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ABSTRACT
In the last two decades, several studies have utilized biogeochemical models to evaluate the impact of different edaphoclimatic 
conditions on soil carbon storage and the dynamics of soil organic carbon. At the same time, biochar, a carbon-rich material 
obtained from the pyrolysis of biomass residues, has been identified as a promising carbon sequestration material. However, 
current models do not adequately incorporate the role of biochar in soil management. In this context, the current state of research 
on biogeochemical models that include the entry of biochar into soil has been characterized. The research indicated that the 
development of studies on the topic “biochar” is widely explored, with 4259 papers being identified using the first search filter. 
Specifically, searching for studies that mentioned terms related to biogeochemical models for estimating soil carbon stock, it was 
observed that a small number of the studies (N = 46) considered the entry of biochar into the models. Although most studies have 
used the RothC model to simulate biochar within biogeochemical models, biochar inputs have also been implemented in APSIM, 
EPIC, Century, DNDC, and other models, including those not primarily focused on soil carbon stock estimation. Among these 
studies, the minority included the results of calibration and validation of the models, which are paramount for the model's cred-
ibility. Therefore, efforts must be concentrated on solving the lack of valuable data to validate the models. Data from long-term 
field experiments that consider interactions between crop and climate conditions are highly desirable. The possibility of increas-
ing carbon stocks by incorporating biochar into the soil could promote environmental and financial gains, and biogeochemical 
models that consider the incorporation of biochar are valuable tools for decision-makers.

1   |   Introduction

Soil carbon (C) storage plays a crucial role for mitigating global 
climate change, and depending on the land use and management 

practices, can act as a source or sink of greenhouse gas (GHG) 
emissions (IPCC 2019). Improving land use and soil management 
in agriculture can increase soil C stocks and mitigate climate 
change (Ma et al. 2023). Several practices have been proposed 
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worldwide as strategies to increase soil C stocks in the long 
term, including the application of biochar (Paustian et al. 2016). 
Biochar, the solid product of biomass pyrolysis, is considered a 
highly viable climate-smart solution (IPCC et al. 2019; Joseph 
et al. 2021; Lehmann 2007; Smith 2016; Fouché et al. 2023). In 
addition to its contribution to C sequestration, biochar appli-
cation has been shown to enhance soil fertility and positively 
influence agricultural productivity, as demonstrated by several 
studies (Yang et al. 2025; Xu et al. 2025).

To understand why biochar supports soil C storage, it is nec-
essary to consider the photosynthetic process in which the 
carbonaceous metabolites and biomass produced by plants re-
turn to CO2 when the plant-derived materials are decomposed 
(Figure 1). In the pyrolysis process, plant residues are thermally 
degraded in an environment with limited oxygen, promoting 
structural reorganization of the material, which promotes C 
storage in a stable form.

Biochar consists of stacked polycondensed aromatic C struc-
tures, including crystalline graphene sheets and amorphous 
aromatic structures (Conte et  al.  2021). The mineralization of 
this carbonaceous material back to CO2 is extremely slow (Conte 
et al. 2021; Lehmann et al. 2011). Estimating the potential for C 
sequestration by incorporating biochar is necessary to predict 
its stability in soils. While biochar properties are the primary 
determinant of its persistence compared to the mineralization of 
nonpyrolyzed biomass, edaphic and climatic factors also play a 
significant role (Joseph et al. 2021). Therefore, a comprehensive 
understanding of soil–crop–climate–biochar interactions at the 

systems level is essential to predict if C stock responses will be 
positive, negative, or neutral (Archontoulis et al. 2016). Relying 
solely on field measurements to grasp these intricate interac-
tions can be highly challenging and expensive.

