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ABSTRACT: This benchmark study focuses on the evaluation of
theoretical methodologies for geometry and ultraviolet−visible
(UV−vis) spectral prediction of mononuclear iron coordination
complexes. For this purpose, 17 structurally diverse iron complexes
with experimentally determined X-ray structures and UV−vis
absorption spectra were selected from the literature. For ground-
state geometry, different computational approaches were evaluated:
GFN1-xTB, BP86(D4), PBE(D4), revPBE(D4), OPBE(D4),
TPSS(D4), r2SCAN, B97(D4), B3LYP/G(D4), TPSSh(D4),
MN15, revM11, ωB97X(D4), HF-3c, r2SCAN-3c, and PBEh-3c.
The meta-hybrid functional TPSSh(D4) delivers the best perform-
ance, establishing it as the preferred method for geometry
optimizations of iron coordination complexes. For the prediction
of UV−vis absorption spectra, time-dependent density functional theory (TD-DFT) calculations were performed on the optimized
structures, at the TPSSh(D4)/def2-TZVP/CPCM level of theory, using 13 density functionals (TPSS, r2SCAN, revM06-L, TPSSh,
O3LYP, B97, B3LYP/G, PBE0, MN15, revM11, ωPBE, CAM-B3LYP and ωB97X). The functionals were ranked based on their
ability to reproduce both the excitation energies and the overall spectral shape of the experimental spectra after using optimized
Gaussian broadening and energy shifts on the calculated spectra. The hybrid functional O3LYP provided the most accurate
excitation energies, with the lowest average energy shift, while the meta-GGA functional revM06-L demonstrated exceptional
performance for reproducing the spectral shape, with the highest median similarity to the experimental spectra.

1. INTRODUCTION
The properties of transition metals arise from their d-shell
electrons, which enable variable oxidation states, diverse
chemical reactivity due to the formation of coordination
complexes with an enormous number of ligands, and distinct
physical, electronic, and magnetic properties.1−9 Iron, in
particular, is the most abundant in the Earth’s crust by mass
(approximately 6%) and the cheapest among transition
metals.10,11 Biologically, iron is essential to all high forms of
life due to its participation in the biocatalysis of iron-
dependent enzymes, with ubiquitous involvement in redox
processes.12 Chemically, iron is a multifaceted element that
supports formal oxidation states ranging from −II to VII.13−15

Its multifunctionality enables broad application across areas
such as (photo)catalysis,16−19 supercapacitors,20 and metal-
lopharmaceuticals,21,22 making iron an excellent candidate to
replace precious metals in emerging applications.
Computational and data-driven approaches are crucial for

exploring and realizing the potential of new compounds in
novel applications.23 Kohn−Sham density functional theory
(KS-DFT) and its time-dependent version (TD-DFT) are the
workhorses of computational chemistry for exploring the
structure, reactivity, electronic and optical properties of
molecules and materials, widely applied to coordination and

organometallic chemistry.24−29 Although DFT functionals
provide computationally efficient and reasonably accurate
solutions to the electronic Schrödinger equation, they have
inherent limitations, such as delocalization errors, self-
interaction inaccuracies, inadequate treatment of dispersion
interactions, and the lack of a systematic hierarchy, which can
make DFT (and TD-DFT) calculations occasionally fail in
unexpected ways.30−34 Additionally, transition metal chemistry
can be particularly difficult for such calculations due to their
multiconfigurational nature, open-shell configurations, and
strong electron correlation effects.27,35−37 Rigorous bench-
marking against experimental or high-level theoretical refer-
ence data is necessary to address these shortcomings, ensuring
reliability and the usage of a suitable DFT functional for a
given task. Data reliability and accuracy are critical factors for
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robust computational and data science applications in
chemistry.38

Determining ground-state properties, such as molecular
structure, is fundamental to understanding chemical systems.
Numerous benchmark studies have compared DFT-derived
geometries to experimental data and/or high-level computa-
tional results for specific sets of compounds.39−44 High-level
calculations have the disadvantage of high computational cost,
making it unfeasible to carry out benchmarks that contain
larger molecules, such as most coordination compounds. As for
studies using experimental data, the limitation lies in the choice
of compounds that have already been synthesized with
published crystal structures. For instance, Aoto et al.
demonstrated that the choice of reference data, between
experimental or high-level computations, did not significantly
change the relative performance ranking of DFT functionals.40

Therefore, the choice of reference data in a benchmark should
consider that high-level calculations, while broadly applicable,
incur prohibitive computational costs for large systems like
coordination compounds, especially when in complex environ-
ments.
For transition metal benchmarks, what is observed in these

studies and justifies benchmarking different types of systems is
that higher rungs in Jacob’s ladder do not necessarily deliver
more robust results, since hybrid methods like M06, TPSSh,
and B3LYP tend to give the best results for molecular structure
calculations.39,45 Tight-binding methods, such as GFN2-xTB,
are a promising alternative for molecular structure calculations
due to their low computational cost.42 However, individual
analyses for coordination compounds are still scarce and, given
the difficulty in ranking DFT functionals, are indispensable
when it comes to studying this type of compound.
Regarding excitation energies, several papers have been

published to verify the accuracy of TD-DFT methods for
various types of systems, using the calculation of electronic
spectra to check the performance of this approach.46−51 The
biggest challenge encountered in the computational determi-
nation of a ultraviolet−visible (UV−vis) spectrum from
calculated excited-state properties is that these values cannot
be compared directly with the experimental data, but rather
depend on models for analyzing experimental UV−vis spectra
that fail to take into account all the experimental conditions
and the band broadening generated by these conditions.46,52

