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Aiming at overcoming the difficulties derived from the traditional camera calibration
methods to record the underwater environment of a towing tank where experiments of
scaled-model risers are carried on, a computer vision method, combining traditional
image processing algorithms and a self-calibration technique was implemented. This
method was used to identify the coordinates of control-points viewed on a scaled-model
riser submitted to a periodic force applied to its fairlead attachment point. To study the
observed motion, the riser was represented as a pseudo-rigid body model (PRBM) and
the hypotheses of compliant mechanisms theory were assumed in order to cope with
its elastic behavior. The derived Lagrangian equations of motion were linearized and
expressed as a state-space model in which the state variables include the generalized
coordinates and the unknown generalized forces. The state-vector thus assembled is
estimated through a Kalman Filter. The estimation procedure allows the determination of
both the generalized forces and the tension along the cable, with statistically proven
convergence.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The non-intrusive characteristics of the image-based instrumentation necessary to implement motion analysis is an
important advantage of this approach compared to the classical measurement methods based on the use of accelerometers
and load cells. Successive advances in the area of computer vision, concerning video segmentation, object tracking and
camera calibration, have also contributed to the application of image-based methods to the analysis of kinematics
phenomena that are difficult to measure, like the human motion [1], or that occur in regions of difficult access, as the
underwater environments [2].

Recently, this technique has been included in the palette of experimental methods of the oceanic and naval engineering
center of São Paulo Institute of Technology (IPT, Brazil), in order to improve the quality of the measurements required by the
hydrodynamics tests in a towing tank with scaled-models of ships and oceanic structures like platforms and risers
(long flexible ducts used by the petroleum industry to pump oil and natural gas to the platforms). Although these
measurements have been successfully accomplished with the aid of a motion analysis tool, the camera calibration
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Nomenclature

PRBM pseudo-rigid body model
θi PRBM's angular displacements
_θi PRBM's angular velocities
€θi PRBM's angular accelerations
m PRBM's bar mass
Ki PRBM's spring coefficients
Kθ PRBM's standard spring coefficients
L PRBM's bar lengths

γ PRBM's largest bar length to actual bar
length ratio

p weight per length ratio
ps underwater weight per length ratio
E modulus of elasticity
I PRBM's bar section area inertia moment
T kinetic energy
V potential energy
L Lagrangian
Fθi generalized force at node i
F traction force
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algorithms [3] adopted by this software assume the use of calibration objects to previously measure the three-dimensional
space according to a metrological procedure difficult to be done in an underwater environment.

To cope with the various constraints imposed by the measurement environment, several camera self-calibration methods
have been proposed in the literature [4–7]. Since these methods are based on invariant geometrical properties of the
projective space [8,9], they do not depend on the use of calibration artifacts and, consequently, give rise to a calibrated space
that is not limited by the volume of those objects. Such characteristics are especially helpful in the approach of underwater
experiments with scaled-model risers.

Although the dynamics of cables has been approached in the early literature of theoretical mechanics [10,11], the recent
technological advances observed in the petroleum industry concerning subsea fields extraction has fostered the research of
this subject. A thorough investigation about the static and dynamic behaviors of risers under two-dimensional configura-
tions was performed by [12]. Using the theory of thin rods, it was shown that the effect of flexural rigidity is restricted to the
regions close to the extremities of the riser; the dynamic model, on the other hand, was formulated as the solution of a
perturbation problem around the equilibrium configuration. Both models – the static and the dynamic – were validated
against experimental results. Using a finite element program, Campos [13] developed a computational non-linear model for
a catenary riser, whose responses, concerning the dynamic bending moments near the touchdown point, are close to the
ones derived from the application of previously proposed analytical models. Likewise, in [14], dynamical models through
the finite element method representing the catenary riser by beam elements were generated. Firstly, a complete non-linear
dynamical model was analyzed using a time-domain technique. Then, the non-linearities of the original model were
removed and a frequency-domain technique was applied, giving rise to results that compared well with the previous ones.

