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Abstract

Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the
classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by
the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce
variable expression. This variability must be constrained in the highly reproducible and coordinated events of development.
We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and
protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter
in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to
data from WT embryos, the self-regulation mutant hb'*, and lacZ reporter constructs using different portions of the hb
promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb
output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than
on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in
the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding
site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory
dynamics reduce hb output noise. Insofar as many of these are common features of genes (e.g. multiple regulatory sites,
cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and
determinacy of spatial patterning in early development.
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is a transcriptional regulator of downstream segmentation genes,
and has been studied as a classic example of a positional
information gradient, in which alterations in the gradient shift
downstream patterns in a concentration-dependent manner [6—
10]. It has been shown, though, that Bed has lower spatial

Introduction

One of the fundamental questions in biology is how embryos
develop reproducibly, and it has many aspects. Here, we focus on
the reproducibility of the spatial gene expression patterns which

determine the body plan. At a broad level, one can ask what the
degree of variability is in a population of embryos - the degree to
which parameters controlling developmental patterning can vary

before major disruptions occur. In recent years, a number of

studies have made quantitative comparisons of developmental
patterns between embryos in the fruit fly, Drosophila melanogaster,
aided by its very well characterized molecular biology. For
instance, there has been a recent focus on spatial precision of the
maternally-derived Bicoid protein (Bed; Figure 1, green), which
forms an anterior-posterior (AP) concentration gradient [1-5]. Bed
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precision than its downstream targets: the gap gene hunchback (hb;
Figure 1, blue) has a mid-embryo domain boundary at a position
some 2 to 7 times less variable than the corresponding Bed
concentration threshold [1,4,5,11,12]; and the pair-rule gene even-
skipped starts out with Bed-like precision but achieves /4b-like
precision as its pattern develops [3]. In addition, microfluidic
temperature experiments have shown robust downstream pattern-
ing following extreme disruption of the Bed gradient [13,14]; and
even with experimentally flattened Bed gradients, embryos form
gap gene patterns in the correct order [15]. All of this suggests that
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Author Summary

Noise is an intrinsic part of biochemical systems such as
gene regulation networks. Noisy gene expression has been
well documented in populations of single cells, and is likely
a key mechanism in evolutionary change. But in develop-
ing embryos, cells within a tissue must overcome such
variability in order to provide the uniformity required to
coordinate multiple events. Reproducibility and determi-
nacy of the spatial protein patterns preceding tissue
differentiation is a critical aspect of development. In this
study, we use anterior-posterior (AP) segmentation in the
fruit fly (Drosophila) to understand how gene regulation
dynamics control noise. One of the earliest AP patterning
events is the anterior activation of the hunchback (hb)
gene by the maternally-derived Bicoid (Bcd) protein
gradient. This interaction has been very well characterized,
providing the tools for us to develop a stochastic model of
hb gene regulation to make predictions about expression
noise, and to corroborate these experimentally. For hb, we
show that self-regulation is a critical part of controlling
noise, and the multiple Bcd binding sites in the hb
promoter also enhance pattern reproducibility. To the
degree that such features are shared by other genes, these
noise-reducing mechanisms may be common to many
pattern forming events.

the initial maternal positional information is modified during
development in order for expression patterns to achieve necessary
levels of precision.

In addition to the precision between embryos, spatial patterns
within individual embryos are well-determined, with low cell-to-
cell variability (or nucleus-to-nucleus, for the precellular Drosophila
blastoderm), despite numerous sources of noise. These include: the
state of the DNA; mRNA and protein production; intra- and inter-
cellular compartmentalization; and cellular movements and
ordering. Error control is likely to occur at each these to limit
noise and allow development to proceed. Previous studies have
investigated aspects of this, for instance, at the DNA level [16] and
overall tissue level [17,18]). In this paper, we focus on the noise
which can arise in mRNA and protein production, due to the
inherently random nature of reactions at low copy number. This
builds on a now extensive literature of gene expression noise in
single celled organisms (e.g. [19-24]). But by studying #b
patterning - the initial conversion of the smoothly decreasing
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Bed gradient into a sharp and precise zygotic pattern segmenting
the body (Figure 1) - we focus on spatial noise: what are the
dynamics of noise generation in kb patterning (including, in
contrast to single cells, randomness in transport between nuclei);
and how is noise controlled within the constraints of these
dynamics, producing the nucleus-to-nucleus noise levels observed
for Ab? We show that some degree of Hb between-embryo
positional variability can arise purely from randomness in
transcription and translation. But the larger issue is that gene
expression has a strong potential for amplifying the microscopic
randomness of low copy number into indeterminate macroscopic
patterns within an embryo (ie. with indistinct or missing
boundaries). In the present work, we investigate what dynamic
features and parameter ranges are necessary for kb expression to
overcome this, in order to form determinate pattern.

A broad distinction can be made between gene expression noise
that is external, due to fluctuations in upstream regulator
concentrations or global parameters (e.g. rate constants), and
internal, due to the random nature of reactions (e.g. how many
molecules per unit time are created or destroyed) and transport
(how many molecules arrive in or leave a unit volume in a given
time). Even in the absence of external sources (i.e. with fixed, non-
fluctuating inputs) internal sources will cause fluctuating output.
The amplification of external noise can potentially be significant in
hierarchical signalling, such as in Drosophila segmentation; but data
[4,25] indicate that Bed delivers a relatively non-noisy signal to
nuclei (discussed further below), which indicates that much of the
observed between-nucleus noise in Hb is generated internally, in
the process of mRNA and protein production.

We directly model the noise production in /b regulation using a
chemical master equation approach [26-28]. This treats each
reaction and transport event with a probability of occurrence per
unit time. At the low copy number of many of the species involved
in transcriptional regulation, stochastic dynamics predominate,
necessitating such a solution method; dynamics generally become
more deterministic for copy numbers in the hundreds and above
[29]. Several of us were involved in a previous project developing a
detailed model of anterior kb expression [30]. This was based on
experimental mapping of the £b promoter [31,32], and simulated
regulation in a core region of the proximal promoter responsible
for anterior zygotic b expression (green arrows, Figure 2A). The
model included binding/unbinding at 6 Bed sites (red, Figure 2A)
and 2 Hb self-regulatory sites (blue, Figure 2A); Hb production
and diffusion; and Bed translation (at the anterior pole) and
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Figure 1. Concentration profiles of the morphogenetic proteins Bicoid (Bcd) and Hunchback (Hb). (A) A Drosophila embryo fluorescently
immunostained for Bcd (green) and Hb (blue), about 30 minutes into nuclear cleavage cycle 14. Anterior left, dorsal top. Nuclei at the surface of the
precellular, syncytial blastoderm are visible. (B) Fluorescence intensity against anterior-posterior (AP) position (in percent egg length (%EL), colours as
in A, showing the exponential Bcd gradient and the step-like Hb pattern. From [30].

doi:10.1371/journal.pcbi.1001069.g001
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Figure 2. Model of the hb promoter. (A) Schematic diagram of a 4776 bp fragment from the hb regulatory region determined by in vitro
footprinting [31,32], adapted from [30, Figure S4]. The Bcd sites (red; A are strongly binding, X are weaker) and first two Hb sites can drive relatively
sharp anterior expression in lacZ constructs in a WT background (e.g. Figure 7D). This region (between the green arrows) has been extensively
studied as the core of the proximal promoter and is the basis of our model. (B) The reaction network based on these core binding sites, involving
binding, unbinding, transcription, translation and decay. B=Bcd protein; H=Hb protein; MB and MH are their mRNAs, respectively. bcd mRNA is
translated at the anterior pole. Bcd and Hb proteins diffuse. by_g are the number of Bcds bound to the hb promoter; hy_, are the number of Hbs
bound to the hb promoter. The subscript refers to the binding order based on strength. Values of the rate constants (k's) are constrained by

experimental data and are given in Tables S1, S2, S3.
doi:10.1371/journal.pcbi.1001069.g002

diffusion. The model, solved at the deterministic level, successfully
predicted Hb boundary position and sharpness for wild-type (WT)
and bed and b mutants; and showed that sharpness depends on
bistable dynamics due to /b self-regulation. Following validation
against these macroscopic features, we are now using the model to
investigate noise generation in the /4b expression dynamics.
Figure 2B shows the current version of the model; reactions have
been added to explicitly model mRNA synthesis. By simulating
regulation at this level of detail we can determine the relative noise
contributions of, for instance: binding site number and strength;
binding cooperativity; self-regulation; and protein diffusion. Noise
is uniquely generated by each of these aspects, and determinate
pattern formation depends on their associated parameters (e.g.
binding, diffusion, production and decay rates) being within
controlled ranges, as well as on the types of dynamics (e.g. binding
cooperativity, self-regulation). For the /b promoter, there are a
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number of experimental tools which allow us to distinguish these
contributions, including the £6'*" mutant [33], whose Hb protein
does not bind DNA; and a series of lacZ reporter constructs driven
by fragments of the /b promoter [34]. Data from these embryos, as
well as WT, place constraints on the model parameters, allowing
us to deduce their relative contributions to the generation and
control of /b output noise.

