenge highlighted across these modeling studies
is the limited availability of long-term field experiments, which
hinders the robust calibration and validation of models. Most
studies incorporating biochar simulations within biogeochem-
ical models have utilized the RothC model. Figure 4 illustrates
the temporal progression of biogeochemical models incorporat-
ing biochar representations. Biochar inputs have been simulated
across a spectrum of biogeochemical models, and their incor-
poration is often concentrated in the most recalcitrant C pools.
In the following sections, we delve deeper into specific exam-
ples employing the RothC, APSIM, EPIC, Century, and DNDC
models.

3.2.1 | Rothamsted Carbon Model (RothC)

The RothC model stands out as one of the first multicom-
partmental models developed for estimating soil C (Coleman
et al. 1997). Initially developed to model C turnover in arable
soils, the RothC model has been successfully expanded and opti-
mized for use in diverse ecosystems, including croplands, grass-
lands, and forests (Coleman et al. 1997; Smith et al. 1997; Farina
et al. 2013; Francaviglia et al. 2012; Skjemstad et al. 2004). The
RothC model categorizes soil organic carbon (SOC) into active
and passive pools. Active pools consist of decomposable organic
matter, whereas more resistant organic compounds predomi-
nate in the passive pool (Jebari et al. 2021). The process is based
on a five-compartment model with monthly time steps (Jordon
and Smith 2022; Jebari et al. 2021; Morais et al. 2019).

Woolf and Lehmann (2012) investigated the potential of biochar
to increase SOC stocks using a modeling approach. The model,
which is a modified version of RothC, simulates the impact of
biochar application on soil C turnover. The case study examined
a scenario in which 50% of the crop residue was removed from
the field for biochar production, and after the biochar was applied
in the cropland (Woolf and Lehmann 2012). The model predicted
a significant increase in SOC stocks (30%-60%) over a 100-year
simulation timeframe compared to using corn stover as the soil
amendment (Woolf and Lehmann 2012). The model incorporates
a priming effect, in which biochar enhances the decomposition
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2014 2017
Century RothC
Dil & Oelbermann evaluated the long-term effects of applying
urea ammonium nitrate-enriched biochar to coarse and medium-
textured soils. Biochar input was added to the OMAD. 100 file for
simulation parameterization, and fertilizer input was included in

2023

Century

Oelbermann et al. used the Century model to assess
temporal changes with biochar, updating the OMAD.100 file
to include manure, biochar, and adjusted C/N ratios.

Mondini et al. modified RothC by introducing two new carbon 2023
pools: one for resistance and another for decomposable
externally added organic matter (such as amendments and
organic inputs), but without a specific model representation for

DNDC
Jiang et al. improved the DNDC model (DNDC-BC) to
simulate GHG emissions in irrigated rice fields with biochar,

the FERT.100 file. biochar dynamics or interactions.

with a water balance module and a two-pool biochar model.
2012 2020 2022
RothC RothC RothC

Woolf & Lehmann modified RothC to model biochar’s
impact on soil organic carbon (SOC) turnover,
stability, and long-term storage dynamics.

2015 2016
EPIC APSIM

Lychuk et al. developed new algorithms for the EPIC model to
simulate the effects of biochar on crop yields and soil properties.

RothC Century EPIC

sRés! 5

Act OM

Pas OM *

Act OM - Active organic matter
Slw OM - Slow organic matter

Pas OM - Passive organic matter
*Biochar is mainly considered here

DPM - Decomposable Plant Material
RPM - Resistant Plant Material

BIO - Microbial Biomass

HUM - Humified Organic Matter
IOM - Inert Organic Matter

*Biochar is mainly considered here

Lefebvre et al. modified RothC by adding a sub-model
for biochar decomposition, incorporating stability,
transformation rates, and interactions.

S-Res - Surface Residue

Act OM - Active organic matter
Slw-OM - Slow organic matter
S-Bio - Soil Biomass

Pas OM - Passive organic matter
*Biochar is mainly considered here

Pulcher et al. modified RothC to simulate the effects of
biochar on soil C dynamics, incorporating priming effect
and the formation of labile and recalcitrant C pools.

Archontoulis et al. created a new model component for the APSIM framework to simulate biochar effects on cropping systems. This
sub-model incorporated existing knowledge about biochar and focused on predicting the direction and magnitude of its impacts.