Computer vision methods are not yet extensively adopted by the naval laboratories as a measurement tool; therefore, not
so many papers have been reported concerning application of those techniques to identify riser kinematics. Bando [15]
utilized a single video camera to register the motions of the bottom end of a flexible cable forced to move on a still water
test channel through the action of an oscillation mechanism; application of image processing techniques to the successive
frames permit to reconstruct the model kinematics and their principal frequencies are finally identified through the use of
classical Fourier analysis. Aided by an image processing and computer graphics tool, researchers in [16] constructed a
computer vision procedure whose temporal estimates of the scaled model riser configuration were very close to the ones
generated by a set of accelerometers fixed to the model. Using classical image segmentation algorithms, in a work by [17], a
computer vision procedure was implemented to identify the temporal geometrical variations of a catenary riser near the
touchdown point; in his work, the direct linear transformation (DLT) was applied to map the Euclidean three-dimensional
space to the projective two-dimensional spaces of the cameras. The DLT was also adopted by [18] to properly calibrate a
video camera used to register the motion of small markers distributed on free-vibrating slender columns; moreover, the
natural frequencies obtained through modal identification analysis showed excellent agreement with the results anticipated
by the theoretical models of slender columns.

Inspection of underground water pipes has also benefited from the use of computer vision techniques for the sake of
predictive maintenance, as reported in [19]. In this work, the authors employed a robotic platform onwhich a laser beam sensor,
acting as a range measurement device, performed a two-fold task: first of all, upon scanning the inner surface of pipe, the
location of the platform could be determined for positioning control purposes; on the other hand, the scanned profile of the
inner pipe, once compared to the a priori known profile, was able to pinpoint anomalies on that surface. An important
contribution of this work is the use of a linear Kalman filter to account for uncertainties both on process and on measurement
models, which reduced the location error when compared to results obtained directly from the computer vision techniques.
Nevertheless, the authors do not state clearly how the covariance matrices, specially the process noise matrix, were tuned. In a
laboratory scenario, it does not represent a drawback, since it is always possible to previously scan the basis profile in order to
compare with the results coming from processed images; however, in a field environment, one should assure the estimates
match the actual profile with statistically proven confidence, which could have been done in this work.

In the present article we use the Lagrangian formalism to construct a simplified lumped dynamic model for a scaled-riser
in catenary configuration. Then, the derived motion equations are validated against experimental data using a computer
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vision technique to capture the temporal positions of small markers distributed on the riser and a Kalman filter that, using
those measurements, estimate the variables that characterize both the kinematics and the dynamics of the riser, as well
as an unknown forcing vector which, in analytical mechanics formalism, correspond to a vector of generalized forces.
The estimation of this vector is achieved through a shaping filter approach, as detailed in Section 3.1. Convergence of the
filter estimates is statistically proven.

2. Materials and methods

2.1. Data acquisition

A scaled-model riser, whose geometrical and physical characteristics are shown in Table 1, was submitted to a series of
tests in a towing tank, where the flexible line assumed a typical catenary configuration, with its lower end anchored at the
towing tank floor and its fairlead attachment point hinged to a harmonic oscillator assembled on a platform over the water
line (Fig. 1a and b). The riser motion is known from the time evolution of the locations of 200 mm equally spaced small
circular markers attached to the line, and is recorded by a high resolution video camera (JAI CV-A1) coupled to a varifocal
lens (6–12 mm). Connected to an asynchronous frame grabber (Coreco-Imaging PC2-Vision) and inserted on a water-proof
canister installed inside the tank, the image acquisition system was set up to record up to 4 MB monochromatic images of
the region near the touchdown zone at the frequency of 100 MB/s.

Using the above referred image acquisition system, a series of images describing the planar motion of the scaled model
riser were collected.

Considering that the riser segment near the touchdown point remains parallel to the horizontal line (see Fig. 1), the
images generated by the experimental setup easily permit to estimate the inclination angle α between the image horizontal
axis and the image towing bottom line (see Fig. 2a). Furthermore, the measurement of distances between successive
markers in the rotated image of Fig. 2b along its horizontal axis indicate that the horizontal scale does not change with
position, i.e.,

d1;2 ¼ d2;3 ¼…dn�1;n ¼ d ð1Þ
Table 1
Characteristics of the scaled-model riser.

Characteristics Value

Length (m) 8.190
Diameter (m) 0.254
Flexural rigidity (kg m2) 1.337�10�6

Linear density (kg/m) 0.2190
Submerged linear density (kg/m) 0.1001

Fig. 1. (a) Schema of the experimental setup; (b) detail of the fairlead point.
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Fig. 2. (a) Original image. (b) Image (a) rotated in order to align the towing bottom line with the horizontal axis.

Fig. 3. Measurement of the scale factors along a generic direction of the image plane.