Tkacik et al. [35] recently studied the effects of input (Bed) noise
on Hb output. This approach assumed that Hb output exclusively
depends on Bed, in a Hill-type manner. For some cases (h6'*F, lacZ
constructs), such complete Bed dependence may apply. For WT,
however, Hb self-regulation is significant, and greatly influences
the final expression pattern [1,30]. Very recently, Okabe-Oho et
al. [36] published results on a stochastic model of Hb production,
following our previous model [30]. They modelled binding of the
hb promoter, but only considered 4 possible bound-states
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(including that the 6 Beds or the 2 Hbs bind simultaneously as
groups). Using all of the bound states (all the 4’s and #’s in
Figure 2B), has enabled us to build up the binding and production
constants from lacZ construct data with from 1 to 6 Bed binding
sites of different strengths, and from 0 to 2 Hb sites (together with
WT and %b'*" data). This has revealed cooperativity and binding
strength effects which could not be addressed in the 4-state system.
[35] and [36] focused on input noise due to diffusion of regulators
to the promoter. [36] reported that amplification of this type of
noise can depend strongly on Hb diffusivity. We see a similar
sensitivity to Hb diffusivity, but the reproducibility of Hb
boundary sharpness between embryos suggests that diffusivity is
highly constrained (i.e. not a variable parameter); and the steep
boundary indicates a slow diffusivity, i.e. that it is not optimized for
noise reduction. Detection of regulator movement within nuclei is
beyond current techniques. But measurements of Bed concentra-
tions at whole nuclei resolution [4] indicate that nucleus-nucleus
Bed fluctuations should be relatively low. At this spatial resolution
(our data is processed into ‘energid’ units, of nucleus plus
surrounding cytoplasm), we observe that relative noise is higher
in #b mRNA than in protein, and that Hb self-regulation
(comparing WT with the £"*" mutant) decreases relative noise
in the protein output. Neither of these effects depend on input
noise: the former (the noise difference between mRNA and
protein) shows the effects of translation; the latter highlights the
effects of self-feedback. Our model predicted these effects from
dynamic principles.

The details of the /b promoter structure matter for determining
expression noise. We predict that binding/unbinding noise
dominates in the absence of self-regulation, and increased binding
site number and strength serves to reduce noise in these cases. In
WT, though, self-feedback produces a bistable mechanism: this
was previously shown to be critical in boundary sharpness [30]; the
present work shows how this mechanism also promotes expression
into a more deterministic, low-noise regime. These results suggest
how evolution may have incorporated binding sites and self-
feedback mechanisms to produce output determinate enough for
robust development.

Results

Experimental data determines model parameters
Published data from WT, the A6'“ mutant and the lacZ
constructs indicate probable values of the parameters in the model
(Figure 2B). We describe below how the data can be used to
determine the rates (k-values) sequentially, without the need for a
global parameter optimization. This involves deterministic (no
noise) solution of the model to match macroscopic features of the
data (strength of expression, expression boundary position,
boundary sharpness, timing). This parameter set is then used in
stochastic solutions of the model to make predictions on noise levels
and characteristics, which are corroborated against new experi-
mental data (next section, Stochastic Results). The assumptions
involved in the parameter fitting are not expected to affect the noise
predictions (see Discussion). The main points on parameter fitting
are given here, with further details given in Text S1.
Concentration sets production rates. Gregor et al. [4]
reported a mid-embryo concentration for Bed-GFP (Green
Fluorescent Protein) of approximately 8 nM, about 700 protein
molecules per nucleus (nuclear volume around (5um)?). With the
exponential form of the Bed gradient [3], this corresponds to 7000
molecules per nucleus at the anterior pole. Given these current
best measurements of absolute protein concentration in the cycle
14 blastoderm, a reasonable first estimate for the Hb maximum
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would similarly be in the range of 7000 molecules per nucleus.
(Using methods stated to be biased low, Zamparo and Perkins [37]
estimated at least 820-1300 Hb molecules per nucleus — and
roughly equal to the Bed concentration range found by their
techniques.) The Hb maximum sets the overall transcription rates
in the model (£9510,13,16,19.20,25; Table S1). We have measured
protein intensity in the 46" mutant to be 15% of WT [30]; this
difference sets the relative values of the Hb-bound transcription
rates (ky 5). For constructs driven by only Bed sites, Driever et al.
[34] qualitatively scaled the decrease of lacZ intensity with
decreasing Bed site number; coupled with quantitative in vitro
data [32], these set the relative values of Bed-bound transcription
(k10,13,16,19,292,25)- The trend from £ to k5 is non-linear, suggesting
that the multiple Bed sites have a synergistic effect on overall
transcription rate (particularly for more than 3 Beds bound).

Expression boundaries set Bed binding constants. In the
Driever constructs, lacZ boundary positions shift according to the
number of Bed sites and their strength [34]. Earlier DNAse
footprinting mapped 3 strong (A) and 3 weak (X) Bed binding sites
in the proximal b promoter [32; see Figure 2A, red]. The Driever
constructs are driven by a number of combinations of A and X sites.
Starting from the construct with a single A site, matching the
posterior lacZ boundary positions for all the constructs sets the Bed
binding constants in the model (£ 14,17,20.95 26; Table S2; note that
the model numbers the order of binding - 1 Bed, 2™ Bed, etc. — not
the location at which a particular binding occurs). Comparison, e.g.
between constructs with 3A vs. 3X sites, allows us to predict relative
differences in strong and weak binding strengths. Earlier in vitro
work [38-40] identified cooperativity in binding up to 3 Beds, which
we incorporated into the £; 14,17 values. Modelling the positions for
constructs (and £6"*) with 4 or more Bed sites indicates a further
cooperativity in these additional bindings.

Hb regulation sets the timescale. The posterior shift of the
Hb boundary (specifically the posterior, mid-embryo boundary)
from 26" *" to WT sets the binding constants for the 2 Hb sites in the
model (Table S3). The Hb boundary position is fairly steady in W'T,
over a period of about 5 to 40 minutes into nuclear cleavage cycle
14 [30, Figure 2CD]. At the same time, sharpness increases by
about 20°, reaching steady values near 30 minutes (sharpening
occurs before the later Hb patterning in the posterior and at
parasegment 4: it is driven by the proximal promoter, Figure 2A
green arrows). This sets the timescale of Hb production and decay:
the steady sharpness and maximum depend on the ratio of Hb
production to decay, but reaching steady values by 30 minutes
constrains the absolute values of these rate constants (faster
production and decay reach steady state faster). Simulations were
initiated with experimental Hb data from the onset of cycle 14,
about 65% of the mature cycle 14 maximum. The Hb protein
diffusivity is also constrained by observed sharpness: if diffusivity is
too high, self-regulation cannot sharpen the boundary - WT
simulations become only marginally sharper than Ab"*"
(experimental data shows a 15° difference); if diffusivity is too low,
the boundary becomes sharper than experiment. A Hb diffusivity of
0.3um?/s (equal to the value measured in [41] for Bed-GFP
diffusion in the vicinity of nuclei) best fits the experimental
observations. Results from [36] suggested fast Hb diffusion as a
means of decreasing noise, but the sharpness and reproducibility of
Hb profiles [30, Figure 1] indicate that diffusivity is tightly
constrained, and may not be optimized for noise control.

Stochastic results

With the parameters thus determined, we modelled W'T, 1
and the lacZ constructs to predict the mRNA and protein noise
arising from different aspects of transcription and translation.
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Wild-type noise. Figure 3 compares model results and
experimental data for WT /b mRNA and protein. These
simulations do not include Bcd noise: the trends were identical
between simulations with or without Bed noise (at levels indicated
by the data). The relative independence of Bed and /b noise is
explored more fully below. Here, we highlight the #0 mRNA and
protein differences arising from transcription and translation.
Figures 3A (protein) and 3B (mRNA) show /b output for a WT
simulation; experimental data from a WT embryo is shown in
Figures 3C and D (protein and mRNA, respectively). Noise
statistics (Table 1) are based on concentration differences
(residuals): for simulations, from the difference between the
stochastic and deterministic (dashed line) solutions at a particular
time-point (¢= 30 minutes, here); for experiments, from the
difference between data and fit trends (see Methods). Noise is
calculated as the standard deviation of the relative residuals in the
activated region (1545 percent egg length (%EL)). Since the
model does not include experimental sources of error, noise
comparisons are in terms of relative trends, not absolute levels. To
show the temporal stability of the noise, stochastic results are
displayed at 5 second intervals over the final minute of
computation.

Computations generate the characteristic determinate protein
boundary seen in the data. For mRINA, the model produces a
boundary that is both sharper and noisier than protein, as seen in
the data. The model predicts z6 mRNA should have higher noise
than its protein, and this is corroborated in the experimental data
(statistical significance, Table 1). Temporally, the simulations
suggest a mild decrease in mRNA and protein noise as pattern
develops; noise levels for experimental protein data appear steady
in the first 30 minutes of cycle 14.