Traditionally, basic empirical models have been employed to as-
sess biochar stability and the resulting C accumulation within 
the soil. Seeking to enhance the biochar assessment framework, 
Woolf et  al.  (2021) developed the model by incorporating a 
broader analysis of existing research and expanding parameter-
ization for biochar persistence estimation. Their methodology, 
relying on meta-analysis and curve fitting of incubation studies, 
yields estimates of the fraction of biochar C retained in the soil 
(Fperm) at 100, 500, and 1000 years. This enhanced approach is 
now integral to several biochar certification schemes, such as 
the Puro. earth and Verra VCS.

Nonetheless, empirical equations for biochar stability as-
sessment have limitations, as recently highlighted by Sanei 
et al. (2025) and Ringsby and Maher (2025). Specifically, current 
models fail to adequately represent the complex biochar degra-
dation process, particularly the presence of a recalcitrant C frac-
tion with decomposition rates below the detection threshold in 
short-term incubation studies. This discrepancy compromises 
the correlation between biochar stability and the degree of car-
bonization, potentially leading to an underestimation of the C 
sequestration potential. Therefore, the improvement and use of 
biogeochemical mathematical models that consider the complex 
interactions among soil, biochar, plants, and edaphoclimatic 
conditions are essential.

FIGURE 1    |    Conceptual perspective on the carbon cycle and benefits of biochar application in soil.
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Biogeochemical models such as the Rothamsted carbon model 
(RothC) (Coleman et al. 1997), the Environmental Policy Integrated 
Climate (EPIC) model (Williams et al. 1995), the Century Model 
(Parton et  al.  1994), DayCent (Del Grosso et  al.  2005; Parton 
et  al.  1998), and DeNitrification-DeComposition (DNDC) (Li 
et al. 1992a, 1992b) play a crucial role in long-term simulation of 
soil C dynamics. They provide a reliable estimate and cost-effective 
approach to address complex interactions within soil, plant, and 
environmental dynamics, offering efficiency in both cost and time 
(Jiang et al. 2023). The use of models is already being considered 
by some certifiers for the commercialization of C credits, such 
as Approach 1 (Measure and Model) (Davoudabadi et  al.  2023). 
However, these models face limitations due to the lack of extensive 
feedback and validation data on detailed spatial and temporal C 
patterns, primarily stemming from challenges in soil C monitor-
ing (Dwivedi et al. 2023).

The extended time frame required to evaluate changes in soil 
C stocks can be considered an obstacle. Biogeochemical mod-
els offer an important approach to comprehending the drivers 
of long-term soil C dynamics and provide an opportunity to de-
termine whether biochar addition to agricultural soil can yield 
positive impacts (Oelbermann et  al.  2023). Currently, biogeo-
chemical models incorporating biochar are still relatively scarce. 
Here, we provide a concise overview of biogeochemical models 
used to simulate soil C stocks with biochar input. The primary 
objective of this study was to conduct a literature review to iden-
tify key findings from relevant studies and identify critical re-
search gaps. This review will guide future research directions 
by highlighting areas where further investigation is needed to 

explore the underlying mechanisms governing biochar–soil in-
teractions and their impact on simulation models.

2   |   Materials and Methods

2.1   |   Data Collection and Processing

This bibliometric analysis was performed using the Web of Science 
(WoS) (Clarivate Analytics) platform. The search considered terms 
mentioned in the “title, abstract, and keywords” (Topic field) of 
each record and was limited to research articles published between 
2000 and 2024. Figure 2 showed the retrieval terms used were: 
Filter 1: TS = ((Biochar) AND (biogeochemical models OR model 
OR simulation) AND (soil organic matter OR carbon sequestra-
tion OR carbon stocks OR carbon OR soil carbon stock OR carbon 
soil)). Filter 2: TS = ((Biochar) AND (soil) AND (biogeochemical 
models OR model OR simulation) AND (soil organic matter OR 
carbon sequestration OR carbon stocks OR carbon OR soil carbon 
stock OR carbon soil)). Filter 3: TS = ((Biochar) AND (biogeochem-
ical models OR model OR simulation) AND (soil carbon stock)). 
Filter 4: TS = ((Biochar) AND (biogeochemical models OR model 
OR simulation) AND (soil carbon stock) AND (tropical soil)).