Fig. 4. (a) Reference image Iref: model riser at its lowest position; (b) image I(t): model riser at instant t.
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The above results permit us to assume that the projective transformation applied by the camera can be approximated by an
affinity [8] (see Fig. 3) with uniform horizontal and vertical scales estimated, respectively, by

sx ¼ ℓ
d

ð2Þ

s2y ¼
ðsθsx sin θÞ2
s2x �s2θ cos 2θ

ð3Þ
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where l, the distance between markers, is a priori known (200 mm), θ is the angle between the segment AB and the
horizontal line and sθ is the scale measured along the segment AB.
2.2. Image preprocessing

All the images were submitted to a segmentation process encompassing three steps: (1) background removal; (2) image
segmentation; (3) determination of the centroids of the markers.

Using a pair of images Iref and I(t), where the first (Fig. 4a), named ‘reference image’, corresponds to a configuration
where the riser is at its lowest position and the second (Fig. 4b) is an image grabbed at instant t, the process of background
removal can be accomplished through the following computer vision algorithm:
a.
Fig
acc

Fig
ima
I1 ¼ IðtÞ� Iref

b.
 I2ðx; yÞ ¼ lnð1þ I1ðx; yÞÞ�

c.
 I3ðx; yÞ ¼

255 if I2ðx; yÞ4topt ; where topt is the optimal threshold
0 otherwise
d.
 I4 ¼ I3○Circ ðR¼ 4Þ

e.
 I5 ¼ I4 � Circ ðR¼ 1ÞjI3

f.
 I6ðx; yÞ ¼ min fI1ðx; yÞ; I5ðx; yÞg
The image subtraction operation of step (a) above preserves the object of interest (i.e., the riser) at instant t but does not
completely eliminate the image background. The application of a logarithmic look-up table at the difference image I2
. 5. (a) I2: image difference IðtÞ� Iref (Fig. 4a and b) enhanced through the application of a logarithmic lookup table; (b) I3: image I2 thresholded
ording to Otsu's algorithm.

. 6. (a) I4: image I3 (shown in Fig. 5b) opened by a structuring element ‘circle’ of radius 1 pixel; (b) image I5: geodesic dilation of the image I4 using
ge I3 as the reference image.
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enhances its gray levels permitting that the optimal thresholding operation based on Otsu's algorithm [20] generate, at the
end of step (c), an image I3 where one of the binary objects completely contains the riser (Fig. 5). Applying on I3 an opening
operation [21] with a structure element ‘circle’ of radius R¼1 pixel, followed by a geodesical dilation of the last image using
I3 as the reference image, generate a proper mask to select in the difference image I1 only the pixels around the riser (Fig. 6).
Finally, the object of interest emerges after applying a minimum operation based on the mask I5 and the difference image I1
(Fig. 7).

The segmentation process is based upon the following computer vision algorithm:
a.
Fig
elem
I7 ¼ gradðI6Þ�

b.
 I8ðx; yÞ ¼

255 if I7ðx; yÞ460

0 otherwise
c.
 I9 ¼ I8○Circle ðR¼ 1Þ
In order to enhance the targets of image I6, the Sobel edge detector [23] is applied to it (Fig. 8a). Then, by thresholding the
resultant image at a fixed gray level and opening it by a structuring element ‘circle’ of radius R¼1 pixel, an image (I9)
exhibiting only isolated objects around the targets emerges (Fig. 8b).

To identify the centroid of the targets, the following computer vision algorithm is adopted:
a.
 I10 ¼ SkeletonðI9Þ

b.
 I11 ¼Hitmiss ðI10; Golay Element ðBif urcation pixelsÞÞ

c.
 I12 ¼Hitmiss ðI10; Golay Element ðExtreme pixelsÞÞ
Fig. 7. I6: riser image after the application of the background removal algorithm.

. 8. (a) I7: gradient of image I6 (shown in Fig. 7) exhibited in a logarithmic gray scale; (b) I9: image I7 after being thresholded and opened by a structuring
ent ‘circle’ of radius 1 pixel.



Fig. 9. Image I10: morphological skeleton of the image I9 (shown in Fig.8b).

Fig. 10. (a) I17: image of centered isolated objects around the targets; (b) labeled image: each target is pictured with a given gray level.
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d.
 I13 ¼ I11 � Circle ðR¼ 5Þ

e.
 I14 ¼ I12 � Circle ðR¼ 5Þ

f.
 I15 ¼ I13 � Circle ðR¼ 1ÞjI12

g.
 I16ðx; yÞ ¼ min fI13ðx; yÞ; I14ðx; yÞg

h.
 I17ðx; yÞ ¼ max fI15ðx; yÞ; I12ðx; yÞg

i.
 objects¼ labelling_image ðI17Þ
Application of a skeletonization operation based on the ‘L’ Golay element [22] gives rise to an image (Fig. 9) where both
bifurcation and extreme points can be easily isolated through the above hit-miss morphological operations (b) and (c), using
proper Golay's elements.

