
LU 
u 
~ 
<t 
...1 -u 

XXIV IBERIAN LATIN-AMERICAN 
CONGRESS ON COMPUTATIONAL 
METHODS IN ENGINEERING 



XXIV IBEI~IAN LU.TIN-AMERICAN 
CONGRESS ON COMPUTATIONAL 
METHODS IN ENGINEERING 



LU 
u 
~ 
<( 
..J -u 

XXIV IBERIAN LATIN-AMERICAN 
CONGRESS ON COMPUTATIONAL 
METHODS IN ENGINEERING 

A NEW POSITION DESCRIPTION FOR GENERAL GEOMETRIC NON-LINEAR 
STRUCTURAL ANALYSIS BY FEM 

Marcelo Greco 
Humberto Breves Codª-.j 
Universidade de São Paulo I Escola de Engenharia de São Carlos I Departamento de 
Engenharia de Estruturas 
Av. Trabalhador Sancarlense, 400 I São Carlos- SP I Brasil I CEP: 13566-590 

Abstract. This work presents a simple formulation to treat large dejlections by the Finite 
Element Method (FEM). The present formulation does not use the concept o.f displacements; 
it considers position as the real variable o.f the problem. The strain determination is dane 
directly .from the proposed position concept. A non-dimensional space is created, relative 
curvature and fibers length are calculated for both reference and deformed configurations, 
and used to directly calculate the strain energy at general points. The initial configuration is 
assumed as the basis o f calculation, i. e. , Hooke 's law relates reference stress and a non­
linear engineering strain measurement. This point o .f view is very precise as demonstrated in 
the example section where numerical results are compared with analytical solutions and 
other important works. The technique is applied for 2D .frame problems and can be easily 
extended to more general situations. 
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1. INTRODUCTION 

The analysis of structures that exhibit large deflections is of great importance in 
nowadays engineering. The crescent search fm; economy and optimal material application 
leads to the conception of very flexible structures and the equilibrium analysis in the non­
defonned position is no more acceptable for most applications. In thjs sense, a lot of 
important works has been presented in this area. For example, the analytical solutiori for 
slender bars and simple composition of them hqs bee developed by various authors, such as 
Bisshopp & Drucker (1945) and Mattiasson ( 1981 ). This approach is quite complicate 
because the superposition of effects is not valid for non-linear applications. 

In arder to create automatic, general and reliable tools for the analysis of largely deflected 
structures, various researchers have presented important contributions along time regarding 
finite element procedures, James et a/. (1974), Argyris et a/. (1978), Risks (1979), Gada1a 
(1984) and Wriggers & Simo (1990). These works are also very important to the deve1opment 
of the human knowledge on the subject, clarifying and opening the understanding of the 
present researchers. It is difficult to put together all works in this area, identifying them 
regarding their approach and classifying them by their importance. However the authors 
would like to make a citation of the consulted works that helped the understanding and 
inspired the present forrimlation development. 

In the specialized literature there are several types o f formulations based on FEM to solve 
. geometrical non-linear problems. These formulations present differences on the coordinates 
description. The · Lagrangian descriptions measure nodal displacements regarding a fixed 
Cartesian system of coordinates, and can be total (Mondkar & ·Powell, 1977), measure of 
displacements are done considering the initial reference, or updated (Peterson & Petersson, 
1985 and Wong & Tinloi,1990) measure of displacements are ·done considering the last 
equilibrium position reference. The Euleriah description (Oran & Kassima1i, 1976.. and 
lzzuddin & Elnashai, 1993) follows the structure movement, measuring displacements 
considering the nodal position changes. Another efficient formulation to deal with 
geometrical non-linear problems is the co-rotational (Crisfield, 1990 and Behdinan et ai., 
1998) that uses local coordinates systems for the finite elements making possible the 
consideration of curvature effects. Some formulations consider structural pos-buckling 
behaviour (Pai & Palazotto, 1996 and Simo et a/., 1986). 

In this work it is proposed a formulation based on the Principie of Stationary Potential 
Energy. The novelties are based in two main points. The first is the identification, on all 
consulted references, that the definitions of bodies' kinematics necessarily pass trough the 
explicit definition of the concept of displacement. In this work the word displacement is not 
mentioned, to define the kinematics of the body, only the concept of position is assumed. The 
strain determination is done directly from the position concept. 

