

ANAIS

DO 18° SIMPÓSIO DE GEOLOGIA DO SUDESTE

Campinas, São Paulo 2025

Editores:

Iata Anderson de Souza Adilson Viana Soares Júnior Daniela Kuranaka Marina Thimotheo Wagner da Silva Amaral Francisco Manoel Wohnrath Tognoli Danielle Simeão Silvério Rocha Saul Hartmann Riffel

18º SIMPÓSIO DE GEOLOGIA DO SUDESTE 26 a 30 de maio de 2025 | Campinas - SP

IDENTIFICAÇÃO DA ORIGEM DE HIDROCARBONETOS LEVES NA PERFURAÇÃO TADP-AC-01, BACIA DO ACRE

Borges, L. V.¹; Jimenez, A. E. M.²; Araújo, K. R.; Wiersberg, T.; Noren, A.; Sawakuchi, A. O.; Silva, C. G.; Fritz, S.; Baker, P. A.; Bertassoli Jr., D. J.³

¹Universidade de São Paulo - liviaverissimo@usp.br ²Universidade de São Paulo - aethelis90@gmail.com ³Universidade de São Paulo - dailson.bertassoli@usp.br

A caracterização dos gases presentes nos fluidos de perfuração é uma abordagem geoquímica importante para o rastreamento de hidrocarbonetos leves em bacias sedimentares. Essas investigações se concentram na análise de gases aprisionados nos poros das rochas sedimentares, os quais são liberados durante o processo de perfuração. Entretanto, além de impossibilitar a quantificação, a interpretação qualitativa dos registros obtidos pelos métodos atuais de caracterização é dificultada por variáveis como a taxa de perfuração, as condições do fluido de perfuração e a contaminação atmosférica. Nesse contexto, investigou-se, por meio do método de mud gas logging, a correlação entre as litologias perfuradas no poço TADP-AC-01 (profundidade de 923 m), na Bacia do Acre, e variações na concentração relativa dos hidrocarbonetos leves, representados por metano (CH₄), etano (C2), propano (C3) butano (C4) e isobutano (i-C4), além de dióxido de carbono (CO₂). O estudo foi conduzido a partir da análise de gases por meio de cromatografia gasosa in situ e da coleta e análise de amostras discretas de gás provenientes do fluido de perfuração. As concentrações de C1-C4 e CO2 foram comparadas à litologia do testemunho de sondagem e aos teores de carbono orgânico total (COT) obtidos ao longo do testemunho. Amostras que apresentaram maior concentração de metano foram separadas para análise das razões dos isótopos estáveis de carbono (δ^{13} C). Deste modo, buscou-se estabelecer parâmetros para a verificação precisa e eficiente sobre a origem (biogênica ou termogênica) dos hidrocarbonetos obtidos e as condicionantes de armazenamento dos componentes gasosos investigados na perfuração. Os resultados obtidos a partir das amostras discretas indicaram significativo controle litológico sobre as concentrações de CO₂ nas amostras analisadas. O CO₂ apresentou concentrações de 230 e 1400 ppm em argilitos, 850 e 950 ppm em siltitos e de 240 a 820 ppm em arenitos, sugerindo concentrações mais altas em litologias de granulação mais fina. Tais controles, entretanto, não são evidentes na distribuição de concentrações de metano (CH₄), com 2 a 6 ppm em camadas de arenito e 2 a 4 ppm em camadas de siltito e argilito. Os gases C2 a C4 em amostras discretas ficaram abaixo dos limites de detecção do sistema. O δ¹³C medido nas 9 amostras de gás selecionadas, expressaram valores entre -36,53 e -20,94, o que indica origem termogênica dos gases estudados em todas as profundidades investigadas. Os trabalhos realizados permitiram identificar zonas de interesse para a coleta de amostras para análise genômica e biogeoquímica da comunidade microbiana possivelmente envolvida na geração biogênica ou degradação do gás natural. Com o desenvolvimento desses trabalhos, espera-se aprimorar o entendimento de potenciais controles biológicos (metanogênese ou atividade metanotrófica) e estratigráficos sobre as variações observadas.