Many factors can affect noise. We found that /b self-regulation
has a major effect, which is explored in detail in the next section.
Other factors identified in preliminary computations were:
diffusivity - the faster that Hb protein is transported, the more it
smoothes local fluctuations, though at the expense of boundary
sharpness (see also [36]); cooperativity - if binding strength
increases too much for each sequential Bed (or Hb) bound, there
can be runaway binding events in the posterior half of the embryo,
with ‘spikes’ of activation in nuclei which should be ‘off’; reaction
rate - the faster that reactions occur, the more the protein
concentration displays the high noise conditions (due to low
numbers of binding sites) of the promoter. As an example of this,
Figure 3E shows a simulation in which mRNA and protein
production and decay constants were increased by a factor of 10.
Protein timescales are the most critical in this: WT protein
expression could be generated with all #6 mRNA rates increased
by a factor of 1000, but Hb pattern was rapidly destroyed if
translation and protein decay were moderately sped up (as in
Figure 3E). These potential noise sources were largely eliminated
by the parameter fitting described above; i.e. matching macro-
scopic features produced a model parameter set which generated
similar noise levels (or determinacy) to that observed in WT —
perhaps reflecting the biological selection against parameter values
(i.e. rates) which generate noise and threaten pattern.

In between-embryo studies, the drop in positional variability
from Bed to Hb has been noted [1,5,12,42], from mid-embryo
standard deviations on the order of 2 to 7%EL for Bed to about
1.0%EL for the Hb boundary. Not all of the Hb variability may be
due to Bed, however. Figure 3F shows the protein output for 19
independent stochastic  WT simulations (all with identical
parameters, including identical Bed). The standard deviation of
the boundary position is 1.0%EL for this sample — comparable to
values measured between embryos — suggesting that a substantial
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proportion of between-embryo variability could stem from
mtrinsic fluctuations in expression dynamics.

hb self-regulation decreases noise. hb"*F mutants lack self-
regulation, and show much lower protein intensity and slope than
WT (Figure 4A; Tables S1, S2, and S3). The mutation is also
associated with increased noise: simulating 26" (Figures 4B and
C; statistics in Table 2) by not allowing Hb binding in the
promoter significantly increases both mRNA and protein noise
from WT (c.f. Figures 3A and B; Table 1). (And £6'*" model noise
1s higher for mRINA than protein, as in WT.) The noise increase is
corroborated by the data, which show significantly higher protein
noise in ib'** (Figure 4A; Table 2) than WT (Figure 3C; Table 1).
We would predict that the higher noise in 46" would combine
with its lower slope to produce greater downstream positional
errors than WT; therefore that Hb self-regulation plays a dual role
of both sharpening the boundary [30] and reducing noise to
produce determinate WT pattern.

The two stages of transcription and translation are also
important for clean amplification of the W'T' self-feedback loop:
in preliminary computations, in which only a single generic
‘production’ term was modelled (as in [36]), WT expression was
much noisier. Relative fluctuations in the small number of bound
sites at the promoter are much higher than in the hundreds of
mRNA copies per nucleus (e.g. Figure 3B). Translation from this
latter level can help shield the protein from noise at the promoter.

Noise characteristics highlight the Bcd-independent
aspects of hb expression. Probability distributions for
species’ concentrations are generated by underlying kinetics.
Since the master equation approach models each reaction and
transport event probabilistically, it generates the unique
distributions for each species in a given mechanism. The
difference in kinetics between Bed gradient formation and 46
expression produces very distinct probability distributions,
showing the extent to which Hb noise is produced de novo,
independently of Bed noise.

Simulations of the Synthesis-Diffusion-Decay mechanism of Bed
patterning (Figure 2B) produce Poisson distributed noise, with a
characteristic variance to mean ratio (VMR) equal to one: n=6
stochastic simulations averaged VMR =0.98 (averaged over all
positions; Figure 5A shows a typical result; see also [25,43]).
(Distributions were generated from 1-second separated data points
over 30 minutes of simulation during steady-state, = 30-60 mins.)
Though there are recent developments regarding the Bed
mechanism [44—46], these are not expected to strongly alter the
Poissonian character of the noise. The Poisson distribution
generally occurs for equilibrium fluctuations [47] and simple
kinetic mechanisms [48,49].

hb makes a nonlinear amplification of the Bed signal which is no
longer ‘simple’ kinetics: in the anterior region, 76 mRNA shows a
VMR 2-3 times that expected for a Poisson distribution (for n =16
simulations, mean VMR for the 1-40%EL activated region was
2.4). Figure 5B shows typical 46 mRNA VMR, for the same
computation as Figure 5A. Translation produces further strong
noise amplification for the protein, with mean VMR 16 times
higher than Poisson (for 1-40%ZEL, » = 6). Figure 5C shows typical
Hb protein VMR, for the same computation as Figures 5AB. (We
model a typical [50,36] translation rate of 35 proteins for each
mRNA; higher or lower protein-to-mRINA ratio would give higher
or lower protein VMR, respectively [see also 51 on this effect].
Non-Poisson noise amplification has previously been shown with
translation in yeast [23]; our computations demonstrate the effect
for spatially-distributed expression noise. The different probability
distributions for Bed, 76 mRNA and Hb protein, evidenced by the
increasing deviation from Poisson noise (e.g. Figure 5A to 5B to
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Figure 3. Wild-type (WT) expression noise. (A, B) hb protein and mRNA profiles, respectively, from the model (Figure 2B; 6 Bcd sites (3A, 3X) and
2 Hb sites, or 6B2H), with parameters fit by experimental constraints (Tables S1, S2, S3). Deterministic (no noise) results, dashed line. Stochastic results
are shown over one minute (29-30 minutes into cycle 14), at 5 second intervals (comparable to the experimental heat-fixation time), to show the
slow temporal variability of the noise (same format used in Figures 4, 6, 7). Noise is calculated from the differences between the deterministic and
stochastic results at 30 minutes (Table 1). (C, D) Representative data from a single WT embryo, hb protein and mRNA, respectively, 30-36 minutes
into cycle 14 (same time in Figures 4, 6-8). This shows the characteristic determinate mid-embryo boundary, especially for the protein, which is also
produced by the model. mRNA (B, D) has significantly higher noise than protein (see Table 1 for statistics). (E) Too-fast reaction rates are one factor
that can cause noise to overwhelm determinate expression. Here, reaction rates (transcription, translation, mRNA and protein decay) have been
increased ten-fold from (A, B), producing much higher fluctuation levels (protein noise 25%, mRNA noise 32% - higher than any WT results (Table 1))
and reducing the determinacy of the mid-embryo boundary. (F) Within-embryo noise contribution to between-embryo variability: 19 independent
stochastic simulations of WT protein expression, with a standard deviation in boundary position of 1.0%EL (comparable to experimentally observed
between-embryo variability).

doi:10.1371/journal.pcbi.1001069.9g003
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Table 1. Noise levels for WT expression, in time.

Model, Model, Experiment, Experiment,
Time mRNA? protein?® mRNAP protein®
30mins 11 (1.2) % 5.3 (0.92) % 47 (22) % 5.1 (0.89) %
20mins 13 (1.7) % 6.3 (1.7) %
10mins 14 (1.4) % 7.2 (1.5 %

Noise is a standard deviation using relative residuals, calculated by

> " [(stoch—det) /det]? )

TR — where stoch and det are the stochastic and deter-
ministic solutions at each position (energid), respectively; for experimental data,
replace stoch with background-removed intensity and det with the trend found
by 2D SSA (see Methods). This measure is calculated for the activated region,
15-45%EL (proximal promoter dependent).

@Average of the noise levels (standard deviation in brackets) for the 19
simulations shown in Figure 3F. mRNA was noisier than protein in every
simulation (and p<<0.01, for t-test on differences, for each time). The simulation
in Figure 3AB has average noise levels (11% for mRNA, 5.4% for protein).

bn=3 embryos. mRNA was noisier than protein in each embryo (and p<0.05 for
t-test). The embryo in Figure 3CD has noise of 22% for mRNA and 4.8% for
protein. (Limiting analysis to the strongest mRNA expressing region, 30—
45%EL, average mRNA noise decreases (to 25%) and becomes less variable
(8.0% std. dev.), while protein noise remains stable (mean, 5.7%; std. dev.,
1.3%), increasing the significance for their difference.)

doi:10.1371/journal.pcbi.1001069.t001

5C), highlights the independent aspects of /b expression from the
Bed input signal.

hb self-regulation contributes to this non-Poisson noise. For /-
generated noise only (using a static Bed gradient), simulations of
hb"*F (binding at 6 Bed and 0 Hb sites, or ‘6BOH’) show a nearly
Poisson VMR for the mRNA (mean VMR = 1.1, n = 6; Figure 5D
is a typical result), less than half the VMR seen in WT (‘6B2H’)
mRNA simulations (mean VMR =2.3, n=6; e.g. Figure 5F). In
both 6BOH and 6B2H, translation increases protein VMR six-fold
over mRNA (6BOH mean protein VMR =6.2, n=6, e.g.
Figure 5E; 6B2H mean protein VMR =14, =6, e.g.
Figure 5G), but 6B2H starts from a higher mRNA VMR to
produce a higher final protein VMR. Translation creates non-
Poisson noise, so Hb protein is predicted to be non-Poisson with or
without self-feedback. But WT protein is predicted to show a
stronger deviation from Poisson than in 4b'*") since the self-
feedback cycle creates non-Poisson noise at the transcriptional
level for hb mRNA. (Other cases without self-feedback are
expected to be like #6"*T: in simulations of the single Bed site
lacZ construct, mRNA VMR was also close to 1 with protein
VMR close to 6.) It should be emphasized that while self-feedback
increases the VMR, the overall noise is lower with self-feedback
than without (Figure 3 vs. Figure 4; Table 1 vs. Table 2): self-
feedback boosts production to higher mRNA and protein
concentrations, which are overall less noisy.