The second difference is that in all consulted works the deformation function is achieved 
by differentiating the deformed configuration regarding the reference one. In this work a non­
dimensional space is created and no direct deformation function is created, but relative 
curvature and fibers length are calculated for both reference and deformed configurations and 
used to directly calculate the strain at general points. 

As a secondary consequence of these considerations one does not think (necessarily) in 
the words, increment,_ linearization, prevision, correction, tangent matrix etc., largely used in 
literature. Of course, that these concepts are right and important, but their use is notnecessary 
for the development o f the proposed fonnulation. In the end of the work various examples are 
shown in order to demonstrate the precision o f the proposed formulation. · 



2. POSITIONAL NON-LINEAR FORMULATION 

To state the proposed methodology one should start from the Minimum Principie ofTotal 
Potential Energy, stated from position considerations (not displacements): 

(1) 

Figure 1 - Total potential energy written for a body in two different positions 

The strain energy is written (linear elasticity) as: 

(2) 

Where stresses are evaluated in a reference configuration and strains are given by non­
linear engineering (conjugate). The strain energy is assumed to be zero in a reference position 
( called non-deformed). The potential of loads is written as: 

p =zJX (3) 

Where X is the set of positions, independent from each other, which a chosen point of a 
body can occupy. As a principie the potential energy may be not zero in the reference 
configuration. The total potential energy is then: 

I II =f -CYEdV- "'f.FX 
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(4) 

In arder to perform the integral indicated in Eq. (4) it is necessary to know the geometry 
of the studied body (the accepted geometric approximation) and its relation with the adopted 
strain measurement. Fig. 2 gives the general geometry of a curve over a plane. 
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Figure 2 - Curve in a 20 space 

This generic curve represents a configuration of the body. It can be parameterized as a 
function of a non-dimensional variable Ç (varying from O to 1). It should be noted that for 
two-dimensional problems one states a linear approximation for position in x direction anda 
cubic approximation for y direction. When this is done an additional care should be taken 
when the curve stop to be a one valued function. Adopting the above described approximation 
one writes: 

(5a) 

(5b) 

(Se) 

Where: 

lx =( X 1 -X1 ) (5d) 

Relating Ç to y, following cubic approximation, one writes: 

.(6) 

It is necessary to solve the generalized parameters c, d, e and f o f Eq. ( 6) in order to write 
as a function of the nodal parameters, i.e., positions X 1.Y1 ,X2 ,Y2 ,81 ,82 . It is interesting to 

note that the last two parameters will appear as arguments of tangent functions, i. e., tg(e 1 ) 

and tg(e 2 ). So one has: 

dy\=3cÇ 2 +2dÇ +e 
dÇ 

dy I - - dy dx I - (e ) I -e- -fg I x 

dÇ Ç=O dx dÇ Ç=O 

(7a) 

(7b) 

(7c) 



dy\ ( ) dy dx\ ------; =3c+2d +tg e, l.r=-- =tg(82)1x 
d.__, é,=l dx dÇ é,=l 

(7d) 

Then, 

3c + 2d = [tg(8 2 )-tg(81 )]lx (7e) 

(7f) 

O r: 

(7g) 

Solving (7e) and (7g) results: 

c= [tg(e 2 ) + tg(e 1 )] lx- 2lv (8) 

d = Jl,. - [tg(e 2 ) + 2tg(e 1 )] 1x (9) 

The following strain evaluation is adopted: 

ds- ds0 ê=---"--
dsa 

(10a) 

And it is a Lagrangian strain measurement. 
In Eq. (lOa) ds is the length of a fiber inside the domain (in this case it is parallel to the 

central line) in any position. ds0 is the length o f this same fiber for the reference 
configuration. At this point the novelty is to identify that the proposed strain determination 
can be achieved by relative length referred to the non-dimensional space represented here by 
the variable Ç, i.e.: 

(10b) 

It is interesting to note that in majority of references this strain measurement is called 
linear strain. Any strain measurement can be used to solve geometrical non-linear problems if 
one takes its proper conjugate stress in order to calculate energy. 