Operations (d)–(h) above, aimed at producing objects nearly centered to the medial axis of images I11 and I12, give rise to
image I17 (Fig. 10a). Applying to this image a classic labeling algorithm [23], the centroid coordinates of each marker
(Fig. 10b) can be easily calculated.

After applying to the rotated images a segmentation process featured to isolate the image centroids (ximi,yimi) of the
markers, their motion plane coordinates (xi,yi) were obtained by a simple scaling operation. So, observations of the scaled
model riser kinematics could be properly described along the time.
3. Theoretical background

3.1. Riser dynamic model

Using the theory of compliant mechanisms [24], the scaled-model riser was represented as a pseudo rigid body model
(PRBM) composed of segments of rigid bars linked by torsional springs (see Fig. 11) with constants that depend on the
respective boundary conditions. As illustrated in Fig. 11, the number of degrees of freedom of the generated model is
compatible with the observed kinematics data and the PRBM's equivalent compliant properties of the mechanism are
calculated according to the expressions suggested by [25] concerning flexible beams submitted to some previously
established load and boundary conditions.



Fig. 11. PRBM for the-scaled model riser.
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For a fixed–fixed beam boundary condition, the spring constant is

K ¼ 2γKθEI
ℓ

ð4Þ

where, according to [24], γ¼0.85 and Kθ¼2.6.
Considering that all the springs or pairs of springs correspond to the same fixed–fixed beam boundary conditions, then

k1 ¼ k2 ¼ K ¼ 2γKθEI
ℓ

ð5Þ

Moreover, the serial pairs of springs can be substituted by an equivalent spring with constant given by

k′2 ¼
k2
2
¼ γKθEI

ℓ
ð6Þ

In order to write the Lagrangian equations for the compliant mechanism of Fig. 11, the expressions for the kinetic energy, the
potential energy and the generalized forces were properly developed.

The kinetic energy is given by

T ¼ 1
2
∑miv2Giþ

1
2
∑JGi _θ

2
i ; i¼ 1;…; 5 ð7Þ

where

v!Gi ¼ v!Oiþ _θ k
!

4ðGi�OiÞ; i¼ 1;…; 5 ð8Þ
and JGi is the moment of inertia of the segment Oi�1Oi.

After substituting (8) in (7), the following expression for the kinetic energy results:

T ¼mℓ2

2
γ2

4
þ4

� �
_θ
2
1þ

γ2

4
þ3

� �
_θ
2
2þ

γ2

4
þ2

� �
_θ
2
3þ

γ2

4
þ1

� �
_θ
2
4þ

γ2

4
_θ
2
5

� �

þmℓ2

2
ð6þγÞ_θ1 _θ2 cos θ2þð4þγÞ_θ1 _θ3 cos ðθ2þθ3Þþð2þγÞ_θ1 _θ4 cos ðθ2þθ3þθ4Þ
� �

þmℓ2

2
γ _θ1 _θ5 cos ðθ2þθ3þθ4þθ5Þ
� �

þmℓ2

2
ð4þγÞ_θ2 _θ3 cos θ3þð2þγÞ_θ2 _θ4 cos ðθ3þθ4Þþγ _θ2 _θ5 cos ðθ3þθ4þθ5Þ
� �

þmℓ2

2
ð2þγÞ_θ3 _θ4 cos θ4þγ _θ3 _θ5 cos ðθ4þθ5Þþγ _θ4 _θ5 cos θ5
� �

þ J
2

_θ
2
1þð_θ1þ _θ2Þ2þð_θ1þ _θ2þ _θ3Þ2þð_θ1þ _θ2þ _θ3þ _θ4Þ2þð_θ1þ _θ2þ _θ3þ _θ4þ _θ5Þ2

h i
ð9Þ

The potential energy of the scaled-model riser encompasses the energy stored in the springs and the potential of the
gravitational and hydrostatic forces. So, it is described by