An alternative approach to this problem is to directly compare
the excited-state properties calculated using TD-DFT with
those calculated using high-level theory.53−56 However, this
approach becomes more challenging as the systems studied
increase in size and complexity, such as coordination
complexes, making indirect comparison with experimental
UV−vis spectra the most viable method to carry out TD-DFT
benchmarks for this class of compounds.28,29,57−59 One of the
main limitations of TD-DFT, concerning the calculation of
excitation energies, is the underestimation of charge transfer
excitations, which can be challenging for metal−ligand charge
transfer (MLCT) transitions.50,60,61 Typically, range-separated
functionals are employed to overcome such limitations,49 but
the literature lacks information on the performance of various
types of functionals in predicting the UV−vis spectra of
coordination complexes.
Other challenge to overcome in this type of study is the use

of a consistent quantitative metric for analyzing the error
associated with TD-DFT functionals when compared with
experimental data.46,50 Usually, the relative error for a specific

excitation energy is calculated, or the profile of the two spectra
is qualitatively compared (shifting the theoretical spectra as
necessary).29,54,62,63 None of these methods is quantitatively
satisfactory when ranking the best DFT functionals to describe
excited electronic states. Therefore, there is an effort to
determine the best way to perform functional ranking for TD-
DFT calculations.46,50,64,65 Feheŕ et al. developed a method for
analyzing the complete spectral shape and excitation energies
that uses a sum of Gaussians, depending on two parameters
associated with the bandwidth and a linear wavelength scaling
factor, to obtain the full absorption spectrum from excitation
energies and oscillator strengths.51 The same procedure was
applied to a transition-metal benchmark, with representation of
the Cu, Ru, Ir, Fe, Au, Mo, and W elements.59 Among all
studied complexes, iron complexes seem to be the most
problematic ones, indicating that further investigations may be
needed for this specific set of complexes.
In this work, we undertook a benchmark on a diverse data

set of Fe complexes to (i) determine the best computational
model for the molecular structure of Fe coordination
complexes among the selected functionals and methods and
(ii) employ a quantitative ranking analysis based on both
spectral shape and excitation energies to select the most
suitable TD-DFT functionals for predicting the UV−vis
spectra of iron complexes. To ensure the diversity of the
data set, we selected experimental data that represent a wide
range of possibilities, including variations in oxidation state,
geometry, and class of ligands present in the complexes, with a
focus on mononuclear ones. This systematic benchmark
addresses a critical gap by rigorously quantifying the
performance of computational methods for iron coordination
complexes, serving as an essential guide for selecting
methodologies in future studies of analogous compounds.

2. EXPERIMENTAL REFERENCE VALUES
To assess the performance of computational models for the
structure and electronic spectrum, a database of experimentally
determined reference values for crystallographic structures and
UV−vis spectra was compiled. It consists of 15 iron
coordination complexes and 2 organometallic compounds
ranging in size from 11 to 67 atoms, with tetrahedral, trigonal
bipyramidal, and octahedral geometries, in coordination
numbers 4, 5, and 6, in formal oxidation state 0 to IV, in
charge from 2− to 2+, and in spin multiplicity from 1 to 6. The
lowest energy spin state was considered based on the
information available in the respective references for each
compound.
The crystallographic data for all studied compounds were

obtained from the Cambridge Structure Database (CSD).66

Counterions, solvent molecules, and other extraneous
structures present in the crystalline structure were excluded
to focus the subsequent modeling and analysis solely on the
metal complex.
The experimental UV−vis spectra were obtained from the

respective references for each compound studied. The spectra
were digitized using the PlotDigitizer application.67 To allow a
direct comparison between the experimental and computed
spectra, the experimental spectra were converted from units of
wavelength to energy units using the Jacobian transformation
factor (hc/E2) to scale the intensity.68 After converting, the
spectra were smoothed and interpolated to have a 100 cm−1

(∼0.0124 eV) interval between the points. In cases where
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necessary, the window range of the experimental spectra was
narrowed to a smaller region to minimize spectral noise.
Figure 1 illustrates the representative structural formulas for

all 17 complexes studied in this work, along with the
numbering used to label them. Table 1 shows the numbering
of every complex studied in this work, together with the
reference works, the medium in which the experimental UV−
vis spectrum was obtained, and the spectral range used for
similarity calculations (for names and the spin multiplicity of
each compound, see Table S1).

3. COMPUTATIONAL DETAILS
3.1. Electronic Ground State Geometries. All electronic

structure calculations were performed using the Orca program
(version 5.0.4),91−94 applying the standard Resolution of
Identity (RI) approximation for Coulomb integrals (RI-J)94

and COSX numerical integration for HF exchange.95 The
molecular geometry of each complex was optimized employing
16 methods, including the tight-binding DFT (GFN1-xTB96),
composite methods (HF-3c,97 PBEh-3c,98 r2SCAN-3c99),
generalized gradient approximation, GGA, (BP86(D4),100,101

PBE(D4),102 revPBE(D4),103 OPBE(D4)102,104), meta-GGA
(TPSS(D4),105 r2SCAN106), hybrid-GGA (B97(D4),107

B3LYP/G(D4)108,109), hybrid meta-GGA (TPSSh(D4),105,110

MN15111) and range-separated hybrid (revM11,112 ωB97X-
(D4)113), with the def2-TZVP114,115 basis set. The Grimme
dispersion correction (D4)116,117 was used in all methods that
do not account for dispersion forces explicitly. To confirm the
nature of the optimized geometries as true minima on the
potential energy surface, vibrational frequency analyses were
carried out. The absence of imaginary frequencies confirmed
that all optimized structures were a local minima.