For the concentration range measured for the Bcd-GFP
gradient [4], Poisson fluctuations are very low, about 3-4%
(relative standard deviation) at mid-embryo. At these levels there is
very little difference between 26 mRNA and protein noise levels in
simulations with Bed noise (e.g. Figures 5BC) or without Bed noise
(e.g. Figures 5FG). The following relations hold at 5% significance:
hb mRNA and protein noise levels are correlated with each other,
but neither are correlated with Bed noise levels; mRNA noise
levels show no difference in simulations with or without Bed noise;
protein noise levels appear slightly increased with Bed noise; and
the VMR trends discussed above show no difference with or
without Bed noise. While this does not rule out a minor effect from
Bed noise, the intrinsic noise arising from the kinetics of /b
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expression, especially translation and self-feedback, is expected to
be a much greater factor than upstream Bed fluctuations on
overall /b noise. This is in contrast to the analysis in [4, eqn. 6] and
[35, eqn. 15], in which nucleus-nucleus Hb noise was converted to
Bed input noise via assuming direct dependence of Hb output on
Bed input. By directly investigating the effect of the /b kinetics, our
analysis indicates that this assumption is not likely to apply,
especially at the low Bcd noise expected from its measured
concentration [4]; rather, observed Hb noise is likely to be largely
Bed-independent.  Experimental determination of probability
distributions presents new technical and analytical challenges;
the present simulations indicate the hallmarks of the non-Poisson
distributions expected from transcription and translation, to guide
such future work.

Bcd binding site number and binding strength affect
expression noise. The subset of Driever lacZ constructs with
only Bed binding sites map out the degree to which transcription
depends on Bced binding (without Hb regulation). Model
parameters were set (‘Experimental data determines model
parameters’ section) to match expression levels and boundary
positions in [34]; stochastic simulations predict the noise
characteristics of the Bcd-dependent expression — these are
summarized in Figure 6 and Table 3. Since these constructs are
made in WT embryos, simulations include the full Hb model
(Figure 2B), plus parallel reactions for production of lacZ and f-
galactosidase from the binding sites appropriate to the construct.
The 1A construct (pThb3, a single strong Bed site) is at the limit of
experimental detection [34]. The corresponding ‘on’ levels of
mRNA in the model are on the order of 2 copies per nucleus
(Figure 6A), producing very high noise (Table 3). This produces
random activation along the length of the system and an
indeterminate AP pattern. In constructs with 3 Bed binding
sites, anterior expression is observed to be more distinct. In
addition to the increased expression with 3 sites, simulations
predict that stronger binding, 3A (Figure 6B, pThbl0) vs. 3X
(Figure 6C, pThb12), decreases noise (Table 3). Adding a 4th Bed
site shows yet higher anterior expression, and the model again
predicts lower noise for stronger binding, 4A (Figure 6D, pThbl1)
vs. 4X (Figure 6E, pThbl3, Table 3). We predict that increasing
number of sites also decreases noise. This is indicated by the
decrease in noise from 1A to 3A to 4A (Figure 6 A to B to D), and
also by simulations for constructs in which the 3X motif is
multiplied: 2 times 3X (Figure 6F, pThbl5) and 3 times 3X
(Figure 6G, pThb16) show progressive reduction of noise from the
single 3X (Figure 6C). Increasing binding sites or binding strength
is associated with increased transcription, producing higher
mRNA concentrations which are not as dominated by noise
(binding site number and expression intensity are experimentally
correlated, Table S1; for stochastic dynamics, stronger binding
increases the bound, transcribing time; a recent study in yeast
shows larger pulses of production with more binding sites [52]).
The developmental effects of noise may also depend on pattern
shape: as binding site number increases, the slope of the expression
pattern sharpens, decreasing the positional effects of concentration
fluctuations. In high noise situations, such as Figure 6A, there are
two types of small number statistics: for DNA, the number of Bed
binding sites is small; and for mRNA, the numbers of copies
produced per nucleus is also small. As the number of binding sites
increases, the DNA source of the noise is diminished; as
transcription is increased, the mRNA source of the noise is
diminished. To summarize, the model predicts that noise
decreases for stronger binding (4X to 4A; 3X to 3A) and for
increased numbers of binding sites (1A to 3A to 4A; 3X to 2x3X to
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Figure 4. The absence of hb self-regulation. (A) Protein expression in a homozygous hb"" mutant embryo (whose Hb protein cannot bind
DNA); noise is significantly higher than WT (c.f. Figure 3C). (B) Simulation of hb'# protein expression: 6 Bcd binding sites and no Hb binding in the
promoter (6BOH). Noise is higher than WT. (C) mRNA for the same simulation: noise is higher than protein (B), and higher than for WT mRNA

(Figure 3B). See Table 2 for statistics.
doi:10.1371/journal.pcbi.1001069.g004

The effect of Hb binding sites on expression noise. In
addition to the WT-2b"*" comparison above, lacZ constructs with
Hb binding sites shed some light on the role of Hb in noise control.
pThbl has 6 Bed sites (3A3X), but only one Hb site (6B1H). A
simulation is shown in Figure 7A; lacZ for a pThbl embryo is
shown in Figure 7B. The pThb5 construct is driven by the 3A3X
Bed sites and 2 Hb sites, the core of the WT proximal promoter
(green lines, Figure 2A): Figure 7C shows a simulation; Figure 7D
shows lacZ for a pThb5 embryo. The simulations suggest a slight
drop in noise with addition of the 2"! Hb (statistics in Table 4), and
the experimental data support this. The first Hb binding has a
minor effect (reflected in its minor posterior shift compared to
hb'*). Binding of the 2! Hb in the model increases expression
and creates a sharper boundary. In the pThb8 construct the 6B1H
promoter (Figures 7A, B) is doubled; simulating this (Figure 7E)
doubles production and decreases noise (to similar levels to pThb5;
but the boundary is not sharp in the absence of the 2™ Hb site).
Finally, for the pThb2 construct, with 4 Bed sites (2A2X) and 1 Hb
site, we predict (simulation, Figure 7F) a loss of determinacy and
an anterior shift compared to 6B1H (Figure 7A). The expression
and noise (Table 4) are comparable to the 4A construct (Figure 6D,
Table 3), suggesting the 1 Hb site may compensate for the two
weak X sites in pThb2.

In Drosophila, highly-conserved domains exist
within the /b promoter across at least 7 species (found with the
EDGI server [53]). The hb promoter is also a well conserved motif
for studying the evolution of early AP patterning across flies
[54,55; Wunderlich et al., 50" Drosophila Conference Proceedings,
p- 74]]. It has been shown that Bed strong (A) and weak (X) sites
are found across several species of flies, but that the number of sites
varies (Table 5). These varied promoters all create long-germ band
type Hb patterns, dividing the embryo roughly into anterior and
posterior halves. Therefore, a model of Hb patterning should be
robust to forming WT pattern over the natural variation seen

Evolution.

Table 2. Noise levels in the absence of hb self-regulation.

Experiment hb'F
protein?
(Figure 4A)
8.9 (2.7) %
Model 6BOH® 6BOH®
mRNA protein
(Figure 4Q) (Figure 4B)
26 (3.7) % 11 (1.5) %

n=3 embryos, hb'#

p<<0.05).

PAverage of the noise levels (standard deviation in brackets) for 17 simulations
with WT Bed binding but no Hb binding (6BOH), at t=30 mins. mRNA noise
was higher than protein in every simulation (and p<0.01, for t-test on
differences). The simulation in Figure 4 has average noise levels (29% for
mRNA, 11% for protein). Both mRNA and protein noise are higher in 6BOH
simulations than in WT simulations (t-test, p<<0.01).

doi:10.1371/journal.pcbi.1001069.t002

protein noise is higher than WT protein noise (t-test,
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across these species, from 4 Bced sites in Drosophila viriis to 10 Bed
sites in Musca domestica. In our model, we have altered the Bed
binding as described in Table 5, adding or removing Bed sites
from the W'T' D. melanogaster model (Figure 2). We have modelled
other species as having 2 Hb binding sites and early Hb pattern as
in D. melanogaster. The model is robust to this degree of cross-
species variability. We predict slight posterior shifts for species with
more binding sites than D. melanogaster. With 4 binding sites the
model predicts some anterior shifting of the mid-embryo border
and loss of expression in the anterior-most regions; this latter
depends on the relative contributions of Bed and early Hb. Noise
levels are predicted to be somewhat higher for D. virilis, with 4 Bed
sites, but the other species’ promoters should produce similar noise
levels to D. melanogaster (T'able 5).