V ¼ 1
2
ðk1θ21þk2θ22þk2θ23þk2θ24þk2θ25Þ

þpsℓ
2 4þ γ

2

	 

sin θ1þ 3þ γ

2

	 

sin ðθ1þθ2Þþ 2þ γ

2

	 

sin ðθ1þθ2þθ3Þ

h i
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þpsℓ
2 1þ γ

2

	 

sin ðθ1þθ2þθ3þθ4Þþ 1þ γ

2

	 

sin ðθ1þθ2þθ3þθ4þθ5Þ

h i
ð10Þ

where ps is the underwater weight per length ratio.
The generalized force Fθi (physically, a bending moment) applied at the node O5, is

Fθi ¼ Fx
∂x5
∂θi

þFy
∂y5
∂θi

ð11Þ

adopting L¼T�V and applying to Eqs. (9)–(11) above the Lagrangian equations, given by

d
dt

∂L
∂_θi

� �
þ ∂L

∂θi

� �
¼ Fθi ð12Þ

it is generated the complete set of nonlinear dynamics equations that govern the motion of the discretized multibody
system representing the scaled-model riser. Those equations are shown in Appendix A.

After linearizing Eqs. (A-1)–(A-5), we obtain

mℓ2

2
γ2

2 þ4
	 


þ5J
h i

€θ1þ mℓ2

2 ð6þγÞþ4J
h i

€θ2þ mℓ2

2 ð4þγÞþ3J
h i

€θ3þ mℓ2

2 ð2þγÞþ2J
h i

€θ4þ mℓ2

2 γþ J
h i

€θ5

þk1θ1þpsℓ
2 10þ5

2
γ

� �
¼ Fℓðθ2þ2θ3þ3θ4þ4θ5Þ ð13Þ

mℓ2

2 ð6þγÞþ4J
h i

€θ1þ mℓ2 γ2

4 þ3
	 


þ4J
h i

€θ2þ mℓ2

2 ð4þγÞþ3J
h i

€θ3þ mℓ2

2 ð2þγÞþ2J
h i

€θ4þ mℓ2

2 γþ J
h i

€θ5

þk2θ2þpsℓ
2ð6þ2γÞ ¼ Fℓðθ3þ2θ4þ3θ5Þ ð14Þ

mℓ2

2 ð4þγÞþ3J
h i

€θ1þ mℓ2

2 ð4þγÞþ3J
h i

€θ2þ mℓ2 γ2

4 þ2
	 


þ3J
h i

€θ3þ mℓ2

2 ð2þγÞþ2J
h i

€θ4þ mℓ2

2 γþ J
h i

€θ5

þk2θ3þpsℓ
2 3þ3

2
γ

� �
¼ Fℓðθ4þ2θ5Þ ð15Þ

mℓ2

2 ð2þγÞþ2J
h i

€θ1þ mℓ2

2 ð2þγÞþ2J
h i

€θ2þ mℓ2

2 ð2þγÞþ2J
h i

€θ3þ mℓ2 γ2

4 þ1
	 


þ2J
h i

€θ4þ mℓ2

2 γþ J
h i

€θ5

þk2θ4þpsℓ
2ð1þγÞ ¼ Fℓθ5 ð16Þ

mℓ2

2
γþ J

" #
€θ1þ

mℓ2

2
γþ J

" #
€θ2þ

mℓ2

2
γþ J

" #
€θ3þ

mℓ2

2
γþ J

" #
€θ4þ

mℓ2

2
γ2

2
þ J

" #
€θ5þk2θ5þpsℓ

γ

2
¼ 0 ð17Þ

3.2. Estimation of displacements and forces

The set of linearized differential Eqs. (13)–(17) in the generalized coordinates must now be solved for those coordinates
and for the unknown cable tension F. This forcing term acts directly only at the free-end of the outermost right bar segment.
However, its effect at the right edges of the four remaining bar segments of the compliant mechanism model is accounted
for as equivalent generalized forces (physically, bending moments obtained when the cable tension is transferred from
point G5 (see Fig. 11) to the other segment edges); for this reason, tension F appears as a common factor at the right side of
Eqs. (13)–(16).

In order to solve the stated problem, we formulate it as a state-space problem and use a Kalman filter to estimate the
state, a vector containing the generalized coordinates, their derivatives plus the non-modeled forcing terms. The approach
we used to obtain the state-space model is described next.