APSIM DNDC

Siw-OM Humads

Pas OM *

S-Bio

P-Res - Plant Residue

Humads - Intermediate decomposition
Bio - Microbial Biomass

Pas OM - Passive organic matter
*Biochar is mainly considered here

FOM - Fresh Organic Matter

IOM - Inert Organic Matter

HUM - Humified Organic Matter
BIO - Microbial Biomass

*Biochar is mainly considered here

FIGURE4 | Timeline of the biochar inclusion in biogeochemical models. At the bottom, it is listed how the soil organic matter compartments are

included in each model.

of existing SOC. This was achieved by adjusting the decomposi-
tion rates within the model based on the biochar concentration in
the soil. The authors acknowledge the limitations of the model,
including uncertainties due to the scarcity of data on biochar
priming effects and challenges in extrapolating from short-term
laboratory studies to long-term field conditions. They empha-
sized that the model's primary value lies in its ability to identify
how sensitive SOC stock predictions are to various parameters,
providing valuable insights for future research. Although the
absolute values predicted by the model may not be definitive, it
offers a useful tool for understanding the potential benefits of bio-
char for soil C sequestration (Woolf and Lehmann 2012).

Mondini et al. (2017) have proposed incorporating various soil
amendments, including green waste biochar, into the RothC
model. This modified version of RothC introduced two new C
pools: one for resistance and another for decomposable exter-
nally added organic matter, such as amendments, but without a
specific model representation for biochar (Mondini et al. 2017).

Lefebvre et al. (2020) developed a modified version of the RothC
model to evaluate the potential of sugarcane residues for pro-
ducing biochar and sequestering C in the soil. The authors
combined RothC with a submodel for biochar decomposition
and considered the simulation to be satisfactory, highlighting
the need for long-term field data to validate such simulations
(Lefebvre et al. 2020).

Pulcher et al. (2022) conducted a long-term field experiment to
investigate the decomposition of biochar in a poplar plantation
in Italy. They modified the RothC model to simulate the effects
of biochar on soil C dynamics, including its priming effect and
the formation of labile and recalcitrant C pools. The model was
validated by comparing its predictions with field measurements
taken over 8years. The researchers assumed that biochar C
might not directly decompose into CO, but could instead be
transferred to other C pools with varying decomposition rates.
They also hypothesized that the rate at which biochar decom-
poses could be influenced by environmental factors like air tem-
perature, soil moisture, and soil coverage.

3.2.2 | Agricultural Production Systems
Simulator (APSIM)

The APSIM is a modular modeling framework developed by the
Agricultural Production Systems Research Unit in Australia
(Keating et al. 2023). APSIM was designed to simulate biophys-
ical processes within farming systems. Its primary focus is on
applications where economic and ecological outcomes of man-
agement practices are evaluated under climatic risk scenarios
(Keating et al. 2023).

Archontoulis et al. (2016) created a new model component for
the APSIM framework to simulate the effects of biochar on
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cropping systems. This submodel incorporated existing knowl-
edge about biochar and focused on predicting the direction and
magnitude of its impacts. While the model was developed based
on literature information, it lacked specific calibration and val-
idation using field data. The model simulates each soil layer
independently. SOC is partitioned into three pools: microbial
biomass (BIOM), humic matter (HUM), and inert organic mat-
ter (INERT). These pools exhibit different rates of decomposi-
tion. Fresh organic matter (FOM) is also divided into three pools
based on decomposition rates. The model considers the different
carbon-to-nitrogen ratios of BIOM and FOM, with BIOM having
a fixed C:N ratio of 8 and FOM having a variable C:N ratio de-
pending on its source (Archontoulis et al. 2016).

O'Brien et al. (2020) conducted a field study to assess the impact
of different harvest intensities on CO, emissions from three con-
tinuous corn systems. The study evaluated three treatments: no
tillage and no biochar, chisel plowing with biochar, and chisel
plowing without biochar. CO, fluxes were quantified over a
3-year period (2010-2012). The APSIM model was calibrated
using CO, flux measurements collected throughout the exper-
iment. The calibrated APSIM model performed well in simu-
lating CO, fluxes, soil temperature, volumetric water content,
and stover removal. The model exhibited a slight bias towards
underestimating the highest CO, emissions, which was primar-
ily observed during the mid-growing season when root respira-
tion was at its peak. However, these instances were infrequent,
representing only 10% of the measured data. Overall, the model
effectively simulated the observed trends in CO, emissions.