Variability between DNA copies. Experimental resolution
1s reaching the level to visualize transcripts coming off the
different copies of a gene within each nucleus (nuclear dots [56];
Figure 8A). Such data holds the best promise for measuring
transcriptional/ translational noise, distinct from noise generated
by other sources (e.g. transport). We simulated transcription
occurring at two independent promoters (A and B) per nucleus,
with the resulting mRNA being translated into a pooled protein.
This was done for WT (6B2H), the 4b'*" (6BOH) mutant, and
pThb) lacZ expression (shown in Figure 8B). Figure 8C shows
mRNA intensity per nuclear dot for the pThb5 embryo in
Figure 8A, for comparison. The model predicts that h'*Y and
WT mRNA should have higher and lower variability than pThb5
lacZ, respectively: variability decreases from 6BOH to pThb) to
6B2H, with no overlap between sets of simulations (Table 6;
predictions, as above, are for relative trends, not absolute
experimental values). For 6BOH simulations (k6"*"), the (pooled)
Hb protein does not feed back on transcription to synchronize the
A and B promoters; any relation between A and B is due to the
shared Bed input signal. For 6B2H simulations (W'T), feedback of
the pooled Hb protein onto the promoters provides an averaged
signal which decreases the wvariability between A and B
transcription. The intermediate variability of pThb5 reflects
that the pooled Hb binds the lacZ-expressing promoters, but
there is no self-feedback of the lacZ protein (B-galactosidase) on
these promoters. The influence of self-feedback on reducing noise
by boosting concentration was discussed above; here we predict
that self-feedback also reduces variability from independent
transcription at multiple promoter copies.

Discussion

The Bcd-Hb system has received a great deal of study over
several decades, making it one of the best characterized systems for
understanding the mechanistic details of positional specification by
gradient reading. We have used binding site information for the /b
promoter in conjunction with quantitative imaging to develop and
test a stochastic model of expression dynamics. This has allowed us
to characterize the noise inherent in gene expression due to the
low copy number of DNA (numbers of promoters and binding
sites) and mRNA. Identifying how noise is controlled in spatial
gene expression patterns is a fundamental problem; the dynamics
at the /b promoter provide a model for how this might occur in
many patterning events. Modelling the variability in the data, in
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Figure 5. Noise signatures for Bcd, /b mRNA and Hb protein. (A, B, C) Variance to mean ratio (VMR) by position, for Bcd (A), hb mRNA (B), and
Hb protein (C), all from the same computation. Bcd dynamics (synthesis-diffusion-decay) produce a VMR of 1, characteristic of Poisson-distributed
noise. hb mRNA (B) has a variance 2 to 3 times that for a Poisson process. Translation increases the deviation from Poisson for the protein (C). The
non-Poisson character of the mRNA distribution is largely due to Hb self-feedback: compare (D), mRNA in the absence of Hb self-regulation (6BOH
simulation of hb', c.f. Figure 4), to (F), mRNA with self-requlation (WT 6B2H). Translation increases protein VMR about six-fold over mRNA, both
without self-regulation (E) and with self-regulation (G). VMR is higher for both mRNA and protein with self-regulation, since the high protein VMR
feeds back on mRNA transcription. Bcd noise has little effect on the hb mRNA or protein noise: the different VMRs point to different probability
distributions (A vs. B and C), and there is negligible difference between simulations with Bcd noise (B, C) and without (F, G). l.e., the noise generated in
transcription and translation dominates the noise transmitted from upstream regulator fluctuations.

doi:10.1371/journal.pcbi.1001069.9g005

addition to modelling average features, provides an extra Prior work has focused on the effects of Bed noise on Hb [35].
experimental dimension for refining and validating models of However, we experimentally observe statistically significant noise
gene regulation. reduction in the process of translation and due to Hb self-
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Figure 6. The effects of Bcd binding site number and strength on noise; simulations of lacZ constructs with Bcd binding sites only.
(A) A single strong Bcd site (1A, pThb3 construct); very low and noisy expression, with much posterior activation (statistics for this Figure given in
Table 3). (B) Three strong sites (3A, pThb10); expression is stronger and less noisy than (A). (C) Three weak Bcd sites (3X, pThb12); expression is noisier
than (B). (D) Four strong sites (4A, pThb11); expression is stronger and less noisy than (B). (E) Four weak sites (4X, pThb13); expression is noisier than
(D). (F) Doubling of the 3X promoter; noise is less than (C). (G) Tripling of the 3X promoter; lower noise again than (F). Noise decreases for increasing

strength and increasing number of binding sites.
doi:10.1371/journal.pcbi.1001069.9006

feedback, which validate model predictions: our study points to the
critical aspects of intrinsic noise arising in Hb production,
independent of external fluctuations. For the noise levels
associated with Bed’s measured concentration [4], we see little, if
any, effect of Bed concentration fluctuations on /b production.
External noise is overshadowed by intrinsic noise arising in
binding site occupancy and modulated through transcription and
translation. Work in [36] indicated that promoter occupancy noise
could be reduced by fast Hb diffusion. However, the steep angle of
the Hb boundary suggests a slow diffusivity not optimized for noise
reduction. Our work suggests several mechanisms in the #b
dynamics which reduce noise.

In the absence of Hb self-feedback, as in the 46'*F mutant and
the lacZ reporter constructs, output is noisier - less shielded from
the noise of binding site occupancy. Fitting the binding strengths
and production rates associated with 6 individual Bed sites and 2
Hb sites to the lacZ data has enabled us to predict the degree to
which increasing number and strength of binding sites (Bed and
Hb) can buffer promoter occupancy noise. Such basic noise
reduction may have evolved fairly independently of other
mechanisms; our computations suggest /b noise is similarly
controlled in flies with between 4 and 10 Bed sites.

Self-feedback is a major component of WT Hb expression [1],
responsible for large changes in protein production and boundary
sharpness from " to WT [30]. We observe a significant cffect of
self-feedback in reducing protein noise levels (Figures 3C vs. 4A;
Tables 1 and 2). Our calculations indicate self-feedback is
responsible for a change in anterior mRNA levels from roughly
30 (k""" Figure 4C) to roughly 200 copies per nucleus (WT,
Figure 3B), from a noise-dominated to a more deterministic
regime [29], which in turn reduces translational variability in WT.
In addition, we predict that self-feedback reduces variability
arising from transcription at multiple promoters within nuclei
(Table 6).

We predict that the noise reduction seen with translation
(Figure 3C vs. 3D, Table 1) is similarly due to a concentration
difference, since one copy of mRNA makes multiple copies of
protein (Figure 3A vs. 3B; Figure 4B vs. 4C; Tables 1 and 2).
Translation is expected to produce non-Poisson /b probability
distributions, distinct from the Poisson noise expected for Bed.
Such non-Poisson ‘bursting’ noise has been characterized in yeast
[23], in which protein variance scales with mean concentration but
with a VMR far greater than for a Poisson process, due to
amplification of noisy low mRNA copy number. For 4b, we expect
deviations from Poisson to be stronger in protein than mRNA, and
strongest with self-feedback than without. The observation of

Table 3. Noise levels, varying Bcd binding.

Model 1A 3A 3X 4A 4x 2x(3X) 3x(3X)

(Fig. 6A) (Fig. 6B)
82%

(Fig. 6C) (Fig. 6D) (Fig. 6E) (Fig. 6F) (Fig. 6G)

64% 82% 47% 102%  48% 30%

For the simulations shown in Figure 6.
doi:10.1371/journal.pcbi.1001069.t003
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lower relative noise in W'T' protein than either WT' mRNA or
hb"*T protein suggests that its higher concentration overcomes the
non-Poisson bursting effects. (A purely Poisson-distributed WT Hb
would be expected to have even lower noise and show larger
differences with both WT mRNA and £b'*" protein.)

Published data [4,30,32,34,38,41,57] places distinct constraints
on any model of the /b promoter, for rates of regulator binding
and production. Conclusions can be made from these regarding
the relative values of these constants (e.g. relative WT and Ab'*"
Hb levels indicate that WT production rates are 7 times higher;
early vs. mid-cycle 14 data indicates Hb production needs to
increase concentration by about 50% in 30 minutes), and these
conclusions can be followed through for their implications for
relative noise differences. If absolute concentrations were higher or
lower than estimated, absolute noise levels would be lower or
higher, respectively; but the relative results would hold. We have
made noise predictions at energid (nucleus plus associated
cytoplasm) resolution for mRNA and protein output for: W'}
the /46’*" mutant; 11 lacZ reporting constructs with various
combinations of binding sites; and 4 other species of flies.
Enhancing our confidence in the model, we have corroborated
model predictions at this resolution for: higher mRNA than
protein noise; higher hb"* than WT noise; and the indication of
noise decrease due to the 2™ Hb site, comparing the pThb1 and
pThb5 constructs. In addition to these, the model illustrates the
reduction in noise available from increasing binding site number
and strength; the role of moderate cooperativity and slow protein
timescales for limiting noise; and the degree to which within-
embryo noise can generate between-embryo variability. These
results indicate the degree to which /b noise amplitudes are
determined by expression dynamics, and how these dynamics
produce kb probability distributions distinct from Bed’s.

We have also taken data at intra-nuclear resolution, imaging
transcript production from different copies of the promoter within
each nucleus. This is at current technical limits of spatial resolution
(though recent very high resolution studies with GFP [58,59] are
promising for bed). Data analysis and modelling at this level shows
promise for separating transcriptional noise from other types, such
as from inter-nuclear transport. (See [60] for a recent study
showing the effect of promoter state on pattern synchrony at this
degree of resolution.)

