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1. INTRODUCTION

The analysis of structures that exhibit large deflections is of great importance in
nowadays engineering. The crescent search for economy and optimal material application
leads to the conception of very flexible structures and the equilibrium analysis in the non-
deformed position is no ‘more acceptable for most applications. In this sense, a lot of
important works has been presented in this area. For example, the analytical solution for
slender bars and simple composition of them has bee developed by various authors, such as
Bisshopp & Drucker (1945) and Mattiasson (1981). This approach is quite complicate
because the superposition of effects is not valid for non-linear applications.

' In order to create automatic, general and reliable tools for the analysis of largely deflected
structures, various researchers have presented important contributions along time regarding
finite element procedures, James et al. (1974), Argyris et al. (1978), Risks (1979), Gadala
(1984) and Wriggers & Simo (1990). These works are also very important to the development
of the human knowledge on the subject, clarlfymg and opening the understanding of the
present researchers. It is difficult to put together all works in this area, identifying them
regarding their approach and classifying them by their importance. However the authors
would like to make a citation of the consulted works that helped the understanding and
inspired the present formulation development.

In the specialized literature there are several types of formulations based on FEM to solve
_geometrical non-linear problems. These formulations present differences on the coordinates
description. The 'Lagrangian descriptions measure nodal displacements regarding a fixed
Cartesian system of coordinates, and can be total (Mondkar & Powell, 1977), measure of
displacements are done considering the initial reference, or updated (Peterson & Petersson,
1985 and Wong & Tinloi,1990) measure of displacements are done considering the: last
equilibrium position reference. The Eulerian description (Oran & Kassimali, 1976, and
Izzuddin & Elnashai, 1993) follows the structure movement, measuring dlsplacements
considering the nodal position changes. Another efficient formulation to deal with
geometrical non-linear problems is the co-rotational (Crisfield, 1990 and Behdinan et al.,
1998) that uses local coordinates systems for the finite elements making possible the
consideration of curvature effects. Some formulations consider structural pos-buckling
behaviour (Pai & Palazotto, 1996 and Simo et al., 1986).

In this work it is proposed a formulation based on the Principle of Stationary Potential
Energy. The novelties are based in two main points. The first is the identification, on all
consulted references, that the definitions of bodies’ kinematics necessarily pass trough the
explicit definition of the concept of displacement. In this work the word displacement is not
mentioned, to define the kinematics of the body, only the concept of position is assumed. The
strain determination is done directly from the position concept.

The second difference is that in all consulted works the deformation function is achieved
by differentiating the deformed configuration regarding the reference one. In this work a non-
dimensional space is created and no direct deformation function is created, but relative
curvature and fibers length are calculated for both reference and deformed configurations-and
~used to directly calculate the strain at general points. :

As a secondary consequence of these considerations one does not think (necessanly) in
the words, increment, linearization, prevision, correction, tangent matrix etc., largely used in
literature. Of course, that these concepts are right and important, but their use is not necessary
for the development of the proposed formulation. In the end of the work various examples are
shown in order to demonstrate the precision of the proposed formulation.



2. POSITIONAL NON-LINEAR FORMULATION

To state the proposed methodology one should start from the Minimum Principle of Total
Potential Energy, stated from position considerations (not displacements):

m=u,-P (1)

Figure 1 - Total potential energy written for a body in two different positions

The strain energy is written (linear elasticity) as:

U, = jéoedV 2)

14

Where stresses are evaluated in a reference configuration and strains are given by non-

linear engineering (conjugate). The strain energy is assumed to be zero in a reference position
(called non-deformed). The potential of loads is written as:

P=YFX ©)

Where X is the set of positions, independent from each other, which a chosen point of a

body can occupy. As a principle the potential energy may be not zero in the reference
configuration. The total potential energy is then:

H=jéG£dV—ZFX 4)

4

In order to perform the integral indicated in Eq. (4) it is necessary to know the geometry
of the studied body (the accepted geometric approximation) and its relation with the adopted
strain measurement. Fig. 2 gives the general geometry of a curve over a plane.
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Figure 2 - Curve in a 2D space