3.2.3 | Environmental Policy Integrated Climate
(EPIC) Model

The EPIC model, initially designed by the USDA in the 1980s
to evaluate erosion, has expanded its capabilities to simulate a
wide range of agricultural processes, including crop growth, nu-
trient cycling, and water balance (Gassman et al. 2004; Longo
et al. 2023; Williams et al. 1995). The EPIC model categorizes
SOC into three pools: microbial biomass, slow humus, and pas-
sive humus (Lychuk et al. 2015). A small fraction of biochar
might decompose quickly, while the majority decompose slowly
or very slowly, assuming that biochar is primarily composed of
organic matter (Izaurralde et al. 2006).

Lychuk et al. (2015) developed new algorithms for the EPIC
model to simulate the effects of biochar on crop yields and soil
properties. These algorithms were based on the current under-
standing of biochar's impacts. The model was validated using
field observations from an Amazonian Oxisol, demonstrating
its ability to predict the impacts of biochar on short-term crop
performance and soil characteristics, such as cation exchange
capacity and pH (Lychuk et al. 2015).

3.2.4 | Century Model

The “Century Model of Soil Organic Matter,” abbreviated as
Century, was one of the first developed and has been widely
used due to its consistency and ease of application in studies of
SOC dynamics. Century is a dynamic model that represents the

changes in SOC, and, additionally, N, P, and S in the topsoil layer
(0 to 20cm). The Century Model categorizes SOM into three
pools with varying decomposition rates: active, slow, and pas-
sive. The SOM decomposition rates are influenced by environ-
mental factors, such as temperature and soil moisture (Parton
et al. 1994).

Dil and Oelbermann (2014) evaluated the long-term effects of
applying urea ammonium nitrate-enriched biochar to coarse
and medium-textured soils. Biochar input was added to the
OMAD.100 file for simulation parameterization, and fertilizer
input was added to the FERT.100 file. It is important to note that
the simulations in this study were not designed as a standalone
validation of the model. Due to the short duration of the field
trial (< 5years), the model's performance could not be fully as-
sessed by directly comparing simulated and measured data.

Oelbermann et al. (2023) applied the Century model to assess
the temporal changes of SOC in soils treated with various com-
binations of manure, nitrogen fertilizer, and biochar. The model
was parameterized to incorporate the effects of manure and ni-
trogen fertilizer amendments on the soil. The OMAD.100 file
was updated to include the appropriate amounts of manure
and biochar, and the C/N ratios were adjusted. Measured data
were compared with predicted data. The model's predictions
were acceptable, with differences from measured values falling
between +9% and —1.3%. However, the limited duration of the
field study restricted the model's validation. The authors note
that the model may underestimate SOC stocks due to its lack of
consideration for biochar aging. Future research should explore
the interactive effects of climate change, soil management prac-
tices, and biochar on SOC stocks.

It is worth noting that, to date, no studies have been found in
the literature that describe the use of a submodel for biochar in
the Daycent model. Daycent is the daily time-step version of the
Century model (Parton et al. 1994), C and N fluxes between the
atmosphere, vegetation, and soil (Del Grosso et al. 2005; Follett
et al. 2001; Parton et al. 1998; Del Grosso et al. 2001). Future
studies should address this gap by incorporating a biochar sub-
model into Daycent.

3.2.5 | DeNitrification-DeComposition (DNDC) Model

The DNDC model integrates denitrification and decomposition
processes to simulate GHG emissions from agricultural soils.
The model incorporates subroutines for various agricultural
practices, including fertilization, manure application, irriga-
tion, tillage, and crop rotation, to predict the turnover of SOM
(Li 1996).