Figure 1. Structural formulas of the iron complexes investigated in this work, labeled 1−17.
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To compare the optimized structures produced by different
computational methods with the experimentally determined
structure obtained from X-ray diffraction data, we used the
following metrics: root-mean-square error (RMSE), mean
unsigned error (MUE), and mean signed error (MSE). The
RMSE,118,119 as defined in eq 1, was used to quantify the
deviation between the optimally superposed Cartesian
coordinates of the computationally and experimentally derived
structures.

=
=N

RMSE
1

( )
i

N

x y z
i i

, ,

comp exptl 2

(1)

The MUE and MSE, as defined in eqs 2 and 3, respectively,
were used to quantify deviations between computationally and
experimentally derived bond distances involving the metallic
center, i.e., bonds of the type Fe−X, where X is an atom
directly coordinated to iron.

= | |
n
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1

X
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FeX
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FeX
comp

FeX
exptl

(3)

where n is the number of FeX bonds and RFeX
comp and RFeX

exptl are
the computationally and experimentally derived bond dis-
tances, respectively. Hydrogen atoms were excluded from the
geometry/bond error analysis due to the challenges in
accurately determining their positions from weak scattering
signals in conventional X-ray diffraction experiments, partic-
ularly in the presence of heavier elements.120

During the benchmarking analysis of the ground state
molecular geometry, all the structure optimizations were first
performed for the isolated molecules in vacuum. Once the best
density functional was selected (TPSSh(D4), see Section 4.1),
the geometry of each complex was reoptimized using the
conductor-like polarizable continuum model (C-PCM)121,122

to account for solvation effects. These calculations are referred
as DFT/TPSSh(D4)/def2-TZVP/CPCM(solvent). The in-

clusion of solvent effects is essential, as most experimental
UV−vis spectra used as reference data in this study were
recorded in solution. The C-PCM parameters of the solvent in
which the experimental UV−vis spectrum was recorded is
listed in Table 1.
3.2. TD-DFT Calculations and UV−Vis Absorption

Spectra Analysis. In order to ensure methodological
consistency with previous studies and facilitate reproducibility,
the UV−vis absorption profiles were calculated by TD−DFT
employing the Tamm−Dancoff approximation, which is widely
used due to its favorable balance between computational
efficiency and accuracy,123 using the def2-TZVP114,115 basis set
and a selection of functionals: meta-GGA (TPSS,105

r2SCAN,106 revM06-L124), global hybrids (TPSSh,105,110

O3LYP,104 B97,107 B3LYP/G,108,109 PBE0,125 MN15111),
and range-separated hybrids (revM11,112 ωPBE,126 CAM-
B3LYP,127 ωB97X113). TD-DFT calculation for 40 electronic
states was performed as a single-point calculation on the
electronic ground state geometry of each complex, optimized
at the DFT/TPSSh(D4)/def2-TZVP/C-PCM(solvent) level
of theory (See Section 4.1 and Table 1 for the solvents).
All the TD-DFT calculations also employed the implicit

solvent model C-PCM with the same solvents used in the
experimental reference spectra (Table 1).
The computed spectra were compared to the experimental

data to assess the performance of the density functions used in
this work. This comparison is based on the overall similarity
between the shape (relative spectral intensity as a function of
energy) of the experimental and computed spectra. In order to
do that, we assume that the electronic spectra can be obtained
from the calculated TD-DFT vertical transition energies and
oscillator strengths by applying Gaussian broadening, i.e., the
overall spectrum, Icomp(E), is a sum of Gaussian functions

{ }

= +

I E f E

N f
E E

( ; , , , )

exp
1
2

( )
i i

i
i

i

comp

2

2

i
k
jjjjj

y
{
zzzzz (4)

where N is a constant that normalizes the maximum intensity
of the spectra to one, i.e., N = 1/maxE (I(E)), f i and Ei are,
respectively, the oscillator strengths and transition energies of a
given electronic transition i derived from the TD-DFT
calculation, and δ and σ are, respectively, the shift in the
transition energies and the broadening parameters that are
uniformly applied for all computed transitions. From eq 4, one
sees that the shape of the computed spectra is (i)
parametrically dependent on the set of transition energies
and oscillator strengths, {f i, Ei}, (determined by the level of
theory); (ii) the width of the Gaussian functions, σ, that is
related to the full width at half-maximum, FWHM, (FWHM ≈
2.355σ), and, (iii) the energy shift, δ.
The similarity factor, S, between the experimental (Iexptl(E))

and the computed (Icomp(E)) spectra over a given energy range
E1 to E2 can be quantified as

=
[ ] [ ]

S
I E I E E
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2
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2

(5)

which is based on cosine similarity and was used for comparing
spectra in refs 64,128−130. The numerical integration was
performed using Simpson’s rule.131 Given that for each level of