Here, “TS” denotes the “theme subject” search within the 
WoS database. Utilizing keywords, the TS retrieval technique 
employs Boolean logic to efficiently locate a significant vol-
ume of literature pertinent to the topic (Mongeon and Paul-
Hus  2016). The data extracted underwent three main stages 
of processing: removal of duplicate entries, elimination of 

FIGURE 2    |    Retrieval terms.
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irrelevant items, and consolidation of synonymous terms 
(Waltman et al. 2010).

2.2   |   Bibliometric Review

The results from filter 3 were analyzed using the “Analyzing 
Results” tool from the WoS. The VOSviewer software was used 
to generate bibliometric maps based on the co-occurrence of 
the keywords, authors, citations, and other data (Waltman 
et al. 2010). The results were presented through graphics, and 
the most relevant works were explored in greater detail.

3   |   Results

3.1   |   Co-Occurrence Analysis of the Keywords

The application of the three query strings (Filters 1, 2, 3 and 
4) resulted in 4259, 1238, 46, and 2 documents, respectively 
(Table S1). By analyzing the co-occurrence of keywords in rele-
vant research papers, we can explore emerging research trends 
and identify future directions for biogeochemical models that 
account for biochar incorporation into the soil.

Considering occurrences of two keywords, the co-occurrence 
map indicates the establishment of eight clusters (Figure  3A) 
based on research themes concerning biochar. These clusters 
can be identified as climate change, use in agriculture, C seques-
tration, C fluxes, use in soil, interactions, and applications. The 
importance of research on climate change is evident, as is the 
interdisciplinary nature of topics like C sequestration and dif-
ferent applications. When we expanded the occurrence of key-
words to five, only four clusters were identified (Figure 3B): C 
sequestration, climate change, interactions, and use in soil. This 
map serves as a valuable tool for understanding research trends 
in biochar, illustrating the primary interactions among the most 
frequently used terms in this field and the established clusters, 
thereby emphasizing the most pertinent terms. Through net-
work analysis, keywords form clusters, with the size of each 
circle determined by the weight of the corresponding item. A 
larger circle indicates a higher weight. Lines connecting items 
represent links, while the distance between two keywords re-
flects their relatedness regarding co-occurrence links.

As shown in Figure 3, the modeling does not appear in the iden-
tified clusters, as it has not been extensively explored. Biochar 
modeling has only recently gained significant attention, with the 
number of publications considerably lower than corresponding 
experimental studies until recent years. As demonstrated in the 
bibliometric map, most research related to “modeling” is linked 
to “biomarkers,” including the capacity of biochar to improve 
effects on soil microorganisms and “Anthrosols,” especially the 
fertile soils known as “Amazonian Dark Earth,” characterized 
by their darker color, higher nutrient content, and abundant 
charcoal and artifacts—which served as the inspiration for the 
initial biochar studies (Schmidt et al. 2023).

Although biogeochemical models offer a powerful means of 
evaluating the effects of biochar on soil C dynamics, their use 
remains limited (Zhao et al. 2022). Furthermore, according to 

our research, biogeochemical models that consider the incorpo-
ration of biochar into tropical soils are scarce. The search using 
Filter 4 returned only two results from academic research on 
biochar and dissolved organic C in contexts that were not related 
to modeling soil C stocks. This lack of studies in tropical soils 
may be related to the scarcity of initial data necessary for the de-
velopment of new models and improvement of existing models.

3.2   |   Overview of Biogeochemical Models of Soil 
Carbon Stock With Biochar Input

Ecosystem models based on biogeochemical processes are used 
to simulate how biotic variables interact over time and space to 
determine the rates of biogeochemical fluxes. They simulate the 
interplay of biological factors and environmental processes to 
predict the rates of C and nutrient cycling. These models provide 
valuable insights for decision-making on climate change, land 
use, and water resource management (Berardi et al. 2020).