This generic curve represents a configuration of the body. It can be parameterized as a
function of a non-dimensional variable & (varying from 0 to 1). It should be noted that for
two-dimensional problems one states a linear approximation for position in x direction and a
cubic approximation for y direction. When this is done an additional care should be taken
when the curve stop to be a one valued function. Adopting the above described approximation
one writes:

x=X,+1¢& (5a)

X=X, +(X,-X, )& (5b)

X=X, (1-E)+ X,E (5¢)
Where:

[, =(X,-X,) (5d)
Relating £ to y, following cubic approximation, one writes: |

y=cEl +dE te + f -(6)

It is necessary to solve the generalized parameters ¢, d, e and f of Eq. (6) in order to write

as a function of the nodal parameters, i.e., positions X,,Y,,X,,Y,,6,,0,. It is interesting to

note that the last two parameters will appear as arguments of tangent functions, i.e., 1g(@,)
and zg(8,). So one has:

Y(e=0) =f=Y, (72)
% —3¢E? 4 2dE +e (7b)
dy dy dx

— =g =———] =tg9 l‘. (7C
R I )




%.5:, =3c+2d +:g(e,)1x=%;’—‘;§=/ =1g(0,)1, "(7d)
Then,

3c+2d=[tg(0,)-12(6,)I, (7e)

Ve =c+d+1g(0,)1,+Y, =7, (79
Or:

c+d=1,-1g(6,)l, (7g)

Solving (7e) and (7g) results:
c=lg(6,)+1(6,)}1,- 21, ®
d=3l,-ig(6,)+ 26, )11, ©
The following strain evaluation is adopted:

g=ds=d5 (10a)
ds,
And it is a Lagrangian strain measurement.
In Eq. (10a) ds is the length of a fiber inside the domain (in this case it is parallel to the
central line) in any position. dsy is the length of this same fiber for the reference
configuration. At this point the novelty is to identify that the proposed strain determination

can be achieved by relative length referred to the non-dimensional space represented here by
the variable &, i.e.:

= ds—ds(, — ds/dé: "ds() /dé (IOb)
ds, ds, / d& »

It is interesting to note that in majority of references this strain measurement is called
linear strain. Any strain measurement can be used to solve geometrical non-linear problems if
one takes its proper conjugate stress in order to calculate energy.

In this work it will be considered the reference configuration as a straight line. For this
situation the reference approximation can be taken as:

X=X+ (11)
y =Y+ (12)

For the central line (passing trough the mass center of the bar) in the initial configuration
one has:
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) (3]
Or:

ds® =1,dE (13b)

In the same way for another general configuration one has:

ds _|fdx ’ dy 2: 2 oE? £ +e)?
4+ B e

Or:

ds=J(1, ) +(3cE? +2dE +e)’ dE (14b)

Applying linear stress measurement, Eq. (10b), for the central line one calculates:

e” =1i‘/(l-")2 +(3cE +2dE+e) -1 (13)

Following the curvilinear coordinate s one can define an orthogonal co-ordinate to s,
called z, where one defines the strain dependence (Euler-Bernoulli hypothesis). Following this
hypothesis one writes the strain as a function of the curvature difference plus the central line
value. As the initial curvature is zero one has (initial shape is a straight line):

e=g" +~-z : (16)

The exact curvature is given by:

ddly dsdy
1 dEdE?  dE? dE
= 3 a7

&)%)

Or, replacing the known expressions (approximation for positions):

i.= 1. (6cE+2d) : (18)
! (Jz +(3cE? +2dE +e)? ]

Taking the reference stress, linear elasticity, and the strain determination one writes the
specific strain energy as:



4

E,om 1 _1 ’
u, (espec)=-5(€ +=z)* =5((&‘"' )2 +2e™ iz+(lzj ] (19)
r r
In order to calculate the strain energy, it is necessary to integrate the specific strain
energy (u,(espec)) over the initial volume of the analyzed body. For reference stress and the
Lagrangian strain measurement proposed here this is done referring to the reference volume,
as it is the zero energy situation and any change of energy should be referred to it. A

numerical proof for this affirmation is in example three, where large strain is present.

