

20 a 23 de outubro de 2025

Majestic Hotel - Águas de Lindóia - SP - Brasil

Degradation of the anti-inflammatory piroxicam using a bismuth titanate/cadmium sulfide photoanode as an optimized photoelectrocatalytic mineralization strategy based on a factorial design

Maria H.A. Feitosa^{1*}, Esther M. Angelini¹, Anderson M. Santos², Ademar Wong³, Maria D.P.T. Sotomayor³, Marcos R.V. Lanza² and Fernando C. Moraes¹

¹Department of Chemistry, Federal University of São Carlos (UFSCar); ²São Carlos Institute of Chemistry, University of São Paulo (USP); ³Institute of Chemistry, São Paulo State University (UNESP).

*e-mail: helenaifpi@gmail.com

Considering the impact that emerging contaminants can cause to the environment, it is essential to develop new environmental remediation strategies for several target compounds, such as the anti-inflammatory piroxicam. Piroxicam belongs to the group of non-steroidal anti-inflammatory drugs, commonly used in the treatment of chronic diseases[1]. In this work, a full factorial design was used as a method optimization strategy, with the construction of a degradation model. For this purpose, a photoanode based on FTO/Bi₄Ti₃O₁₂/CdS was constructed and applied in the photoelectrocatalytic degradation of piroxicam. The 2^4 factorial design, totaling 16 experiments, considered the following variables: support electrolyte (v_1), pH (v_2), pollutant concentration (v_3) and working potential (v_4). The results showed that the best experimental condition promoted a degradation rate higher than 90.0 % in 120 minutes, with a pseudo-first order constant of 3.02×10^{-2} min⁻¹. Data analysis indicated that the concentration of piroxicam and the pH of the solution are the variables that most influence the efficiency of the compound degradation.

Acknowledgments:

This study was financed, in part, by the São Paulo Research Foundation (FAPESP), Brazil. Process Number: #2022/12895-1.

References:

1. Feng, L., et al., Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters. Journal of Environmental Chemical Engineering, 2019. 7(5): p. 103400.