A recurring challenge highlighted across these modeling studies 
is the limited availability of long-term field experiments, which 
hinders the robust calibration and validation of models. Most 
studies incorporating biochar simulations within biogeochem-
ical models have utilized the RothC model. Figure 4 illustrates 
the temporal progression of biogeochemical models incorporat-
ing biochar representations. Biochar inputs have been simulated 
across a spectrum of biogeochemical models, and their incor-
poration is often concentrated in the most recalcitrant C pools. 
In the following sections, we delve deeper into specific exam-
ples employing the RothC, APSIM, EPIC, Century, and DNDC 
models.

3.2.1   |   Rothamsted Carbon Model (RothC)

The RothC model stands out as one of the first multicom-
partmental models developed for estimating soil C (Coleman 
et  al.  1997). Initially developed to model C turnover in arable 
soils, the RothC model has been successfully expanded and opti-
mized for use in diverse ecosystems, including croplands, grass-
lands, and forests (Coleman et al. 1997; Smith et al. 1997; Farina 
et al. 2013; Francaviglia et al. 2012; Skjemstad et al. 2004). The 
RothC model categorizes soil organic carbon (SOC) into active 
and passive pools. Active pools consist of decomposable organic 
matter, whereas more resistant organic compounds predomi-
nate in the passive pool (Jebari et al. 2021). The process is based 
on a five-compartment model with monthly time steps (Jordon 
and Smith 2022; Jebari et al. 2021; Morais et al. 2019).

Woolf and Lehmann (2012) investigated the potential of biochar 
to increase SOC stocks using a modeling approach. The model, 
which is a modified version of RothC, simulates the impact of 
biochar application on soil C turnover. The case study examined 
a scenario in which 50% of the crop residue was removed from 
the field for biochar production, and after the biochar was applied 
in the cropland (Woolf and Lehmann 2012). The model predicted 
a significant increase in SOC stocks (30%–60%) over a 100-year 
simulation timeframe compared to using corn stover as the soil 
amendment (Woolf and Lehmann 2012). The model incorporates 
a priming effect, in which biochar enhances the decomposition 
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FIGURE 3    |    Keyword co-occurrence map, where the size of each circle represents the weight of the corresponding item (larger circles indi-
cate higher weight). Lines connecting the items represent links, and the distance between two keywords reflects their relationship in terms of co-
occurrence. (A) Map showing the formation of eight clusters representing research themes related to biochar. (B) Expanded the occurrence of key-
words for five main terms, identifying four clusters: Carbon sequestration, climate change, interactions, and use on soil.
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of existing SOC. This was achieved by adjusting the decomposi-
tion rates within the model based on the biochar concentration in 
the soil. The authors acknowledge the limitations of the model, 
including uncertainties due to the scarcity of data on biochar 
priming effects and challenges in extrapolating from short-term 
laboratory studies to long-term field conditions. They empha-
sized that the model's primary value lies in its ability to identify 
how sensitive SOC stock predictions are to various parameters, 
providing valuable insights for future research. Although the 
absolute values predicted by the model may not be definitive, it 
offers a useful tool for understanding the potential benefits of bio-
char for soil C sequestration (Woolf and Lehmann 2012).

Mondini et al. (2017) have proposed incorporating various soil 
amendments, including green waste biochar, into the RothC 
model. This modified version of RothC introduced two new C 
pools: one for resistance and another for decomposable exter-
nally added organic matter, such as amendments, but without a 
specific model representation for biochar (Mondini et al. 2017).

Lefebvre et al. (2020) developed a modified version of the RothC 
model to evaluate the potential of sugarcane residues for pro-
ducing biochar and sequestering C in the soil. The authors 
combined RothC with a submodel for biochar decomposition 
and considered the simulation to be satisfactory, highlighting 
the need for long-term field data to validate such simulations 
(Lefebvre et al. 2020).