Eqs. (13)–(17) describe a continuous time lumped-parameter model approach to the suspended cable problem; in matrix
notation, they can be written as

½M�€θðtÞþ½K�θðtÞ ¼ Ψ ðθðtÞ; FÞ; ð18Þ
in which ½M�, ½K�AR5x5 are respectively the inertia and stiffness matrices, θðtÞAR5x1 is a vector of generalized coordinates
and Ψ AR5x1 accounts for all terms that contain bi-linear functions of the generalized coordinates and of the unknown
cable tension, plus independent constant terms that come from field energies. Damping is not included in this model
because a simplified approach was adopted; however, we intend to include the estimation of a damping matrix in future
works. As it is noticeable from Eqs. (13) to (17), the continuous-time model thus assembled is coupled in the second
derivatives, i.e., matrix ½M� is not diagonal; however, since it is real and symmetric, it is always possible to write a linear map
L : θ-η such that

θðtÞ ¼ ½L�ηðtÞ; ð19Þ



F.C. Trigo et al. / Mechanical Systems and Signal Processing 43 (2014) 124–140 133
with [L] a square non-singular constant matrix or order 5. As a consequence of substitution of Eq. (19) into Eq. (18) and
multiplication of both sides by [L]T, one obtains

½L�T ½M�½L�€ηðtÞþ½L�T ½K�½L�ηðtÞ ¼ ½L�TΨ ðθðtÞ; FÞ; ð20Þ

or, in shorter form,

½Md�€ηðtÞþ½Ks�ηðtÞ ¼ΩðθðtÞ; FÞ; ð21Þ

with [Md] a diagonal matrix and [Ks] a symmetric matrix, thus decoupling the system in the second derivatives of the
generalized coordinates and allowing its description in a canonical state-space framework. In this work, we employed an
appropriate built-in function of the open-source software Octave to obtain the transformation matrix [L]. The components of
the state-vector are, then, xiðtÞ; i¼ 1 : 10 with

η1 ¼ x1 η2 ¼ x3 … η5 ¼ x9
_η1 ¼ x2 ¼ _x1 _η2 ¼ x4 ¼ _x3 … _η5 ¼ x10 ¼ _x9

ð22Þ

This leads to the Kalman filter process model, represented in matrix form as

_x ¼ FPxþΩðθðtÞ; FÞ; FPAR10x10 ð23Þ
However, as previously stated, the forcing vector of the right-hand side of Eqs. (21) and (23) is not known. This way, since
our interest is to estimate the generalized coordinates as well as this vector, we include those terms in the estimation
problem by augmenting the ordinary state-vector; in this sense, the approach here adopted is similar to estimate non-
modeled generalized forces, a procedure for which [26] has coined the term shaping filter. Firstly, we consider the forcing
vector as the output of a linear filter driven by zero-mean Gaussian white noise:

_xf ¼ Gfwf ; xf ; wf AR5; wf �Nð0;Q Þ
Ω ¼Hf xf ð24Þ

Eq. (24), in which Gf and Hf are identity matrices of order 5, exhibit respectively the state-space process and observation
models for the unknown forcing vector ΩðθðtÞ; FÞ. Next, those equations are used to augment the system and observation
state-space models for the original generalized coordinates according to the following equation:

_x
_xf

( )
¼

FP GPHf

05x10 05x5

" #
x

xf

( )
þ

010x5

Gf

" #
wf ) _X ¼ AXþBwf ; AAR15x15; BAR15x5; ð25Þ

that provide the process state-space model in which both the generalized coordinates and the forcing terms constitute the
state variables to be estimated. In view of Eqs. (23) and (24), it should be emphasized that process uncertainties, expressed
by the random vector wf , affect only the unknown forcing terms. This is a feasible assumption, since the simplification
introduced by modeling the true experimental riser as two-bar compliant mechanism according to [24] is capable of
reproducing large displacements of an actual continuous beam, whose elastic line results from the solution of an elliptical
differential equation.

The observation equation for the augmented model will be assembled taking into account that the only measurements
available are angular displacements of the bars, obtained from images grabbed by a video camera. Those images, through a
segmentation procedure, provide Cartesian coordinates of a set of markers that are used to generate the corresponding
angles. Inherent errors in the image segmentation procedure are modeled as zero-mean Gaussian noise with covariance
matrix R, resulting in the observation equation, as follows:

Y ¼ HP 05x5
� �

Xþv ) Y ¼HXþv; HPAR5x10; vAR5; v �Nð0;RÞ;

HPði; jÞ ¼
1 if i¼ kþ1; j¼ 2kþ1; k¼ 0; 1; 2; 3; 4
0; otherwise

(
ð26Þ

The state-space representation of the riser dynamical model according to Eqs. (25) and (26) is hybrid (continuous-discrete),
since the state evolves continuously, whereas measurements are available at specific sample times. For computational
purposes, in this work the continuous process model was discretized (with the aid of a built-in function in Octave) using the
same time-step as that of the measurements, i.e., each kth iteration of the filter corresponds to a new measurement
available. The obtained discrete-time process model is, then,