In this work it will be considered the reference configuration as a straight line. For this 
situation the reference approximation can be taken as: 

(11) 

(12) 

For the centralline (passing trough the mass center of the bar) in the initial configuration 
one has: 



O r: 

In the same way for another general configuration one has: 

ds 

dÇ 

O r: 

Applying linear stress measurement, Eq. (lüb), for the centralline one calculates: 

(13a) 

(13b) 

(14a) 

(l4b) 

{15) 

Following the curvilinear coordinate s one can define an orthogonal co-ordinate to s, 
called z, where one defines the strain dependence (Euler-Bernoulli hypothesis). Following this 
hypothesis one writes the strain as a function of the curvature difference plus the central Iine 
v alue. As the initial curvature is zero one has (initial shape is a straight line ): 

I 
t:=t:"'+-z 

r 

The exact curvature is given by: 

Or, replacing the known expressions (approximation for positions): 

I_ f_J6cÇ+2d) 

-;- ( JV +(3cÇ 2 +2dÇ +e/ J 

(16) 

(17) 

(18) 

Taking the reference stress, linear elasticity, and the strain determination one writes the 
specific strain energy as: 
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2

] 

2 r 2 r r 
(19) 

In order to calculate the strain energy, it is necessary to integrate the specific strain 
energy ( u 1 ( espec) ) o ver the initial volume o f the analyzed body. F o r reference stress and the 

Lagrangian strain measurement proposed here this is done referring to the reference volume, 
as it is the zero energy situation and any change of energy should be referred to it. A 
numerical proof for this affinnation is in example three, where large strain is present. 

To integrate the specific strain energy over the volume one starts by integrating it over 
the transverse section as follows: 

u =- ê +--EA ( 111 )2 E1 ( 1 )
2 

1 2 2 r 
(20) 

Now one integrates the result Eq. (20) along the length ofthe bar, i.e .. 

(21) 

As the strain energy is known (written as a function of nodal parameters) it is necessary 
to differentiate the Total Potential Energy, expressions (1) or (4), regarding the nodal 
parameters, in order to obtain the equilibrium statement. In order to do that one should 
reorganize previous equations as follows: 

{22) 

As there are no singularities in the strain energy integral one can write: 

()JI =l r' àu 1 dJ: -F. =0 
ax aJo ax "' ·'' I I 

(22a) 

(22b) 

()JI = l r' àu 1 dJ: - M =O 
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(22c) 

(22d) 

(22f) 

(22g) 



The algebraic strategy is to develop the derivatives inside the integrais and after that 
integrate it numerically along the non-dimensional space. As it can be noted the numerical 
integral result is not linear regarding the nodal parameters. Therefore, one writes the above 
system of equations in the following general way: 

g, ( x,. r,. e, . x 2 . Y2. e 2 J = !, ( x,. r, . e, . x 2 . r2 . e 2 J- F_", = o (23a) 

(23b) 

g 3 ( x,.r,.e,.x2 • Y2 .e2 J = f 3 ( x,. r, .e,.x2 • Y2 .e2 J- M, =o (23c) 

g 4 ( x,. r,. e,. x 2 • Y2 • e 2 J = / 4 r x, . r,. e,. x 2 • Y2 • e 2 J - F_d = o (~3d) 

(23e) 

g 6 ( x,. r,. e,. x 2 • Y2 • e 2 J = / 6 ( x,. r,. e,. x 2 • Y2 • e 2 J - M 2 =o (23t) 

Or, in a compact notation: 

(24) 

The numerical representation of nodal parameters (X1, Y1 ,81 ,X 2 , Y2 ,82 ) = (1,2,3,4,5,6)is 

adopted. Following a vector notation representation one has: 

g(X,F)=O (25) 

O r: 

··.·. 

f(X)-F=O (26) 

Note that in this work the externai forces have been assumed not dependent regarding 
space. Space dependent forces are easily implemented if desired. The vectorial function g(x) 
is non-linear regarding nodal parameters (X and F), but Eq. (25) represents the minimum 
potential energy situation and therefore the equilibrium of the analyzed body. To solve Eq. 
(25) one can use the Newton-Raphson procedure, i.e.: 

(27) 

O r: 

(28) 

At this point all usual words of non-linear analysis could be introduced, but the reader is 
invited to understand the procedure as a simple non-linear system solver. One can calculate 
the Hessian matrix 'Vg( X 0

) from expressions (22), (23) and (24), as: 

(29) 



Where i= 1 ,6; k= 1-6 for parametric positions and .e =7 -12 for externai forces. It is easy to 
achieve the following representation: 

(30) 

For Eq. (28) we need to calculate g( X 0
) 

(31) 

The iterative (Newton-Raphson) process is summarized as: 

1) Assume initially X 0 as the initial configuration (non-deformed). Calculate g(X 0
) 

following Eq. (31) 