Pulcher et al. (2022) conducted a long-term field experiment to 
investigate the decomposition of biochar in a poplar plantation 
in Italy. They modified the RothC model to simulate the effects 
of biochar on soil C dynamics, including its priming effect and 
the formation of labile and recalcitrant C pools. The model was 
validated by comparing its predictions with field measurements 
taken over 8 years. The researchers assumed that biochar C 
might not directly decompose into CO2 but could instead be 
transferred to other C pools with varying decomposition rates. 
They also hypothesized that the rate at which biochar decom-
poses could be influenced by environmental factors like air tem-
perature, soil moisture, and soil coverage.

3.2.2   |   Agricultural Production Systems 
Simulator (APSIM)

The APSIM is a modular modeling framework developed by the 
Agricultural Production Systems Research Unit in Australia 
(Keating et al. 2023). APSIM was designed to simulate biophys-
ical processes within farming systems. Its primary focus is on 
applications where economic and ecological outcomes of man-
agement practices are evaluated under climatic risk scenarios 
(Keating et al. 2023).

Archontoulis et al.  (2016) created a new model component for 
the APSIM framework to simulate the effects of biochar on 

FIGURE 4    |    Timeline of the biochar inclusion in biogeochemical models. At the bottom, it is listed how the soil organic matter compartments are 
included in each model.
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cropping systems. This submodel incorporated existing knowl-
edge about biochar and focused on predicting the direction and 
magnitude of its impacts. While the model was developed based 
on literature information, it lacked specific calibration and val-
idation using field data. The model simulates each soil layer 
independently. SOC is partitioned into three pools: microbial 
biomass (BIOM), humic matter (HUM), and inert organic mat-
ter (INERT). These pools exhibit different rates of decomposi-
tion. Fresh organic matter (FOM) is also divided into three pools 
based on decomposition rates. The model considers the different 
carbon-to-nitrogen ratios of BIOM and FOM, with BIOM having 
a fixed C:N ratio of 8 and FOM having a variable C:N ratio de-
pending on its source (Archontoulis et al. 2016).

O'Brien et al. (2020) conducted a field study to assess the impact 
of different harvest intensities on CO2 emissions from three con-
tinuous corn systems. The study evaluated three treatments: no 
tillage and no biochar, chisel plowing with biochar, and chisel 
plowing without biochar. CO2 fluxes were quantified over a 
3-year period (2010–2012). The APSIM model was calibrated 
using CO2 flux measurements collected throughout the exper-
iment. The calibrated APSIM model performed well in simu-
lating CO2 fluxes, soil temperature, volumetric water content, 
and stover removal. The model exhibited a slight bias towards 
underestimating the highest CO2 emissions, which was primar-
ily observed during the mid-growing season when root respira-
tion was at its peak. However, these instances were infrequent, 
representing only 10% of the measured data. Overall, the model 
effectively simulated the observed trends in CO2 emissions.

3.2.3   |   Environmental Policy Integrated Climate 
(EPIC) Model

The EPIC model, initially designed by the USDA in the 1980s 
to evaluate erosion, has expanded its capabilities to simulate a 
wide range of agricultural processes, including crop growth, nu-
trient cycling, and water balance (Gassman et al. 2004; Longo 
et al. 2023; Williams et al. 1995). The EPIC model categorizes 
SOC into three pools: microbial biomass, slow humus, and pas-
sive humus (Lychuk et  al.  2015). A small fraction of biochar 
might decompose quickly, while the majority decompose slowly 
or very slowly, assuming that biochar is primarily composed of 
organic matter (Izaurralde et al. 2006).

Lychuk et  al.  (2015) developed new algorithms for the EPIC 
model to simulate the effects of biochar on crop yields and soil 
properties. These algorithms were based on the current under-
standing of biochar's impacts. The model was validated using 
field observations from an Amazonian Oxisol, demonstrating 
its ability to predict the impacts of biochar on short-term crop 
performance and soil characteristics, such as cation exchange 
capacity and pH (Lychuk et al. 2015).