Jiang et al. (2023) enhanced the DNDC model to simulate GHG
emissions from irrigated rice fields treated with biochar. The im-
proved model incorporated biochar modeling and water balance
equations. This new version, known as DNDC-BC, included
two additional modules: a water balance module and a two-pool
biochar model (Jiang et al. 2023). The DNDC-BC model was
evaluated through a 2-year field experiment in China to assess
its ability to simulate the impacts of biochar and irrigation on
GHG emissions, SOC, and grain yield. The results showed that
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the DNDC-BC model demonstrated satisfactory performance
in simulating the effects of biochar and irrigation on CH,, N, 0,
SOC, and grain yield (Jiang et al. 2023). The DNDC-BC model
showed the great potential of biochar and irrigation manage-
ment in reducing GHG, increasing soil C sequestration, increas-
ing yield, and saving water (Jiang et al. 2023). However, the
validation was limited by the availability of only 2 years of mea-
sured data and one compiled dataset (22 sets from the literature)
(Jiang et al. 2023).

3.3 | Other Models With Biochar Input

In addition to the biogeochemical models used for assessing soil
C stocks mentioned in the previous section, the literature review
identified studies that included biochar in other mathematical
models.

Yin et al. (2022) evaluated the incorporation of biochar into a
biogeochemical field model and established a daily resolution
simulator to assess the 5, 50, and 500-year C sequestration po-
tential of soil-biochar-plant interactions. This study proposed
that biochar sequesters C through three primary mechanisms:
(i) direct C storage from the biochar C input, (i) reduced miner-
alization of native soil C, and (iii) increased plant productivity
leading to greater C capture through photosynthesis.

The effects of biochar on soil water characteristics were inves-
tigated by Xing et al. (2021) at a one-dimensional scale. The
performance of different infiltration models was compared, and
a novel optimization algorithm was proposed to improve the
modified van Genuchten model. Results showed that biochar
addition significantly reduced cumulative infiltration rates,
with a more significant reduction observed at higher biochar
percentages. The Kostiakov model outperformed the Philip
model in predicting cumulative infiltration. The study demon-
strates the potential to replace SWRC measurements with a one-
dimensional infiltration experiment using the improved genetic
algorithm and modified van Genuchten model, offering a more
efficient and time-saving approach (Xing et al. 2021).

Foereid et al. (2011) developed a biochar-soil model in Excel
spreadsheets to simulate the movement and decomposition of
biochar in soil. The model assumed that biochar comprises two
fractions with varying decomposition rates and can be trans-
ported through the environment. The model's sensitivity to
erosion rate, moisture, and temperature was tested over a cen-
tury, revealing significant impacts. However, the model was
insensitive to the long-term stability of the biochar fraction, sug-
gesting that it persists over millennia. The researchers discuss
the implications of the model and future research directions.
They highlighted that erosion losses may be more important
for biochar than for other types of soil C components, and the
models may need to be modified to account for soil erosion.
Additionally, the model does not explicitly capture variations in
biochar quality. The authors proposed incorporating this aspect
in future iterations of the model, contingent on data availability
for parameterization.

Usowicz et al. (2020) studied the effects of biochar on soil ther-
mal properties in field experiments conducted in China and

Poland. The experimental data included information on bio-
char application rates, soil texture, mineral composition, bulk
density, particle density, water content, air-filled porosity, and
organic matter content. These data were used to validate and im-
prove the predictive capabilities of three models of soil thermal
properties. The biochar rates in the field experiments ranged
from 4.5 to 40Mgha!, while the modeling study considered a
wider range of rates, varying from 52 to 267 Mgha=! (Usowicz
et al. 2020).

The most accurate predictions of thermal conductivity and dif-
fusivity were achieved when the statistical-physical model in-
corporated the geometric mean of native SOM and biochar, and
reduced the quartz content in the sand fraction from 100% to
72% (Usowicz et al. 2020). The addition of biochar decreased the
thermal diffusivity at comparable water contents. Furthermore,
the maximum thermal diffusivity occurred at higher water con-
tent levels as biochar content increased. The increased thermal
diffusivity resulting from biochar application can help to regu-
late soil temperature, a crucial factor in plant growth and soil
processes (Usowicz et al. 2020).

4 | Opportunities and Challenges

Although numerous studies have examined short-term effects
under controlled conditions, a substantial challenge remains in
extrapolating laboratory findings to the complex dynamics of
field-based biochar applications. The observed variations, no-
tably in the speed of biochemical reactions, are often linked to
soil disturbance and altered environmental variables. As high-
lighted by Ringsby and Maher (2025), current assessments of
biochar persistence are hampered by a limited body of short-
term studies, comprising fewer than 20 publications and typ-
ically spanning only 1 to 2years of evaluation. Consequently,
there is a heightened risk of committing an ecological fallacy
where conclusions drawn from these restricted datasets fail
to predict outcomes at individual biochar deployment sites
accurately.