Table 1. Number, Medium in Which the UV−Vis Spectrum
Was Recorded, Spectral Range, and Respective References
for All the Compounds Studied in This Work

compound medium
spectral range

(nm)
spectral range

(eV) refs

1 gaseous 200−354 3.5−6.2 69
2 isopentane 182−620 2.0−6.8 70−72
3 dimethyl sulfoxide 264−827 1.5−4.7 73
4 acetonitrile 258−886 1.4−4.8 74,75
5 acetonitrile 258−886 1.4−4.8 74,76
6 acetonitrile 243−689 1.8−5.1 77,78
7 acetonitrile 248−590 2.1−5.0 79
8 water 248−653 1.9−5.0 80,81
9 acetonitrile 230−827 1.5−5.4 82
10 acetonitrile 302−886 1.4−4.1 83
11 acetonitrile 264−620 2.0−4.7 84
12 dichloromethane 326−827 1.5−3.8 85
13 water 288−539 2.3−4.3 86
14 dichloromethane 248−886 1.4−5.0 87
15 water 282−729 1.7−4.4 88
16 methanol 288−827 1.5−4.3 89
17 water 276−827 1.5−4.5 90
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theory, the similarity between computed and experimental
spectra is a function of both the energy shift and the
broadening, these two parameters were optimized (eq 6) in
order to maximize S using the Nelder−Mead algorithm.132

=S Smax ( , )max

, (6)

To avoid meaningless values of these parameters, δ was
constrained within a range of −1.5 to 1.5 eV, while σ varied
between 0 and 0.5 eV.
As a result of the analysis expressed in eq 5, a given level of

theory can be evaluated in terms of the maximum similarity
Smax, a value between 0 and 1 (100%), between the
experimental spectrum and the calculated one for optimal
energy shift and broadening. The optimal energy shift can also
be used to evaluate a given level of theory in relation to the
apparent average error in the calculated transition energies.

4. RESULTS AND DISCUSSION
4.1. Ground Electronic State Geometries. To discuss

the quantitative evaluation of the molecular geometry of the Fe

complexes obtained by geometry optimization at a given level
of theory, we mainly based on the RMSE, MUE and MSE
averaged over all the 17 compounds, Figure 2. In this case, they
are referred as average RMSE, average MUE and average MSE,
respectively. For some cases (see below), we also discuss an
error metric for an individual molecule, and all values can be
found in SI.
The seven best performances were presented, in ascending

order of average RMSE, by PBEh-3c, r2SCAN, PBE(D4),
B3LYP/G(D4), TPSSh(D4), MN15, and r2SCAN-3c meth-
ods. The highly efficient and practical PBEh-3c method yielded
the lowest average RMSE value of 0.2142 Å. The meta-GGA
functionals PBE and r2SCAN also demonstrated good
performance, with favorable computational costs, and are
worthy of highlighting, yielding average RMSE values of
0.2357 and 0.2374 Å, respectively.
The seven worst performances were presented, in ascending

order of average RMSE, by BP86(D4), revPBE(D4), GFN1-
xTB, B97(D4), TPSS(D4), OPBE(D4) and HF-3c. HF-3c
obtained the highest average RMSE value of 0.3736 Å. The
GFN1-xTB tight-binding method was also one of the worst

Figure 2. Average root-mean square error (RMSE), average mean unsigned error (MUE), and average mean signed error (MSE) obtained for every
method studied in this work. For the GGA, meta-GGA, hybrids, and ωB97X(D4) functionals, the def2-TZVP basis was used.

Figure 3. Average root-mean square error (RMSE), mean unsigned error (MUE), and mean signed error (MSE) obtained for every compound
studied in this work. For the GGA, meta-GGA, hybrids, and ωB97X(D4) functionals, the def2-TZVP basis was used.
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performers, with an average RMSE of 0.3017 Å. However, this
value is still lower than that found by Nurhuda et al.133 in their
study of the performance of this method for metal−organic
frameworks geometry optimization (0.489 Å), indicating a
better performance when the metal elements are in the form of
coordination complexes. Once the difference in the average
RMSE between the semiempirical GFN1-xTB and the best
performing density functionals is of the order of 0.1 Å, this
method can be used as a starting point for the optimization of
molecular geometries for iron complexes, that can be further
refined using PBEh-3c and/or other of the top performing
methods, in the same way that was suggested by Vuckovic and
Burke,134 based on a different metric for a data set of main-
group molecules. The ωB97X and revM11 functionals showed
average performance, with mean RMSE values of 0.2547 and
0.2917 Å, respectively. Considering that both are range-
separated, these results do not justify the high computational
cost, and therefore, these functionals are not efficient for
molecular geometries of Fe coordination complexes. No
correlation was observed between the errors obtained and
the oxidation number of the metal center, indicating that this is
not a significant factor when choosing a methodology for these
calculations.
Compounds 2, 3, and 15 had RMSE values above 0.3 Å,

while compound 12 had an exceptionally high value of 1.4187
Å (Figure 3). These higher RMSE values can be justified on
the basis of the type of ligand present in the structure. In the
case of compounds 2 and 3, the cyclopentadienyl anion can
present many conformers due to rotation of its structure,
which also occurs with the triphenylphosphine ligand in
compound 3, the thiophenolate in compound 12, and with the
multiple single bonds present in compound 15. In a recent
study, Fomsbee et al.135 demonstrated that the presence of
only one freely rotating bond can lead to an increase in the
RMSE value obtained for optimized geometries, which explains

the observed values for these compounds. Although RMSE is
widely used to evaluate the efficacy of computational methods
in predicting molecular geometries based on overlap with
experimental geometries, due to the conformational flexibility
introduced by freely rotating bonds, RMSE may provide a
misleading assessment of methodological performance and it
should therefore be interpreted with caution in the context of
this study. Another limitation of RMSE analysis is its strong
dependence on system size, as it scales with the number of
atoms and disregards underlying chemical information.136,137