3.2.4   |   Century Model

The “Century Model of Soil Organic Matter,” abbreviated as 
Century, was one of the first developed and has been widely 
used due to its consistency and ease of application in studies of 
SOC dynamics. Century is a dynamic model that represents the 

changes in SOC, and, additionally, N, P, and S in the topsoil layer 
(0 to 20 cm). The Century Model categorizes SOM into three 
pools with varying decomposition rates: active, slow, and pas-
sive. The SOM decomposition rates are influenced by environ-
mental factors, such as temperature and soil moisture (Parton 
et al. 1994).

Dil and Oelbermann (2014) evaluated the long-term effects of 
applying urea ammonium nitrate-enriched biochar to coarse 
and medium-textured soils. Biochar input was added to the 
OMAD.100 file for simulation parameterization, and fertilizer 
input was added to the FERT.100 file. It is important to note that 
the simulations in this study were not designed as a standalone 
validation of the model. Due to the short duration of the field 
trial (< 5 years), the model's performance could not be fully as-
sessed by directly comparing simulated and measured data.

Oelbermann et al.  (2023) applied the Century model to assess 
the temporal changes of SOC in soils treated with various com-
binations of manure, nitrogen fertilizer, and biochar. The model 
was parameterized to incorporate the effects of manure and ni-
trogen fertilizer amendments on the soil. The OMAD.100 file 
was updated to include the appropriate amounts of manure 
and biochar, and the C/N ratios were adjusted. Measured data 
were compared with predicted data. The model's predictions 
were acceptable, with differences from measured values falling 
between +9% and −1.3%. However, the limited duration of the 
field study restricted the model's validation. The authors note 
that the model may underestimate SOC stocks due to its lack of 
consideration for biochar aging. Future research should explore 
the interactive effects of climate change, soil management prac-
tices, and biochar on SOC stocks.

It is worth noting that, to date, no studies have been found in 
the literature that describe the use of a submodel for biochar in 
the Daycent model. Daycent is the daily time-step version of the 
Century model (Parton et al. 1994), C and N fluxes between the 
atmosphere, vegetation, and soil (Del Grosso et al. 2005; Follett 
et al.  2001; Parton et al.  1998; Del Grosso et al. 2001). Future 
studies should address this gap by incorporating a biochar sub-
model into Daycent.

3.2.5   |   DeNitrification-DeComposition (DNDC) Model

The DNDC model integrates denitrification and decomposition 
processes to simulate GHG emissions from agricultural soils. 
The model incorporates subroutines for various agricultural 
practices, including fertilization, manure application, irriga-
tion, tillage, and crop rotation, to predict the turnover of SOM 
(Li 1996).

Jiang et al. (2023) enhanced the DNDC model to simulate GHG 
emissions from irrigated rice fields treated with biochar. The im-
proved model incorporated biochar modeling and water balance 
equations. This new version, known as DNDC-BC, included 
two additional modules: a water balance module and a two-pool 
biochar model (Jiang et  al.  2023). The DNDC-BC model was 
evaluated through a 2-year field experiment in China to assess 
its ability to simulate the impacts of biochar and irrigation on 
GHG emissions, SOC, and grain yield. The results showed that 
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the DNDC-BC model demonstrated satisfactory performance 
in simulating the effects of biochar and irrigation on CH4, N2O, 
SOC, and grain yield (Jiang et al. 2023). The DNDC-BC model 
showed the great potential of biochar and irrigation manage-
ment in reducing GHG, increasing soil C sequestration, increas-
ing yield, and saving water (Jiang et  al.  2023). However, the 
validation was limited by the availability of only 2 years of mea-
sured data and one compiled dataset (22 sets from the literature) 
(Jiang et al. 2023).

3.3   |   Other Models With Biochar Input

In addition to the biogeochemical models used for assessing soil 
C stocks mentioned in the previous section, the literature review 
identified studies that included biochar in other mathematical 
models.