To integrate the specific strain energy over the volume one starts by integrating it over
the transverse section as follows:

EA{ .y  EI(1Y .
= am =1L 20
== (e ) + > [,) 20)
Now one integrates the result Eq. (20) along the length of the bar, i.e..
U, = (jE—ZA(g"’)’ Ez]( }ldt—l [lu,dt 1)

As the strain energy is known (written as a function of nodal parameters) it is necessary
to differentiate the Total Potential Energy, expressions (1) or (4), regarding the nodal
parameters, in order to obtain the equilibrium statement. In order to do that one should
reorganize previous equations as follows:

I :lo.[(;“/dé _F.\-/X/ ‘F_;,/Y/ _MIQ/ "F.szz _Fyzyz —M202 (22)

As there are no singularities in the strain energy integral one can write:

oIl ) O,
__1 d 22a
[ jﬂaX é ( )
oI ,E)u,
S5 =lohsy dg F, =0 (22b)
YI
O ) 119 e _p1 =g (22¢)
26, ol 36,
817 ,Bu,
el U JE - =0 22d
ax, Qe &= F (22d)
H 9o j’a” dE-F,,=0 (2‘2f)
Y, °’?oy,
O _ ) 119 ge _pp, =0 (22¢)
e_, * 350,



The algebraic strategy is to develop the derivatives inside the integrals and after that
integrate it numerically along the non-dimensional space. As it can be noted the numerical
integral result is not linear regarding the nodal parameters. Therefore, one writes the above
system of equations in the following general way:

g,/(X,.Y,,6,,X,,Y,,0,)=f,(X,.Y,.0,,X,Y,6,)-F =0 (23a)
2:(X,.Y,,0,,X,.7,,60,)=f,(X,,Y,,0,,X,.Y,,8,)-F, =0 (23b)
g;(X,.Y,,8,,X,,Y,,8,)=f(X,.Y,.0,X,Y,6,)-M,=0 (23c)
g.(X,,Y,,0,,X,.Y,,0,)=1,(X,Y,,0,,X,.Y,.8,)-F,=0 (23d)
g25(X,,Y,.6,,.X,.Y,.0,)=f5(X,.Y,,0,,X,.Y,,6,)-F,, =0 (23e)
8:(X,.Y,,0,,X,,Y,,0,)=f,(X,Y,.0,X,Y,0,)-M,=0 , (2319)

Or, in a compact notation:
gi(X;.F)=f,(X;)=F, =0 24)

The numerical representation of nodal parameters (X,,Y,,0,,X,,Y,,0,)=(1,2,3,4,56)is
adopted. Following a vector notation representation one has:

g(X,F)=0 25)
Or:
F(X)-F=0 (26)

Note that in this work the external forces have been assumed not dependent regarding
space. Space dependent forces are easily implemented if desired. The vectorial function g(x)
is non-linear regarding nodal parameters (X and F), but Eq. (25) represents the minimum

potential energy situation and therefore the equilibrium of the analyzed body. To solve Eq.
(25) one can use the Newton-Raphson procedure, i.e.:

g(X)=0=g(x?)+vg(x®)ax 7
Or:
Ax =-[velx " glx*) | (28)

At this point all usual words of non-linear analysis could be introduced, but the reader is
invited to understand the procedure as a simple non-linear system solver. One can calculate

the Hessian matrix Vg( X’ ) from expressions (22), (23) and (24), as:

Vglx?)=g,,(x°)= 1, (x*)-F, (29)



Where i=1,6; k=1-6 for parametric positions and £=7-12 for external forces. It is easy to
achieve the following representation:

Vg(Xa)z ly .[olut.ikdé‘x() =3, (30)
For Eq. (28) we need to calculate g( X7 )

glx?)=1,u, | ,~F, (1)
The iterative (Newton-Raphson) process is summarized as:

1) Assume initially X° as the initial configuration (non-deformed). Calculate g(X ")
following Eq. (31)

2) For this same X, calculate the Hessian matrix by unity of length, u,_ik\ (- Integrate
this value as indicated in (30) and results the gradient of g at X’

3) Solves the system of Eq. (28) and determines AX

4) Update position X’ =X° + AX . Goes back to step 1 until AX is sufficiently small

Theoretically the process is not incremental, however to divide the total loading (or
prescribed position) in cumulative steps helps to start the iterative procedure at a position
nearer to the final desired result. Introducing this step division results:

a) XY (initial position)

b) X’ =Xx"+4f , where Af is a load increment into a single vector X°
c) {1,2,3,4} iterations

d) Goes back to item b)

2.1 Final comment about the implementation of the formulation

One should note that if the element presents /; very near zero the Hessian matrix loses its

objectivity. To solve this problem one creates the auxiliary co-ordinate shown in Fig. 3. Now
L, will be always far from zero.
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Figure 3 - Auxiliary coordinate system

The calculation becomes:

l.=X,-X, (322)



l,=Y,~7, (32b)

.= tg[j_] | (320)
%, =cos(a, )X, + sen(a, )Y, (32d)
¥ =-sen(a,)X, +cos(a,)Y, (329)
Xy =cos{a;)X, +sen(a,)Y, | ' (32g)
Yy =-sen(a, )X, +cos(a, )Y, (32h)
Iy =(Xy -Xy) ' (32i)
I=0y-Yu) (32))
0,=6,+tp, -a, \ (32k)
6 =60, +p,-q, (321)

It is important to note that fp/ and #p2 are equal each other and represents the slope of the
finite element in the reference configuration (non-deformed).

3. NUMERICAL EXAMPLES
3.1 Square frame subject to a pair of opposite forces

The first example is a square frame loaded at the midpoints by a pair of opposite forces.
Two load cases are considered, the tension case and the compression case. To solve this
problem the symmetry condition is used, as presented in Fig. 4. One half of structure is
discretized into 40 finite elements. Mattiasson (1981) solved analytically this example. In the
numerical analysis the load is divided into 100 steps, in order to show the results at different
load levels, but the problem can be solved using three load steps.
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Figure 4 - Square frame input data

Following the convention of Fig. 4, in Fig. 5, 6 and 7 the responses UX, UY and w, are
compared with the analytical solution. In Fig. 8 are presented two deformed shapes for the
tension case. In Fig. 9 are also presented two deformed shapes for the compression case; it is
interesting to note that an inversion of top and down parts of structure occurs.
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Figure 5 - Non-dimensional deflections in the direction of coordinate UX
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Figure 6 - Non-dimensional deflections in the direction of coordinate UY
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Figure 8 - Deformed shapes for the load tension case
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Figure 9 - Deformed shapes for the load compression case

No significant differences are found between analytical and the proposed numerical
formulation.

3.2 Elastic contact of a ring

The last example is a circular ring pressed against a rigid surface. The force is applied at
the top of the structure using 100 load increments. To solve the problem the symmetry
condition is used, as presented in Fig. 10. One half of structure is discretized into 20 finite
elements. Simo et al. (1986) solved numerically this example.

E=10°
=107
A=107°

200
200

i 1

Figure 10 - Elastic ring input data

Figure 11 presents UY numerical solutions, comparing the present formulation and the
reference one. In Fig. 12 are presented deformed shape for some load levels. ’
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Figure 11 - Deflections in the direction of coordinate UY
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Figure 12 - Deformed shapes for some load levels
As one can see the results are in good agreement.

4. CONCLUSIONS

A new and efficient method based on the Finite Element Method for solving static
nonlinear problems with large deflections and rotations has been presented. The developed
formulation presents a high degree of convergence and accuracy, the number of iterations
falls as the number of degree of freedoms raise. The formulation is capable to analyze severe
geometrical non-linear behaviors, including structural post-buckling behaviors. Two

numerical examples are presented and very good responses were obtained, compared with
analytical and other numerical solutions.
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