Only Bed and Hb regulation, at the specified binding sites, are
considered in the model. The dynamics of this core promoter
region reproduce many of the deterministic and stochastic features
of Hb activation in the anterior region. Additional Hb sites, such
as those in the distal P1 promoter, are known to affect later,
posterior expression — any effect of these sites in early expression
would be incorporated into the 2 Hb sites of the current model.
Additional Bed sites would not be expected to greatly influence
expression, based on Musca and the simulations with up to 10 Bed
sites. The positioning of final expression patterns, especially later
in cycle 14, do depend on other factors, such as inhibition by other
gap genes (e.g. [61]). (Head gap genes are likely involved in the
lower Hb expression at 0-15%EL, e.g. Figure 3C [15].) The
region of 40-50%EL, where the Hb boundary interprets a
marginal decrease in the Bed gradient, is promising for quantifying
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Figure 7. The effects of Hb binding site number and strength on noise. (A) Simulation of lacZ expression from 6 Bcd sites (3A3X) and one Hb
site (in a WT background), compare to (B) lacZ expression in an embryo with the pThb1 promoter construct. (C) Simulation with 6 Bcd sites and 2 Hb
sites, compare to (D) lacZ in a pThb5 embryo (promoter indicated by green arrows in Figure 2A). Comparison of (C, D) and (A, B) indicates that the ond
Hb increases expression and slope and may slightly decrease noise. Noise statistics for this Figure are in Table 4. (E) Simulation of the pThb8
construct, a doubled 6BTH sequence. (F) Simulation of the pThb2 construct, which has a shorter fragment of the hb promoter, with 1 Hb site and 4
Bcd sites (2A2X1H); the model predicts increased noise for this truncated promoter.

doi:10.1371/journal.pcbi.1001069.9g007

these factors. In preliminary computations, reduced or missing exploration of their relative contributions to Hb noise in this
mitial Hb gave reduced expression in this parasegment 4 region. region.

Similar phenotypes are observed with some gap mutations [62]. Hb itself forms a morphogenetic gradient, controlling the
Incorporation of other regulators in the model would permit expression of a number of other gap genes in early segmentation,
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Table 4. Noise levels, varying Hb binding.

Hunchback Expression Noise

Model 3A3X1H 3A3X2H 2x(3A3X1H) 2A2X1H
(Figure 7A) (Figure 7C) (Figure 7E) (Figure 7F)
24% 16% 16% 47%
Experiment pThb1? pThbs®
(Figure 7B) (Figure 7D)
8.0 (0.75) % 6.3 (2.5) %

For the simulations and embryos shown in Figure 7.
?Average (std. dev. in brackets), n=2.
bAverage (std. dev. in brackets), n=3.
doi:10.1371/journal.pcbi.1001069.t004

potentially at higher precision than Bed [63]. The mechanism of
secondary (Hb) gradient formation is in contrast to those for the
primary (maternal) gradients, which do not form by spatially-
distributed gene expression. The present work, therefore, has
focused on how transcription and translation kinetics can be
controlled to provide a determinate and precise secondary
gradient for specification of the segmentation patterns. While
our study has shown the importance of the details of promoter
structure and expression dynamics (such as self-feedback) on 4b’s
expression noise, many of the noise motifs found here will be
applicable to other genes (for instance, dependence on binding site
number, non-Poisson amplification in transcription and transla-
tion). In this way, characterizing /b noise serves as a model for how
zygotic gene expression gives rise to the determinate and reliable
expression patterns underlying development.

Methods

Simulations

The model in Figure 2B was computed with the MesoRD
software ([27]; http://mesord.sourceforge.net). This package
allows deterministic (used for parameter fitting) or stochastic (used
for noise prediction) solution of mechanisms involving reaction
and diffusion. A kinetic scheme is entered as elementary reactions
(Figure 2B), and rate constants (values in Tables S1, S2, S3) and
diffusivities (for Hb and Bed proteins, see Tables S2, S3 for values)
are specified for the model species. Geometry was specified as a
one-dimensional series of 100 subvolumes (each a 5um cube),
corresponding to the energids (nucleus plus cytoplasmic neigh-
bourhood) along the AP axis. Computations solve for model
species densities in each subvolume, according to the specified

Table 5. Simulation results, other flies.

reactions and between-subvolume diffusion. In deterministic
simulations (for parameter searches), we used a 4™ order Runge-
Kutta solution method. For matching to data, boundary position
and sharpness were determined at half-maximal concentration.
For stochastic solutions, MesoRD solves the reaction-diffusion
master equation, in which each reaction and diffusion event has a
probability (set by the macroscopic rate constants) of occurring in a
unit of time. The software implements the next subvolume
queuing method [26,27,64] to significantly improve memory and
processing requirements, making computation possible for the
number of species and subvolumes in the /b model. All
computations are run in real units (um, s, etc.).

Parameter determination

Model parameters were determined by fitting macroscopic
features of published data: boundary position and angle,
expression levels, and timescales. As described in the Results,
building up from the lacZ data to Ab'*" and WT constrains the
values of the binding rates and diffusivities in the model. Further
details are given in Text S1.

Experimental data

Fly stocks, staining and imaging were as in [30]. Whole mount
embryos were imaged by laser confocal scanning microscopy, from
WT Oregon-R, h6"* and the lacZ construct (pThbl,5; [34]) lines.
All embryos were heat fixed and immunostained for Hb protein.
Fluorescent in situ hybridization (FISH) was used for mRNA
determination, for /b and for lacZ, following the method of [65].
Images were collected using an HC PL APO 206 objective and
variable digital zoom (1.2—1.56). Fluorophores were excited by laser
at different wavelengths (488, 555, and 647 nm), and detected via a

Bced sites® 3A,1X 3A,4X 5A,4X 6A,4X
Species Drosophila virilis Lucilia Calliphora Musca
Position of boundary 43 48 49 49
(%EL)
Sharpness (degrees) 85 83 83 83
Bcd binding WT melanogaster 3A, plus 4" WT 3A3X, plus 7" Bed As Lucilia, plus 8™ & 9t As Calliphora, plus 10t
Bcd binds as X, (see Table S2). binds as Xe. Bcds as As. Bcd as As.
Noise level: protein 18% 4.9% 5.2% 4.4%
mRNA 24% 13% 11% 13%

doi:10.1371/journal.pcbi.1001069.t005

@ PLoS Computational Biology | www.ploscompbiol.org

14

“Numbers of strong (A) and weak (X) Bcd binding sites from [54,55]. All simulations run with D. melanogaster WT 2Hb sites and early Hb.
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Figure 8. Variation within nuclei, transcription from two copies of the promoter. (A) lacZ mRNA labelling (pink) at nuclear dot resolution in
a pThb5 embryo (nuclei in blue), 30-36 minutes into cleavage cycle 14 (c.f. Figure 7D). (B) Computed lacZ mRNA levels, for two equal and
independent promoters, A (blue) and B (red), at 30 minutes; the simulation shown has a relative noise between A and B of 31%, an average value (see
Table 6 for statistics). (C) Comparable plot of intensity against AP position for the embryo in (A), A-B dot pairs are coloured as in (B). This data has A-B
relative noise of 17%.

doi:10.1371/journal.pcbi.1001069.g008
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Table 6. Noise for simulations with two independent
promoters per nucleus.

6BOH (hb'*F) lacZ (pThb5) 6B2H (WT)

46-60%, avg.=49% 24-35%, avg.=30% 16-20%, avg.=18%

Y [(4=B)/(4+B)/2)]
m—1

each transcription site, for 15-45%EL. n=6 for each group of simulations.

doi:10.1371/journal.pcbi.1001069.t006

Noise is calculated by , where A, B are the mRNA at

filterless spectral separation system. Channels were scanned
sequentially. The microscope was set so that maximum expression
was 255 on an 8-bit scale. To reduce photomultiplier noise, each
image was scanned sequentially 16 times and the results averaged.

Image processing

Raw images from the confocal microscope, 1024 x1024 pixels,
were cropped and rotated for standardization. Each energid (each
nucleus plus its cytoplasmic neighbourhood) was identified by
Voronoit tessellation [66]. See Text S2 for details (Figures S1, S2).
Averaged pixel intensities within each energid (Figure S3) were
used for comparison to simulation output. Data was used from a
10% DV (dorsoventral) strip, centred on the AP midline, in order
to minimize geometric distortion from the embryo periphery.
Background fluorescence for these lateral images follows a half
ellipsoid (c.f. [67]). We found the parameters of the ellipsoid for
cach image by a Genetic Algorithms technique (c.f. [68]). An
initial visual inspection of the data for each embryo was needed to
estimate the approximate height of the background. The
quantitative measure of fitting quality for a given set of parameters
was based on minimizing the distance between the data points and
the ellipsoid surface. Previous approaches used preliminary
statistical analysis of the dynamics and positioning of areas of
zero specific signal (i.e. areas where all fluorescence was
background), requiring large datasets [67]. Our supervised
evolutionary search gives a much more efficient method for
directly analyzing each image.

