A novel FeSe₂-modified carbon gas diffusion electrode for bifunctional application: in-situ H₂O₂ generation and degradation of venlafaxine under photo-electro-Fenton treatment (Poster) Fausto Eduardo Bimbi Júnior¹, Robson da Silva Souto¹, Oswaldo Costa Junior¹, Maria Clara Vieira Felipe¹, Larissa Fernandes¹, Isabela Fiori Araujo¹, Igor Gabriel Silva Oliveira⁴, Carlos Henrique Magalhães Fernandes¹, Renata Colombo², Valmor Roberto Mastelaro³, Willyam Roger Padilha Barros⁴, Marcos Roberto de Vasconcelos Lanza¹ This work investigates the electrocatalytic activity of a gas diffusion electrode (GDE) composed of Printex L6 carbon (PL6C) modified with iron selenide (FeSe₂) nanoparticles (NPs) for application to H₂O₂ electrogeneration and venlafaxine degradation. This PL6C-FeSe₂-GDE acts as a heterogeneous photo-electrocatalyst in electrochemical processes to enhance the activity and selectivity of electrogenerated in situ of H₂O₂ through the oxygen reduction reaction (ORR) process via 2 electrons-pathway [1]. Electrochemical characterization revealed significant improvements in H₂O₂ production at the PL6C-FeSe₂-GDE compared to unmodified PL6C-GDE in both alkaline and acidic media, with 2.0-fold and 3.15-fold increases, respectively. Photoelectrochemical measurements demonstrated a further enhancement in H₂O₂ yield under UV-C radiation in alkaline media, attributed to the narrow bandgap of FeSe₂ NPs, which facilitates charge carrier separation and enhances catalytic activity. In acidic media, competitive hydroxyl radical (•OH) formation through the Fenton-like reaction limited H₂O₂ accumulation. The catalytic performance of the PL6C-FeSe₂-GDE was evaluated by monitoring the degradation of venlafaxine in different conditions. Complete mineralization of 15 mg L⁻¹ venlafaxine was achieved within 180 minutes of electrolysis, demonstrating the high oxidative capacity of the generated reactive oxygen species (ROS). These findings highlight the potential of PL6C-FeSe₂-GDE as efficient and versatile platforms for sustainable H₂O₂ production and advanced oxidation ¹ São Carlos Instiute of Chemistry, University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil ² ²School of Arts, Sciences and Humanities, University of São Paulo - EACH-USP, Rua Arlindo Béttio 1000, São Paulo, SP, 03828-000, Brazil ³ São Carlos Institute of Physics, *University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil* ⁴ Faculty of Exact Sciences and Technology, Federal University of Grande Dourados – UFGD, Rodovia Itahum Km 12, Dourados, MS, 79804-970, Brazil processes, with significant implications for green energy conversion and environmental remediation applications. ## **Acknowledgement:** This study was financed, in part, by the São Paulo Research Foundation (FAPESP), Brasil. Process Numbers #2024/11170-9, #2023/06558-5, #2023/10846-6, #2022/14255-0, #2022/12895-1, #2022/04053-0, #2019/06650-3, #2018/22210-0, #2018/22211-7 and #2018/22022-0), Brazilian National Council for Scientific and Technological Development – CNPq (grant #303943/2021-1), the Foundation Coordination for the Improvement of Higher Education Personnel – CAPES (grant #88887.618337/2021-00, #88887.838468/2023-00), and the University of the State of Mato Grosso (UNEMAT). ## References: [1] F.E. Bimbi Júnior, B.T. Marin, L. Mira, C.H.M. Fernandes, G. V. Fortunato, M.O. Almeida, K.M. Honório, R. Colombo, A. de Siervo, M.R.V. Lanza, W.R.P. Barros, Monitoring Photo-Fenton and Photo-Electro-Fenton process of contaminants emerging concern by a gas diffusion electrode using Ca_{10-x}Fe_{x-y}W_y(PO₄)₆(OH)₂ nanoparticles as heterogeneous catalyst, Chemosphere 361 (2024). https://doi.org/10.1016/j.chemosphere.2024.142515.