The monitoring of biochar effects on soil is still in its early
stages and can be conducted through a variety of techniques,
including soil analysis, field experiments, and mathematical
modeling. However, the complexity of the processes involved
and the lack of long-term data still limit the understanding of
the underlying mechanisms. Although the demand for predic-
tive models is growing, large-scale adoption is still limited by
uncertainty about the accuracy of the estimates. The accuracy
of estimates varies significantly depending on spatial and tem-
poral scale, soil type, and climatic conditions. Furthermore, for
biogeochemical models to accurately simulate biochar dynam-
ics in soil, it is essential to incorporate the understanding that
different biochar compositions exert distinct influences on SOC
dynamics.

The main benefit of using models in studies of biogeochemical
cycles is their ability to integrate multiple factors, making sim-
ulations more realistic and incorporating the inherent complex-
ity of ecosystems. Thus, these models significantly contribute
to our understanding of how soils function and their ability to
adapt to different conditions.
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Biogeochemical models are valuable tools to assist decision-
makers and those interested in soil C storage. Although pro-
grams to encourage SOC sequestration are not new, several
approaches to measurement, reporting, and verification (MRV)
of SOC exist. MRV protocols for SOC may include repeated col-
lection of soil samples, application of biogeochemical modeling,
use of remote sensing technology, or even a combination of these
approaches to capture changes in SOC stocks over time. Hybrid
MRYV approaches, which combine soil sampling with modeling,
have been shown to be effective in quantifying the responses of
changes in SOC stocks. Furthermore, modeling allows projects
to operate on a much larger scale than would be practical if fre-
quent field sampling is required, given the high costs associated
with this type of annual monitoring (Mathers et al. 2023).

Therefore, it is important to develop, calibrate, and validate sim-
ulation models that allow for the incorporation of biochar into
soil management strategies. This is crucial for estimating the in-
crease in soil C storage in systems using biochar. Furthermore,
it is necessary to calibrate and validate these models in a variety
of soils, including tropical regions, as research in this area re-
mains limited. In the long term, the combination of improved
models, more accurate monitoring, and the growing demand
for nature-based solutions is expected to drive the development
and refinement of biogeochemical models that consider biochar
input into the soil.

5 | Conclusions

Biochar has been proposed as a promising technology for soil
C sequestration and climate change mitigation and has been
validated by several scientific studies presented here. However,
assessing the long-term soil C sequestration potential of biochar
is challenging because of several factors, including:

1. Short observation periods: Most biochar experiments in-
volve short-term laboratory incubations or greenhouse
experiments. These limitations often result in a lack of
adequate representation of biochar behavior over time and
space.

2. Neglecting crop-climate interactions: Most biochar re-
search focuses on short-term effects on soil properties in
controlled environments, neglecting how biochar interacts
with crops and climate over long periods.

3. Measurement limitations: Currently, ex situ laboratory
methods are used for measuring C (organic or total) in soil,
resulting in high sampling frequency and analysis costs.

4. Scarcity rather than model validation data: The models
used to predict the impact of biochar on soil C sequestra-
tion lack sufficient data for validation because of the afore-
mentioned challenges in monitoring soil C.

To overcome these challenges and improve our understanding
of the long-term C sequestration potential of biochar, future
studies should focus on conducting long-term field experiments
to evaluate biochar performance under real-world conditions.
Validation data are necessary to improve the models' accuracy
in predicting the impacts of biochar on soil C sequestration. The

development of improved methods for measuring soil C stock
changes that can capture spatial and temporal variability is par-
amount for the adequate use of models. Further research into
the interactions among biochar, crops, and climate under field
conditions is needed to better understand the long-term effects
on agricultural productivity and GHG emissions.

Addressing these challenges will lead to a more comprehensive
understanding of biochar's potential as a long-term C sequestra-
tion strategy and support the development of effective policies at
national (i.e., Nationally Determined Contribution) and interna-
tional (Paris Agreement; Conference of the Parties) levels.
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