X ðtkÞ ¼Φðtk; tk�1ÞX ðtk�1ÞþBdðtkÞwf ðtkÞ; ð27Þ

in which X ðtkÞ is the state vector at the kth time-step kΔt, Φðtk; tk�1Þ is the discrete-time transition matrix, and BdðtkÞwf ðtkÞ is
the discrete-time forcing vector. Accordingly, the discrete-time observation equation is

Y ðtkÞ ¼HX ðtkÞþvðtkÞ: ð28Þ
Regarding the estimation procedure, it suffices to mention that recursive estimation theory based on Kalman filtering is
extensively discussed in the literature, see for instance [27]; thus, for the moment, we only state the hypotheses used and
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provide a brief explanation of the algorithm through its equations. As already mentioned, white noise sequences wf and v
are assumed zero-mean Gaussian with associated covariance matrices; in addition, those sequences are considered mutually
independent and, as a consequence of being Gaussian, they are also uncorrelated. Covariance matrices Q, for the state
variables, and R, for the measurements, are admitted constant and diagonal.

For the model given by Eqs. (27) and (28), there is a forecast stage that seeks to produce the best estimates (in a
stochastic least-squares sense) by propagating the previous estimated state based on the process model and its known (or
admitted) statistics before new information is available. This way, Eq. (29)

Xf ðtkÞ ¼ΦXuðtk�1Þ ð29Þ
provides the state estimation forecast and Eq. (30)

Pf ðtkÞ ¼ Puðtk�1ÞþBdQ ðtk�1ÞBT
d ð30Þ

gives the estimation error covariance matrix forecast. When new data is available, an update stage provides proper
correction to the forecasted estimates of the state and error covariance according to Eqs. (31) and (32),

XuðtkÞ ¼ Xf ðtkÞþKðtkÞfyðtkÞ�HXf ðtkÞg ð31Þ

PuðtkÞ ¼ ðI�KðtkÞHÞPf ðtkÞ ð32Þ
it must be pointed out that in Eq. (31), yðtkÞ is employed to represent the measurement vector, distinct from Y ðtkÞ,
measurement model.

The correction is provided by the Kalman gain matrix, computed according to Eq. (33)

KðtkÞ ¼ Pf ðtkÞHfHPf ðtkÞHT þRðtkÞg
�1

; ð33Þ
thus completing the prediction–correction steps necessary for the next iteration of the filter.

4. Results and discussion

The previously described experimental setup grabs images at a rate of 28 frames/s, thus providing observations of the
position of each one of the five markers attached to the suspended cable at every 0.036 s. Computed Cartesian coordinates of
the markers were used to get the effective angular observations for the Kalman filter estimation procedure. The covariance
matrices were Q¼0.9I15 (process model noise covariance matrix, assumed constant), R¼0.01I5 (measurement model noise
covariance matrix, assumed constant) and P0¼0.5I15 (state-estimation error covariance matrix); the initial state-vector was

½�0:0183; 0:0276; 0:0085; 0:0262; 0:0633; 0:253; �0:5087; 0:011; 0:245; �0:189; 0:0376; 0:025; 0:0153; 0:0063; 0:0�T ;
obtained as the mean value of measurements from the three first frames grabbed. The last 5 state-variables correspond to
bending moments computed using a static estimate of the traction force on the cable, F¼0.5 N.

Estimates of the state-variables angular displacements and velocities are shown in Figs. 12 and 13. Those ten variables are
the ones of the “original” dynamical system, i.e., without the augmentation that included forcing terms as state variables to
be estimated. From Fig. 12, one realizes that the results are coherent, since angular displacements have higher amplitudes
Fig. 12. Angular displacements of the model bars at the rotational springs.



Fig. 14. Estimates of generalized forces.

Fig. 13. Angular velocities of the model bars attached to rotational springs.
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for those nodes closer to the left-side of the cable; in addition, angular velocities behave accordingly, see Fig. 13. A possible
source of questioning might be the reason why some of those state variables, namely ω2; ω3; ω5, remain negative
throughout the whole estimation procedure, an apparent incoherent result, since an alternating displacement is imposed at
the fairlead point of the cable. This behavior can be explained taking into account that, according to the physical model
described in Section 3.1, both angular displacements and velocities are represented in terms of consecutive relative
coordinates.