Consequently, alternative approaches for analyzing and
comparing molecular structures should also be considered.
According to ligand field theory, the atoms coordinated

directly to the metal center are the most important for
determining important factors such as molecular geometry,
electronic density of the metal center, and ligand lability.138

Therefore, we analyze the average MUE and MSE values for
the bonds involving the metal center. In this analysis, the seven
best performances were presented, in ascending order of
average MUE, by the TPSSh(D4), r2SCAN-3c, r2SCAN,
MN15, TPSS(D4), B3LYP/G(D4), and PBE(D4) methods.
TPSSh(D4) was the method that obtained the lowest average
MUE value of 0.0321 Å. The seven worst performances were
presented, in ascending order of average MUE, by the PBEh-
3c, ωB97X(D4), B97(D4), revM11, OPBE(D4), HF-3c, and
GFN1-xTB. The tight-binding GFN1-xTB again showed poor
performance, returning an average MUE value of 0.0832 Å,
which is more than twice the value for TPSSh. Among the
composite methods, HF-3c again performed poorly, with an
average MUE of 0.0742 Å, whereas r2SCAN-3c performed
well, with an average MUE of only 0.0334 Å, which is very
close to the best method. GGA and meta-GGA methods
demonstrated an average performance, characterized primarily
by the BP86 and revPBE with average MUE values of 0.0399
and 0.0415 Å, respectively. These two values lie between the

Figure 4. Box plot of mean unsigned error (MUE) values obtained for every method studied in this work. The whiskers represent the minimum
and maximum values, excluding outliers. The lowest and highest lines of the blue rectangle represent the first and third quartiles, respectively. There
are exactly 25% of the points that are less than the first quartile and exactly 25% of the points that are more than the third quartile, excluding
outliers. The blue line represents the median value. The circles are the outliers.
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seven best and the seven worst performances. The only
exception to this is OPBE, which showed a high average MUE
of 0.0627 Å. The hybrid methods again performed better, with
a notable highlight being the best performance of TPSSh
(0.0321 Å) and the lowest median MUE value of MN15
(0.0164 Å), ωB97X had a slightly better performance, having
an average value of 0.0436 Å. However, this value is still too
high for the computational cost of a range-separated hybrid
functional. It should be noted that the TPSSh functional was
selected as the best for optimizing the geometry of Fe
complexes not because it outperformed all other functionals in
every individual case, but because it yielded the lowest average
MUE in this study. This functional ranked among the top eight
for 15 of the 17 molecules analyzed and showed the best
performance overall for molecule 17. These values indicate
that, in a generalized way, and with the goal of selecting a
functional that tends to avoid large deviations in the geometry
optimization of iron complexes, TPSSh is the most suitable
functional for this purpose.

A nice way to visualize the relative performance of these
functionals is through a box plot, as shown in Figure 4. This
allows us for a clear assessment of the inferior performance of
GFN1-xTB, HF-3c, and OPBE compared to the other studied
functionals. It also highlights the excellent performance of
TPSSh, as well as that of r2SCAN-3c, r2SCAN, and MN15,
which showed a lower median value of MUE, even when
compared to TPSSh.
However, it is important to make a distinction regarding the

complexes studied. Among the 17 structures studied, 13
contain Fe in II oxidation state. To better understand the role
of this oxidation state in the obtained results, the same box plot
was constructed considering two different groups: the first
comprising the 13 Fe(II) compounds, and the second
including the remaining four compounds. These plots are
shown in Figure 5. As expected, the trend of TPSSh yielding
the lowest average error remained for the first group, whereas
for the second group, this functional exhibited the second-
lowest average, surpassed only by its meta-GGA counterpart,

Figure 5. Box plot of mean unsigned error (MUE) values obtained for (a) all Fe(II) compounds (2−14) and (b) compounds 1, 15, 16, and 17.
The whiskers represent the minimum and maximum values, excluding outliers. The lowest and highest lines of the blue rectangle represent the first
and third quartiles, respectively. There are exactly 25% of the points that are less than the first quartile and exactly 25% of the points that are more
than the third quartile, excluding outliers. The blue line represents the median value. The circles are the outliers.

Figure 6. Individual unsigned error (|Ri(Theor.) − Ri(Exptl.)|) values for all the metal−ligand bonds in molecule 12 using the OPBE(D4)/def2-
TZVP (blue), HF-3c (red), TPSSh(D4)/def2-TZVP (beige) methods, and its average value (black).
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the TPSS functional. Although the second group contains far
fewer molecules and thus does not accurately represent Fe
complexes in other oxidation states, this analysis reinforces that
the TPSS and TPSSh functional families are excellent choices
for Fe geometry optimizations in a general context.
In the MUE analysis, compound 12 again showed an

exceptionally high MUE value (0.1618 Å) together with
compound 10 (0.1079 Å). Compound 10 has a greater number
of single bonds in its ligands, resulting in an increased number
of conformers However, in this case, the atoms participating in
these simple bonds are directly linked to the metal center,
which reflects in a higher MUE value. MSE analysis for
compound 12 shows that all analyzed bonds are being
underestimated. Figure 6 shows the calculated unsigned error
for every M-L bond individually in compound 12. For this
compound, HF-3c returned the lowest errors and OPBE the
highest. For all the methods, the highest error is associated
with the Fe−N bonds, indicating that the presence of single
bonds between the N atoms and atoms other than the metal
center makes the position of this atom more difficult to
calculate with good precision. A second factor that may have
made compound 12 the most pathological is its molecular
geometry, of the trigonal bipyramid type. This geometry may
be favored by steric hindrance caused by the sulfur atom
present in one of the ligands, disfavoring the common
octahedral geometry for Fe(II) complexes due to the greater
proximity of the ligands. The electronic structure methods
used may have greater difficulty in capturing this effect,
resulting in significant distortions in the geometry of this
complex, which can cause an increase in MUE. This example is
crucial for determining the limitations of DFT-based methods
in determining molecular geometries of coordination com-
plexes, especially those with atypical geometries.
Overall, the analysis of the geometries reveals that the PBEh-