Yin et al.  (2022) evaluated the incorporation of biochar into a 
biogeochemical field model and established a daily resolution 
simulator to assess the 5, 50, and 500-year C sequestration po-
tential of soil–biochar–plant interactions. This study proposed 
that biochar sequesters C through three primary mechanisms: 
(i) direct C storage from the biochar C input, (i) reduced miner-
alization of native soil C, and (iii) increased plant productivity 
leading to greater C capture through photosynthesis.

The effects of biochar on soil water characteristics were inves-
tigated by Xing et  al.  (2021) at a one-dimensional scale. The 
performance of different infiltration models was compared, and 
a novel optimization algorithm was proposed to improve the 
modified van Genuchten model. Results showed that biochar 
addition significantly reduced cumulative infiltration rates, 
with a more significant reduction observed at higher biochar 
percentages. The Kostiakov model outperformed the Philip 
model in predicting cumulative infiltration. The study demon-
strates the potential to replace SWRC measurements with a one-
dimensional infiltration experiment using the improved genetic 
algorithm and modified van Genuchten model, offering a more 
efficient and time-saving approach (Xing et al. 2021).

Foereid et  al.  (2011) developed a biochar–soil model in Excel 
spreadsheets to simulate the movement and decomposition of 
biochar in soil. The model assumed that biochar comprises two 
fractions with varying decomposition rates and can be trans-
ported through the environment. The model's sensitivity to 
erosion rate, moisture, and temperature was tested over a cen-
tury, revealing significant impacts. However, the model was 
insensitive to the long-term stability of the biochar fraction, sug-
gesting that it persists over millennia. The researchers discuss 
the implications of the model and future research directions. 
They highlighted that erosion losses may be more important 
for biochar than for other types of soil C components, and the 
models may need to be modified to account for soil erosion. 
Additionally, the model does not explicitly capture variations in 
biochar quality. The authors proposed incorporating this aspect 
in future iterations of the model, contingent on data availability 
for parameterization.

Usowicz et al. (2020) studied the effects of biochar on soil ther-
mal properties in field experiments conducted in China and 

Poland. The experimental data included information on bio-
char application rates, soil texture, mineral composition, bulk 
density, particle density, water content, air-filled porosity, and 
organic matter content. These data were used to validate and im-
prove the predictive capabilities of three models of soil thermal 
properties. The biochar rates in the field experiments ranged 
from 4.5 to 40 Mg ha−1, while the modeling study considered a 
wider range of rates, varying from 52 to 267 Mg ha−1 (Usowicz 
et al. 2020).

The most accurate predictions of thermal conductivity and dif-
fusivity were achieved when the statistical-physical model in-
corporated the geometric mean of native SOM and biochar, and 
reduced the quartz content in the sand fraction from 100% to 
72% (Usowicz et al. 2020). The addition of biochar decreased the 
thermal diffusivity at comparable water contents. Furthermore, 
the maximum thermal diffusivity occurred at higher water con-
tent levels as biochar content increased. The increased thermal 
diffusivity resulting from biochar application can help to regu-
late soil temperature, a crucial factor in plant growth and soil 
processes (Usowicz et al. 2020).

4   |   Opportunities and Challenges

Although numerous studies have examined short-term effects 
under controlled conditions, a substantial challenge remains in 
extrapolating laboratory findings to the complex dynamics of 
field-based biochar applications. The observed variations, no-
tably in the speed of biochemical reactions, are often linked to 
soil disturbance and altered environmental variables. As high-
lighted by Ringsby and Maher  (2025), current assessments of 
biochar persistence are hampered by a limited body of short-
term studies, comprising fewer than 20 publications and typ-
ically spanning only 1 to 2 years of evaluation. Consequently, 
there is a heightened risk of committing an ecological fallacy 
where conclusions drawn from these restricted datasets fail 
to predict outcomes at individual biochar deployment sites 
accurately.