Estimates of generalized forces are also in agreement with those theoretically expected. As it can be seen in Fig. 14,
moments (in this case, generalized forces are bending moments each spring/bar setting) at the left-side of the cable present
higher amplitudes, that decrease towards the right-side. It must be pointed out that the generalized force corresponding to
state-variable number 15, the bending moment close to the free-end of the cable (node 5), stabilizes at 2.58�10�4 N m,
about four times smaller than the one at its adjacent node.

The generalized forces, state-variables 11–14 (captions “node 1” to “node 4” on Fig. 15) of the augmented state-space model,
are used to compute estimates of tension on the cable; the amplitudes of the 15th state-variable (caption “node 5” on Fig. 15)
remain practically zero during the whole estimation process for the same reason stated in the previous paragraph, and are not
considered in the computation of cable tension estimates. According to Fig. 15, the mean value thus calculated converges to
23.9 N at the end of the estimation process.

Quantitative evidence to support the convergence of the estimation procedure is provided by the behavior of the error
covariance matrix and of the normalized estimation residual. The time-history of the Euclidean norm of the estimation error
covariance matrix PuðtkÞ is depicted in Fig. 16, from which it is possible to realize that, after positive gradients at the



Fig. 16. Error covariance matrix Euclidean norm.

Fig. 15. Estimates of cable tension.
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beginning of the process, as more observations are available, from tffi0:5 s, the error decreases towards a mean steady-state
value, which indicates that the procedure has converged. This condition is, however, not enough to guarantee the actual
convergence. As stated by [27], actual convergence of the estimation process must be asserted by the inspection of the
difference between the effective measurement and its value as calculated by the filter using the last available state estimate.
An estimation process is considered convergent once the normalized observation residuals, given by Eq. (34),

rv ¼
1
ℓsν

∑
ℓ

j ¼ 1
ðy

j
ðtkÞ�Xu

j ðtkÞÞ; ð34Þ

in which ℓ represents measurement vector dimension (in our case, ℓ¼ 5), are zero-mean Gaussian with standard deviation
between �3sν and 3sν. In Fig. 17, it is shown that those requirements are fulfilled because, since E½rv� ¼ 0:0267 and
E½r2v � ¼ 0:0165. However, one could raise an issue about the mean-value as valid convergence criterion, for there is a constant
bias between approximately 1.5 and 3.3 s on the simulation. In reply to this questioning, Fig. 18 presents a comparison
among the time-evolution of the state-variables θ1–θ5 in simulations using the shaping-filter proposed approach
(“s–f estimates”) and only according to the phenomenological model(“model-only”), for the same input condition. It may
be observed that the model-only outcomes present higher amplitudes than the ones provided by the filter estimates, thus
corroborating the asserted convergence.



Fig. 18. Time evolution of the state-variables (modeled and estimated).

Fig. 17. Normalized observation residuals.
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5. Conclusions

This work investigated the use of a new approach to analyze the dynamics of an underwater suspended cable through
image-based instrumentation associated to parameter estimation techniques. A scaled-model riser has undertaken several
tests in a controlled environment. Simple self calibration procedures applied to images grabbed by a video camera provided
observations used in a state-space model of the system dynamics obtained from the application of compliant mechanisms
theory to spatially discretize the riser specimen. The system dynamical model was simulated through a non-linear Kalman
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filter in which the state-variables of the augmented state-space vector included the unknown generalized forces at the end
of each discretized segment of the cable. Results from the simulations suggest that it is possible to use the described
approach to estimate both the bending moments along the cable and the tension force at its free end. This assertion is
corroborated by statistical evidence of the convergence of the filtering process, namely, decreasing error covariance matrix
Euclidean norm and consistency of the normalized observation residuals.

Further work is under way to include new experimental results and to incorporate damping on the process model, based
on results from finite element analysis, or compliant mechanisms discretization and operational modal analysis of the
suspended cable. Those new experimental data will also allow one to obtain more accurate process noise matrices, since the
motion of each segment in the simplified model represents the contribution of several vibration modes.
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Appendix A

The following equations were obtained through proper application of Eqs. (9)–(12)) for the five generalized coordinates
(θ1;…; θ5) describing the configuration of the discretized scaled-model riser:

d
dt

∂L
∂_θ1

� �
þ ∂L

∂θ1
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¼ Fθ1 ) mℓ2 γ2

4
þ4
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þ5J
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