Statistics

Singular Spectrum Analysis (SSA) [69], a non-parametric
technique with an adaptive filter, has been recently used for
separating confocal intensity data into components [70,71]. Its
extension, 2D-SSA [72], was applied to the 2D (AP and DV)
intensity surface; the leading components of the decomposition
give the pattern’s trend. Noise was then quantified from the
difference of each energid’s intensity to the trend value at each
position (i.e. local residuals). See Text S3 (Figures S4, S5, S6, S7,
S8, S9, S10, S11, and S12) for more detail on the SSA data
analysis. Noise measures were calculated from the anterior

S [(data— trend)/ trend)*

m—1
where data is the average pixel intensity for an energid and trend is
the SSA-extracted trend at that position (i.e. the noise measure is a
standard deviation for the relative residuals). Noise was calculated
similarly for simulation output, from the difference of the
stochastic output and the deterministic solution at each position
(see Table 1 footnote).

expressing regions (15-45% EL) as

>

Supporting Information

Figure S1 Nuclear identification of a single WT embryo probed
for the Hb protein (same embryo and data as Figure 3CD in the
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main text). Image processing routines were developed in order to
identify the nuclei of the embryos. Protein data are used at this
stage, due to the clear visualization of the nuclei, with the
drawback that regions where the protein is not expressed cannot
be detected (such as in the posterior of this image).

Found at: doi:10.1371/journal.pcbi.1001069.s001 (0.06 MB PDF)

Figure S2 Energid identification. Application of the generalized
Voronoi diagram to the image in Figure SI (WT embryo, Hb
protein). Blue mesh shows the energid boundaries identified by the
Voronoi diagram, overlying the original Hb protein image.

Found at: doi:10.1371/journal.pcbi.1001069.s002 (0.09 MB PDF)

Figure 83 Visualization of the quantified protein and mRNA
patterns. Dots (centred on the energids) are colourmapped by the
average pixel intensity of each energid. (A) WT embryo, Hb
protein (same data as Figure 3C in main text). (B) WT embryo, hb
mRNA (same data as Figure 3D in main text). (C) Embryo with
the pThbd construct, lacZ mRNA expression (same data as
Figure 7D in main text).

Found at: doi:10.1371/journal.pcbi.1001069.s003 (0.12 MB PDF)

Figure S4 SSA fitting - nuclear centres and cropping rectangle.
Found at: doi:10.1371/journal.pcbi.1001069.s004 (0.04 MB PDF)

Figure S5 SSA fitting - nuclear centres and regular interpolation
grid.
Found at: doi:10.1371/journal.pcbi.1001069.s005 (0.03 MB PDF)

Figure S6 SSA fitting - regularized data.
Found at: doi:10.1371/journal.pcbi.1001069.s006 (0.08 MB PDF)

Figure S7 SSA fitting - trend on the regular grid.
Found at: doi:10.1371/journal.pcbi.1001069.s007 (0.03 MB PDF)

Figure 88 SSA fitting - W-correlations for window 33 x33 (black
- 1.0, white - 0.0).
Found at: doi:10.1371/journal.pcbi.1001069.s008 (0.02 MB PDF)

Figure 89 SSA fitting - effect of window size. AP data (blue) and
trend (black). Trend is along the AP axis, and expression is from a
15% DV wide strip around this.

Found at: doi:10.1371/journal.pcbi.1001069.s009 (0.03 MB PDF)

Figure S10 SSA fitting - effect of number of components. Trend
and data along the AP axis. Trend is given by 2 components (c.f. 3
components in Figure S9).

Found at: doi:10.1371/journal.pcbi.1001069.s010 (0.03 MB PDF)

Figure S11 SSA fitting - residual plots, for different numbers of
components, in 15% wide strip around the AP axis.

Found at: doi:10.1371/journal.pcbi.1001069.s011 (0.03 MB PDF)

Figure S12 SSA fitting - noise vs. trend, with moving statistics
(left - absolute, right - relative), showing multiplicative noise.
Found at: doi:10.1371/journal.pcbi.1001069.s012 (0.03 MB PDF)

Table S1 Relative intensities in different experiments set
production rates.
Found at: doi:10.1371/journal.pcbi.1001069.s013 (0.03 MB PDF)

Table 82 Bcd binding strengths.
Found at: doi:10.1371/journal.pcbi.1001069.s014 (0.04 MB PDF)

Table 83 Hb binding strengths.
Found at: doi:10.1371/journal.pcbi.1001069.s015 (0.04 MB PDF)

Text S1 Deterministic modelling and experimental constraints
set parameters.
Found at: doi:10.1371/journal.pcbi.1001069.s016 (0.05 MB PDF)

Text 82 Image processing and analysis.
Found at: doi:10.1371/journal.pcbi.1001069.s017 (0.02 MB PDF)
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Text 83 Trend extraction with 2D-SSA.
Found at: doi:10.1371/journal.pcbi.1001069.s018 (0.03 MB PDF)

Acknowledgments

We thank Johan Elf, David Fange and Johan Hattne for developing
MesoRD and help implementing it; Manu for preliminary data regarding
early Hb expression; Yu Feng Wu for discussions on stochastic simulations;
John Reinitz for sharing of lab facilities; Lionel Harrison and Thurston

References

1.

11.
12.

. Rao CV, Wolf DM, Arkin AP (2002)

Houchmandzadeh B, Wieschaus E, Leibler S (2002) Establishment of
developmental precision and proportions in the early Drosophila embryo.
Nature 415: 798-802.

. Crauk O, Dostatni N (2005) Bicoid determines sharp and precise target gene

expression on the Drosophila embryo. Curr Biol 15: 1888-1898.

. Holloway DM, Harrison LG, Kosman D, Vanario-Alonso CE, Spirov AV

(2006) Analysis of pattern precision shows that Drosophila segmentation develops
substantial independence from gradients of maternal gene products. Dev Dynam

235: 2949-2960.

. Gregor T, Tank DW, Wieschaus EF, Bialek W (2007) Probing the limits to

positional information. Cell 130: 153-164.

. He F, Wen Y, Lin X, Lu L], Jiao R, et al. (2008) Probing intrinsic properties of a

robust morphogen gradient in Drosophila. Dev Cell 15: 558-567.

. Driever W, Niisslein-Volhard C (1988) The bicoid protein determines position in

the Drosophila embryo in a concentration-dependent manner. Cell 54: 95-104.

. Driever W, Niisslein-Volhard C (1988) A gradient of bicoid protein in Drosophila

embryos. Cell 54: 83-93.

. Wolpert L (2002) Principles of development. 2nd ed. Oxford (UK): Oxford

University Press.

. Ephrussi A, St Johnston D (2004) Seeing is believing: The bicoid morphogen

gradient matures. Cell 116: 143-152.

. Porcher A, Dostatni N (2010) The Bicoid morphogen system. Current Biology

20: R249-54.

Reinitz J (2007) A ten percent solution. Nature 448: 418-419.

Spirov AV, Holloway DM (2003) Making the body plan: precision in the genetic
hierarchy of Drosophila embryo segmentation. In Silico Biol 3: 89-100.

. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of

Drosophila embryonic patterning network perturbed in space and time using
microfluidics. Nature 434: 1134-1138.

. Lucchetta EM, Vincent ME, Ismagilov RF (2008) A precise Bicoid gradient is

nonessential during cycles 11-13 for precise patterning in the Drosophila

blastoderm. PLoS ONE 3: €3651.

. Ochoa-Espinosa A, Yu D, Tsirigos A, Struffi P, Small S (2009) Anterior-

posterior information in the absence of a strong Bicoid gradient. Proc Nat Acad

Sci USA 106: 3823-3828.

. Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in

biosynthetic processes requiring high specificity. Proc Nat Acad Sci USA 71:
4135-4139.

. Namba R, Pazdera TM, Cerrone RL, Minden JS (1997) Drosophila embryonic

pattern repair: how embryos respond to bicoid dosage alteration. Development
124: 1393-1403.

. Ashe HL, Briscoe J (2006) The interpretation of morphogen gradients.

Development 133: 385-394.

. Paulsson J, Berg OG, Ehrenberg M (2000) Stochastic focusing: fluctuation-

enhanced sensitivity of intracellular regulation. Proc Nat Acad Sci USA 97:
7148-7153.

Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression
in a single cell. Science 297: 1183-1186.

Jontrol, exploitation and tolerance of
intracellular noise. Nature 420: 231-237.

. Thattai M, van Oudenaarden A (2002) Attenuation of noise in ultrasensitive

signaling cascades. Biophys J 82: 2943-2950.

. Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, et al. (2006) Noise in

protein expression scales with natural protein abundance. Nat Genet 38:

636-643.

. Eldar A, Chary VK, Xenopoulos P, Fontes ME, Loson OC, et al. (2009) Partial

penetrance facilitates developmental evolution in bacteria. Nature 460: 510-514.

. Wu YF, Myasnikova E, Reinitz ] (2007) Master equation simulation analysis of

immunostained Bicoid morphogen gradient. BMC Sys Biol 1: 52.
Elf J, Donci¢ A, Ehrenberg M (2003) Mesoscopic reaction-diffusion in
intracellular signaling. Proc SPIE 5110: 114-124.