The monitoring of biochar effects on soil is still in its early 
stages and can be conducted through a variety of techniques, 
including soil analysis, field experiments, and mathematical 
modeling. However, the complexity of the processes involved 
and the lack of long-term data still limit the understanding of 
the underlying mechanisms. Although the demand for predic-
tive models is growing, large-scale adoption is still limited by 
uncertainty about the accuracy of the estimates. The accuracy 
of estimates varies significantly depending on spatial and tem-
poral scale, soil type, and climatic conditions. Furthermore, for 
biogeochemical models to accurately simulate biochar dynam-
ics in soil, it is essential to incorporate the understanding that 
different biochar compositions exert distinct influences on SOC 
dynamics.

The main benefit of using models in studies of biogeochemical 
cycles is their ability to integrate multiple factors, making sim-
ulations more realistic and incorporating the inherent complex-
ity of ecosystems. Thus, these models significantly contribute 
to our understanding of how soils function and their ability to 
adapt to different conditions.
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Biogeochemical models are valuable tools to assist decision-
makers and those interested in soil C storage. Although pro-
grams to encourage SOC sequestration are not new, several 
approaches to measurement, reporting, and verification (MRV) 
of SOC exist. MRV protocols for SOC may include repeated col-
lection of soil samples, application of biogeochemical modeling, 
use of remote sensing technology, or even a combination of these 
approaches to capture changes in SOC stocks over time. Hybrid 
MRV approaches, which combine soil sampling with modeling, 
have been shown to be effective in quantifying the responses of 
changes in SOC stocks. Furthermore, modeling allows projects 
to operate on a much larger scale than would be practical if fre-
quent field sampling is required, given the high costs associated 
with this type of annual monitoring (Mathers et al. 2023).

Therefore, it is important to develop, calibrate, and validate sim-
ulation models that allow for the incorporation of biochar into 
soil management strategies. This is crucial for estimating the in-
crease in soil C storage in systems using biochar. Furthermore, 
it is necessary to calibrate and validate these models in a variety 
of soils, including tropical regions, as research in this area re-
mains limited. In the long term, the combination of improved 
models, more accurate monitoring, and the growing demand 
for nature-based solutions is expected to drive the development 
and refinement of biogeochemical models that consider biochar 
input into the soil.

5   |   Conclusions

Biochar has been proposed as a promising technology for soil 
C sequestration and climate change mitigation and has been 
validated by several scientific studies presented here. However, 
assessing the long-term soil C sequestration potential of biochar 
is challenging because of several factors, including:

1.	 Short observation periods: Most biochar experiments in-
volve short-term laboratory incubations or greenhouse 
experiments. These limitations often result in a lack of 
adequate representation of biochar behavior over time and 
space.

2.	 Neglecting crop–climate interactions: Most biochar re-
search focuses on short-term effects on soil properties in 
controlled environments, neglecting how biochar interacts 
with crops and climate over long periods.

3.	 Measurement limitations: Currently, ex situ laboratory 
methods are used for measuring C (organic or total) in soil, 
resulting in high sampling frequency and analysis costs.

4.	 Scarcity rather than model validation data: The models 
used to predict the impact of biochar on soil C sequestra-
tion lack sufficient data for validation because of the afore-
mentioned challenges in monitoring soil C.

To overcome these challenges and improve our understanding 
of the long-term C sequestration potential of biochar, future 
studies should focus on conducting long-term field experiments 
to evaluate biochar performance under real-world conditions. 
Validation data are necessary to improve the models' accuracy 
in predicting the impacts of biochar on soil C sequestration. The 

development of improved methods for measuring soil C stock 
changes that can capture spatial and temporal variability is par-
amount for the adequate use of models. Further research into 
the interactions among biochar, crops, and climate under field 
conditions is needed to better understand the long-term effects 
on agricultural productivity and GHG emissions.

Addressing these challenges will lead to a more comprehensive 
understanding of biochar's potential as a long-term C sequestra-
tion strategy and support the development of effective policies at 
national (i.e., Nationally Determined Contribution) and interna-
tional (Paris Agreement; Conference of the Parties) levels.
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