2) For this same X 0
, calcula te the Hessian matrix by unity of length, u,_;k lxa. Integrate 

this value as indicated in (30) and results the gradient of g at X 0 

3) Solves the system ofEq. (28) and detennines .1X 

4) Update position X 0 = X 0 + .1X. Goes back to step 1 until .1X is sufficiently small 

Theoretically the process is not incrementai, however to divide the total loading (o r 
prescribed position) in cumulative steps helps to start the iterative procedure at a position 
nearer to the final desired result. Introducing this step division results: 

a) X 0 (initial position) 
b) X 0 = X 0 + t1f , where !J.f is a load increment in to a single vector X 0 

c) {1,2,3,4} iterations 
d) Goes back to item b) 

2.1 Final comment about the implementation o f the formulation 

One should note that if the element presents lx very near zero the Hessian matrix loses its 
objectivity. To solve this problem one creates the auxiliary co-ordinate shown in Fig. 3. Now 
lx will be always far from zero. 

--x 

Figure 3 - Auxiliary coordinate system 

The calculation becomes: 

lx =Xl -XI (32a) 



(32b) 

(32c) 

(32d) 

(32t) 

(32g) 

(32h) 

(32i) 

(32j) 

(32k) 

(321) 

It is important to note that tpl and tp2 are equal each other and represents the slope ofthe 
finite element in the reference configuration (non-deformed). 

3. NUMERICAL EXAMPLES 

3.1 Square frame subject to a pair of opposite forces 

The first example is a square frame loaded at the midpoints by a pair of opposite forces. 
Two load cases are considered, the tension case and the compression case. To solve this 
problem the symmetry condition is used, as presented in Fig. 4. One half of structure is 
discretized in to 40 finite e1ements. Mattiasson (1981) so1ved ana1ytically this examp1e. In the 
numerica1 ana1ysis the 1oad is divided into 100 .steps, in order to show the results at different 
load leveis, but the problem can be solved using three load steps. 
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Figure 4 - Square frame input data 
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Following the convention of Fig. 4, in Fig. 5, 6 and 7 the responses UX, UY and w, are 
compared with the analytical solution. In Fig. 8 are presented two deformed shapes for the 
tension case. In Fig. 9 are also presented two deformed shapes for the compression case; it is 
interesting to note that an inversion o f top and down parts of structure occurs. 
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Figure 5 - Non-dimensional deflections in the direction of coordinate UX 
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Figure 6- Non-dimensional deflections in the direction of coordinate UY 
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Figure 7- Non-dimensional deflections in the direction of coordinate w 
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Figure 8 - Deformed shapes for the load tension case 
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Figure 9 - Deformed shapes for the load compression case 

No significant differences are found between analytical and the proposed numerical 
formulation. 

3.2 Elastic contact of a ring 

The last example is a circular ring pressed against a rigid surface. The force is applied at 
the top of the structure using 100 load increments. To solve the problem the symmetry 
condition is used, as presented in Fig. 1 O. One half of structure is discretized into 20 finite 
elements. Simo et al. (1986) solved numerically this example. 
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Figure 1 O - Elas ti c ring input data 

Figure 11 presents UY numerical solutions, comparing the present formulation and the 
reference one. In Fig. 12 are presented defonned shape for some load leveis. 



>-

5,0 

4,5 

4,0 

3,5 

3,0 

u. 2,5 

2,0 

1,5 

1,0 

0,5 

NODE 21 
~ Numerical Solution (SIMO) 
---+- Numerical Solution (Proposed Formulation) 

/ 
/ 

0,0 -!L-r---r--r--r--r-r--r-r--r--r--.---,.--,.---,,....,--,--.--,--.--,-
0 20 40 60 80 100 120 140 160 180 200 

UY 

Figure 11 - Deflections in the direction of coordinate UY 
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Figure 12 - Deformed shapes for some load leveis 

As one can see the results are in good agreement. 

4. CONCLUSIONS 

A new and efficient method based on the Finite Element Method for solving static 
nonlinear problems with large deflections and rotations has been presented. The developed 
formulation presents a high degree of convergence and accuracy, the number of iterations 
falls as the number of degree of freedoms raise. The formulation is capable to analyze severe 
geometrical non-linear behaviors, including structural post-buckling behaviors. Two 
numerical examples are presented and very good responses were obtained, compareci with 
analytical and other numerical solutions. 
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