3c method is most accurate in terms of RMSE, whereas the
TPSSh functional offers the smallest deviations when
considering MUE. For the next stage of the work, TPSSh
was chosen to carry out the solvent optimizations because of
two main factors. The first is that MUE values are the primary
factor in determining the accuracy of a method, without the
influence of errors associated with the difference in position of
atoms far from the metal center, and consequently, they are
less significant for the chemical properties of this complex. The
second is that, comparing the RMSE and MUE values for both
methods, the MUE of PBEh-3c falls in the middle, while the
RMSE of the TPSSh functional is among the lowest, indicating
that the TPSSh method is more accurate in general. Previous
works have demonstrated that TPSSh is highly effective in
calculating the ground-state electronic geometries and energies
of first- and second-row transition metals.39,44,139

An important aspect in the quantitative analysis of the
performance of computational methods for predicting
molecular geometries is having a meaningful target, something
analogous to the concept of chemical accuracy (1 kcal/mol) as
proposed by Pople for thermochemical measurements.140

DeYonker et al. proposed that for transition metal compounds,
given their complex electronic structure, a value of 3 kcal/mol
should be used instead of the chemical accuracy typically
employed for main-group chemistry.141 For equilibrium bond
lengths, Peterson, Feller, and Dixon arbitrarily proposed the
value of ±0.005 Å as chemical accuracy.142 As shown in Table
2, none of the methods investigated in this work reach the
stringent target of ±0.005 Å proposed by Peterson et al.,

indicating that the target is too rigorous and/or the
investigated systems are some what difficult to model
accurately (presence of multireference character or unusual
bonding) and/or the computational methods are in fact less
accurate than the target. Therefore, in parallel with the work of
DeYonker et al.,141 which proposes transition metal chemical
accuracy three times greater than the one proposed by Pople,
an arbitrary accuracy of ±0.02 Å for bond lengths seems a
reasonable target for an accurate and robust method when
applied to transition metal complexes. In this work, even with a
relaxed target, none of the methods achieves a precision of 0.02
Å. However, as will be discussed in Section 4.2, the calculated
electronic spectra (and possibly other properties) on these
approximate molecular geometries can be considered as
accurate when compared to experimental data, to some extent
due to favorable error cancellations.
4.2. TD-DFT Calculations. The shift, broadening, and

similarity parameters were used to quantitatively evaluate the
effectiveness of the functionals chosen for the TD-DFT
calculation of mononuclear Fe complexes. After calculating
the theoretical spectrum, a shift and broadening value were
applied to the line spectrum to maximize the similarity
between the theoretical and experimental spectra, resulting in
the “optimized” spectrum.
Figure 7 shows both the calculated and optimized TD-DFT

spectra in comparison with the UV−vis experimental spectrum
for compound 5 ([Fe(bpy)3]2+), as an illustrative example. In
this case, the values obtained for the shift and broadening were
−0.23 and 0.58 eV, respectively. These parameters yield a
theoretical spectrum with a 95.5% similarity to the
experimental one. The same two bands present in the
experimental spectrum are also present in the theoretical
one. The lower energy band corresponds to the metal−ligand
charge transfer (MLCT) transition of the complex, while the
higher energy band corresponds to an intraligand (IL).74 A
larger error was observed in the MLCT band, which, despite
being able to predict the shape of the band with some
accuracy, the calculation of the energy of this transition
showed a significantly greater error than when compared to the
IL band. This difference in the ability to predict the bands is a
direct reflection of the limitations of DFT. By nature, the
MLCT transition involves a redistribution of charge in the

Table 2. Calculated Average and Median MUE Values for
All Used Methods

method average MUE (Å) median MUE (Å)

TPSSh(D4) 0.0321 0.0203
r2SCAN-3c 0.0334 0.0196
r2SCAN 0.0351 0.0166
MN15 0.0357 0.0164
TPSS(D4) 0.0361 0.0227
B3LYP/G(D4) 0.0373 0.0271
PBE(D4) 0.0387 0.0228
BP86(D4) 0.0399 0.0227
revPBE(D4) 0.0415 0.0238
PBEh-3c 0.0419 0.0383
ωB97X(D4) 0.0436 0.0315
B97(D4) 0.0439 0.0241
revM11 0.0460 0.0369
OPBE(D4) 0.0627 0.0545
HF-3c 0.0742 0.0616
GFN1-xTB 0.0832 0.0528
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molecule, where the electronic density is transferred from
orbitals of greater metallic character to orbitals of greater
ligand character, characterizing a charge transfer and therefore
presenting one of the difficulties of traditional DFT. In general,
this same pattern can be observed for most of the results,
highlighting the difficulty of DFT in modeling this type of
transition for the iron systems.
The same procedure was applied to all systems, and the

averaged results over all molecules are presented in Table 3
and illustrated in the boxplot format in Figure 8.