. Hattne J, Fange D, EIf J (2005) Stochastic reaction-diffusion simulation with

MesoRD. Bioinformatics 21: 2923-2924.

Gillespie D (1976) A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J Comput Phys 22: 403-434.
Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113:
297-306.

@ PLoS Computational Biology | www.ploscompbiol.org

17

Hunchback Expression Noise

Lacalli for stimulating discussions; and Elliott Burnell and Ed Grant of the
UBC Chemistry Department for computing support.

Author Contributions

Conceived and designed the experiments: DMH FJPL AVS. Performed the
experiments: DMH FJPL AVS. Analyzed the data: DMH FJPL LdFC
BANT NG KU AVS. Contributed reagents/materials/analysis tools:
DMH FJPL LdFC BANT NG KU AVS. Wrote the paper: DMH FJPL
AVS.

30.

31.

32.

33.

34.

36.

37.

38.

40.

41.

42.

43.

44,

46.
47.
48.
49.

50.

51.

52.

54.

56.

Lopes EJP, Vieira FMC, Holloway DM, Bisch PM, Spirov AV (2008) Spatial
bistability generates hunchback expression sharpness in the Drosophila embryo.
PLoS Comput Biol 4: ¢1000184.

Treisman J, Desplan C (1989) The products of the Drosophila gap genes hunchback
and A7iippel bind to the hunchback promoters. Nature 341: 335-337.

Driever W, Niisslein-Volhard C (1989) The Bicoid protein is a positive regulator
of hunchback transcription in the early Drosophila embryo. Nature 337: 138-143.
Simpson-Brose M, Treisman J, Desplan C (1994) Synergy between the
Hunchback and Bicoid morphogens is required for anterior patterning in
Drosophila. Cell 78: 855-865.

Driever W, Thoma G, Niisslein-Volhard C (1989) Determination of spatial
domains of zygotic gene-expression in the Drosophila embryo by the affinity of
binding-sites for the Bicoid morphogen. Nature 340: 363-367.

. Tkacik G, Gregor T, Bialek W (2008) The role of input noise in transcriptional

regulation. PLoS ONE 3: ¢2774.

Okabe-Oho Y, Murakami H, Oho S, Sasai M (2009) Stable, precise, and
reproducible patterning of Bicoid and Hunchback molecules in the early
Drosophila embryo. PLoS Comput Biol 5: e1000486.

Zamparo L, Perkins TJ (2009) Statistical lower bounds on protein copy number
from fluorescence expression images. Bioinformatics 25: 2670-2676.

Burz DS, Rivera-Pomar R, Jiackle H, Hanes SD (1998) Cooperative DNA-
binding by Bicoid provides a mechanism for threshold-dependent gene
activation in the Drosophila embryo. EMBO J 17: 5998-6009.

. Ma XG, Yuan D, Diepold K, Scarborough T, Ma J (1996) The Drosophila

morphogenetic protein Bicoid binds DNA cooperatively. Development 122:
1195-1206.

Burz DS, Hanes SD (2001) Isolation of mutations that disrupt cooperative DNA
binding by the Drosophila Bicoid protein. J Mol Biol 305: 219-230.

Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW (2007) Stability
and nuclear dynamics of the bicoid morphogen gradient. Cell 130: 141-152.
Manu, Surkova S, Spirov AV, Gursky VV, Janssens H, et al. (2009) Canalization
of gene expression in the Drosophila blastoderm by gap gene cross regulation.
PLoS Biol 7: ¢1000049.

Lepzelter D, Wang J (2008) Exact probabilistic solution of spatial-dependent
stochastics and associated spatial potential landscape for the bicoid protein. Phys
Rev E 77: 041917.

Coppey M, Berezhovskii AM, Kim Y, Boettiger AN, Shvartsman SY (2007)
Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a
stable protein. Dev Biol 312: 623-630.

. Coppey M, Boettiger AN, Berezhovskii AM, Shvartsman SY (2008) Nuclear

trapping shapes the terminal gradient in the Drosophila embryo. Curr Biol 18:
915-919.

Spirov AV, Fahmy K, Schneider M, Frei E, Noll M, et al. (2009) Formation of
the bicoid morphogen gradient: an mRINA gradient dictates the protein gradient.
Development 136: 605-614.

McQuarrie DA (1976) Statistical mechanics. New York: Harper Collins.
Reichl LE (1980) A modern course in statistical physics. Austin: University of
Texas Press.

Gardiner CW (2004) Handbook of stochastic methods. 3rd ed. Berlin: Springer.
Bolouri H, Davidson E (2003) Transcriptional regulatory cascades in
development: Initial rates, not steady state, determine network kinetics. Proc
Nat Acad Sci USA 100: 9371-9376.

Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002)
Regulation of noise in the expression of a single gene. Nat Genet 31: 69-73.
To T-L, Maheshri N (2010) Noise can induce bimodality in positive
transcriptional feedback loops without bistability. Science 327: 1142-1145.
Sosinsky A, Honig B, Mann BS, Califano A (2007) Discovering transcriptional
regulatory regions in Drosophila by a nonalignment method for phylogenetic
footprinting. Proc Nat Acad Sci USA 104: 6305-10.

Hancock JM, Shaw PJ, Bonneton F, Dover GA (1999) High sequence turnover
in the regulatory regions of the developmental gene hunchback in insects. Mol Biol

Evol 16: 253-265.

. McGregor AP, Shaw PJ, Hancock JM, Bopp D, Hediger M, et al. (2001) Rapid

restructuring of bicoid-dependent hunchback promoters within and between
Dipteran species: implications for molecular coevolution. Evol and Dev 3:
397-407.

Kosman D, Mizutani CM, Lemons D, Cox WG, McGinnis W, et al. (2004)
Multiplex detection of RNA expression in Drosophila embryos. Science 305: 846.

February 2011 | Volume 7 | Issue 2 | 1001069



57.

58.

59.

60.

61.

62.

63.

64.

Gregor T, Bialek W, van Steveninck RRR, Tank DW, Wieschaus EF (2005)
Diffusion and scaling during early embryonic pattern formation. Proc Nat Acad
Sci USA 102: 18403-18407.

Weil TT, Forrest KM, Gavis ER (2006) Localization of bicord mRNA in late
oocytes is maintained by continual active transport. Dev Cell 11: 251-262.
Weil TT, Parton R, Davis I, Gavis ER (2008) Changes in bicoid mRNA
anchoring highlight conserved mechanisms during the oocyte-to-embryo
transition. Curr Biol 18: 1055-1061.

Boettiger A, Levine M (2009) Synchronous and stochastic patterns of gene
activation in the Drosophila embryo. Science 325: 471-473.

Clyde D, Corado M, Wu X, Pare A, Papatsenko D, et al. (2003) A self-
organizing system of repressor gradients establishes segmental complexity in
Drosophila. Nature 426: 849-853.

Wu XL, Vasisht V, Kosman D, Reinitz J, Small S (2001) Thoracic patterning by
the Drosophila gap gene hunchback. Dev Biol 237: 79-92.

Yu D, Small S (2008) Precise registration of gene expression boundaries by a
repressive morphogen in Drosophila. Curr Biol 18: 868-876.

EIf J, Ehrenberg M (2004) Spontancous separation of bi-stable biochemical
systems in spatial domains of opposite phases. Syst Biol 2: 230-236.

. Janssens H, Kosman D, Vanario-Alonso CE, Jaeger J, Samsonova M, et al.

(2005) A high- throughput method for quantifying gene expression data from
early Drosophila embryos. Dev Genes Evol 215: 374-381.

@ PLoS Computational Biology | www.ploscompbiol.org

18

66.

67.

68.

69.

70.

72.

Hunchback Expression Noise

Costa LdF, Cesar RM, Jr. (2009) Shape Classification and Analysis: Theory and
Practice, 2" Ed. Boca Raton, Fla: CRC Press.

Myasnikova E, Samsonova M, Kosman D, Reinitz J (2005) Removal of
background signal from in situ data on the expression of segmentation genes in
Drosophila. Dev Genes Evol 215: 320-326.

Spirov AV, Holloway DM (2003) Evolutionary techniques for image processing
a large dataset of early Drosophila gene expression. EURASIP J on Appl Signal
Processing 2003 no. 8: 824-833.

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series
structure: SSA and related techniques. Boca Raton, Fla: Chapman and Hall/
CRC.

Alexandrov T, Golyandina N, Spirov AV (2008) Singular spectrum analysis of
gene expression profiles of early Drosophila embryo: exponential-in-distance
patterns. Res Lett Signal Processing 2008: 825758.

. Alexandrov T, Golyandina N, Timofeyev A (2009) Dependence of accuracy of

ESPRIT estimates on signal eigenvalues: the case of a noisy sum of two real
exponentials. Proc Appl Math Mech 8: 10761-10762.

Golyandina N, Usevich K (2010) 2D-extension of Singular Spectrum Analysis:
algorithm and elements of theory. In: Olshevsky V, Tyrtyshnikov E, eds.
Matrix Methods: Theory, Algorithms, Applications. Singapore: World Scientific
Publishing. pp 450-474.

February 2011 | Volume 7 | Issue 2 | 1001069