For charge transfer transitions, range-separated functionals
are an option to overcome the limitation of traditional DFT,
splitting the electron−electron interaction into short- and long-
range components and using different values of exact HF
exchange for each distance. This, in theory, makes the
description of a CT transition more accurate by correcting

the interaction between separated charges and reducing the
delocalization error.47,61 However, this was not the general
trend observed in the results. Looking at Table 3, all four
range-separated functionals tested (revM11, ωPBE, CAM-
B3LYP, and ωB97X) were among the worst performers of the
set, with revM11 having an average absolut shift over 1 eV.
This error in the transition energy is not compensated for by
the similarity values obtained by the range-separated func-
tionals. Most of the functionals exhibited an average similarity
of between 85.0 and 87.0%, which was also the case for the
range-separated functionals, and the maximum value was
obtained by MN15 87.6%. ωPBE showed a median value of
93.1%, which is very close to the maximum value of 93.2%
obtained by revM06-L. The revM11 functional, however,
showed the highest average shift value of 1.04 eV, making it the
least effective functional among all the studied ones for
predicting transition energies. The poor performance of
ωB97X and revM11 for predicting transition energies for this
set of compounds can be visualized in the box plot (Figure 8),
where these functionals’ boxes lie way higher when compared
to the other functionals. The six best performances, in terms of
absolute shift values, were achieved by the O3LYP, B3LYP/G,
B97, TPSSh, MN15, and PBE0 functionals, in ascending order
of absolute shift. revM06-L stands as the middle value of 0.52
eV. The six worst performers were r2SCAN, ωPBE, TPSS,
CAM-B3LYP, ωB97X, and revM11, also in ascending order of
absolute shift.
Among the meta-GGA functionals, revM06-L is a great

highlight with the second highest value for average (87.1%)
and the highest value for median (93.2%) similarity, with an
absolute shift value of 0.52 eV. Contrary to what was observed
for molecular structure, the TPSSh hybrid functional does not
appear to be a suitable method for predicting UV−vis spectra.
Although it performs well in terms of absolute shift (with an
average value of 0.46 eV), it shows the worst overall
performance in terms of similarity, with a value of just
74.6%. Bearing in mind that the second worst similarity value,
obtained for TPSS, was 83.4%, this result for TPSSh makes it

Figure 7. TD-DFT/B3LYP(G)/def2-TZVP/CPCM(acetonitrile)//DFT/TPSSh(D4)/def2-TZVP/CPCM(acetonitrile) calculated (red spikes)
and optimized (red curve) spectra of compound 5 ([Fe(bpy)3]2+) in comparison with experimental UV−vis data (blue curve).

Table 3. Calculated Average and Median Values for
Absolute Shift and Similarity for All Functionals in TD-DFT
Calculations

functional

average
absolute shift

(eV)

median
absolute shift

(eV)

average
similarity

(%)

median
similarity

(%)

O3LYP 0.42 0.29 86.4 90.3
B3LYP/G 0.44 0.37 86.7 92.5
B97 0.44 0.39 86.8 92.6
TPSSh 0.46 0.35 74.6 78.8
MN15 0.50 0.37 87.6 92.4
PBE0 0.51 0.37 87.0 92.2
revM06-L 0.52 0.39 87.1 93.2
r2SCAN 0.53 0.38 84.9 90.0
ωPBE 0.54 0.46 85.8 93.1
TPSS 0.59 0.44 83.4 90.2
CAM-B3LYP 0.69 0.61 87.0 92.2
ωB97X 0.84 0.71 85.5 91.9
revM11 1.04 0.78 86.9 92.2
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significantly worse than any other method studied in this work
in terms the shape obtained for the calculated UV−vis
spectrum. This result can also be visualized in the box plot
of similarities, where the TPSSh box is way below any other
box on the plot. However, the average absolute shift value
obtained was 0.46 eV, very close to the lowest value obtained
(0.42 eV), indicating that the transition energies predicted for
this functional are among the most accurate, even though the
relative intensities are not as good. The O3LYP functional
stands out as the best in predicting transition energies, with an
average absolute shift value of 0.42 eV. However, the overall
performance of the B97 and B3LYP/G functionals is also
noteworthy, as they showed an average absolute shift value of
0.44 eV, but with significantly higher median similarities (92.6
and 92.5% for B97 and B3LYP, respectively, compared to
90.3% for O3LYP). When it comes to hybrid functionals,
comparing the amount of HF exchange in each functional is
essential for determining the optimal value for this. B3LYP and
B97 have 20 and 21% HF exchange, respectively, in their

formulations. This makes O3LYP, with 12% HF exchange, the
hybrid functional that, for this set of compounds, yields more
accurate energy transition values, even if it has slightly worse
performance in shape prediction of UV−vis spectra, as evident
from the median value. PBE0 and MN15 have 25 and 44% of
HF exchange, respectively, and yield average and median
similarity values that are not significantly different from those
of B97 and B3LYP. When it comes to absolute shift values, the
PBE0 and MN15 showed values that are higher than those for
other hybrid methods, indicating that, in this case, increasing
the amount of HF exchange in a hybrid functional beyond a
value of approximately 20% may negatively impact the results.
The expected accuracy of the computed electronic spectrum

with a given density function is of great importance for
evaluating our results and for using them for practical advice.
According to Zobel and Gonzaĺez,57 a computed electronic
spectrum of a medium- to large-sized molecule can be regarded
as reasonably accurate if the differences between calculated and
measured absorption bands are within the 0.1−0.5 eV range.

Figure 8. Box plot of absolute shift values, in eV (a) and average % similarity (b) obtained for every method in TD-DFT calculations. The whiskers
represent the minimum and maximum values, excluding outliers. The lowest and highest lines of the blue rectangle represent the first and third
quartiles, respectively. There are exactly 25% of the points that are less than the first quartile and exactly 25% of the points that are more than the
third quartile, excluding outliers. The blue line represents the median value. The white circles are outliers.

Figure 9. Average absolute shift, full width at half-maximum (FWHM), and similarity values obtained for every compound studied using TD-DFT
in this work.
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Here, we can use the absolute shifts as a proxy for the error
associated with a given functional for the energies of the
absorption bands in the electronic spectrum. Thus, the five
best functionals−O3LYP, B3LYP/G, B97, TPSSh, and
MN15−obtained an average absolute shift below 0.5 eV, can
be regarded as capable of describing the electronic spectra of
the 17 iron-complexes in this study with reasonable accuracy.
Regarding the compounds studied, it is evident that the

shape of the experimental UV−vis spectrum directly influences
the ability of TD-DFT calculations to simulate this same
spectrum with high similarity. Compounds 1, 2, and 3, for
example, have simple experimental spectra with few distinct
bands, resulting in an average similarity of over 97% (Figure
9).
Complexes 4, 15, and 17 have experimental UV−vis spectra

that contain several bands with different shapes, making them
more challenging to simulate with high accuracy. Hence, the
values of similarity for these compounds are rather low
compared to others. However, compound 8 is an outlier in this
analysis. It has an average similarity of only 52.9%, making it
the lowest by a large margin. The low average similarity value
reflects an inversion in the intensities (oscillator strength)
observed in the vast majority of the functionals used. The
experimental spectrum of compound 8 exhibits two distinct
bands. The higher energy band corresponds to a π → π*
transition of the phenanthroline ligand, while the lower energy
band corresponds to an MLCT transition.80 Specifically for
this compound, the range-separated methods showed more
satisfactory results compared to other categories. The shape of
the spectrum calculated by the CAM-B3LYP, revM11, and
ωB97X functionals remained close to the experimental result,
while all the other functionals showed inversions in the
intensities of the two transitions, causing the MLCT to show a
much higher intensity and distorting the shape of the spectrum
compared to the experimental one.
Figure 10 shows a comparison between the TD-DFT

spectrum calculated using the O3LYP functional, which
exhibits one of the best overall performances, and that
calculated using the CAM-B3LYP functional for compound 8.

This same pattern was observed for a series of iron-
phenantrolines whose TD-DFT spectrum was calculated using
GGA and hybrid methods.143 This result shows that, in specific
cases, range-separated methods can be the best choice for
describing the electronic structure of a compound, particularly
in the context of UV−vis spectroscopy. Phenanthroline is a
ligand that shows greater electronic delocalization due to the
presence of more resonance forms, especially when compared
to common coordination ligands such as simple amines or
pyridines. The presence of three of these ligands in compound
8 makes this system highly delocalized, which may be why
range-separated methods are the most effective for predicting
the shape of its electronic spectrum, given the long-range
interactions present throughout the molecule. This result, in
combination with what has already been presented in this
paper, underscores the importance of benchmarking the most
diverse types of systems. Depending on the type of property
being studied, the use of different functionalities may be more
appropriate for a given system based on its characteristics. For
TD-DFT calculations of mononuclear iron complexes, the
results obtained in this work were that the hybrid functionals
B97 and B3LYP are the best when it comes to the complete
description of the electronic spectrum, both in terms of
energies and the shape of the spectrum. However, a good
alternative is the O3LYP functional, which, despite having
slightly lower performance in terms of spectral shape, shows
greater accuracy in calculated energy values. Regarding the
shape of the spectrum, the meta-GGA revM06-L functional
was the most outstanding among the functionals studied,
offering a relatively low computational cost and the highest
median similarity and the second highest average similarity.
Despite not having a good overall performance, the high cost
of the range-separated functionals may be what is needed to
calculate TD-DFT spectra of highly conjugated structures, as is
the case with compound 8, indicating that the correction for
short and long-range interactions introduced in this class of
functionals is essential for describing this specific type of
structure.

5. CONCLUSIONS
In this work, we discuss the performance of widely available
standard approaches that are implemented in various
electronic structure codes. Certainly, the performance of
some methods could be fine-tuned (convergence parameters,
TD-DFT without TDA, relativistic effects, etc.) but this would
increase the computational cost of the calculations and would
not correspond to the calculations routinely performed. For
geometry optimizations, taking into account only the bonds
involving the metal center, the best functional is TPSSh(D4).
However, unconventional geometries (those that differ from
the more common octahedral geometry for Fe(II), for
example) associated with the characteristics of the ligands
can still be particularly difficult to determine with acceptable
accuracy, as observed for compound 13. For the prediction of
UV−vis absorption spectra via TD-DFT, the hybrid functional
O3LYP emerged as the best descriptor for vertical excitation
energies, yielding the lowest average absolute shift (0.42 eV).
The meta-GGA functional revM06-L is a highlight at
reproducing the overall shape of the experimental spectra
with remarkable fidelity and computational efficiency (87.1%
of average similarity and 93.2% of median similarity). This
divergence highlights a critical point: the “best” functional is

Figure 10. O3LYP/def2-TZVP calculated (red spikes) and optimized
(red curve) TD-DFT spectrum and CAM-B3LYP/def2-TZVP
calculated (blue spikes) and optimized (blue curve) of compound 8
([Fe(phen)3]2+) in comparison with experimental UV−vis data (black
curve).
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dependent on the specific property of interest and must be
chosen taking this property into account.
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