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BOGOLIUBOV QUASIAVERAGES: SPONTANEOUS SYMMETRY

BREAKING AND THE ALGEBRA OF FLUCTUATIONS

W. F. Wreszinski∗ and V. A. Zagrebnov†

We present arguments supporting the use of the Bogoliubov method of quasiaverages for quantum systems.

First, we elucidate how it can be used to study phase transitions with spontaneous symmetry breaking

(SSB). For this, we consider the example of Bose–Einstein condensation in continuous systems. Analysis

of different types of generalized condensations shows that the only physically reliable quantities are those

defined by Bogoliubov quasiaverages. In this connection, we also solve the Lieb–Seiringer–Yngvason

problem. Second, using the scaled Bogoliubov method of quasiaverages and considering the example of a

structural quantum phase transition, we examine a relation between SSB and critical quantum fluctuations.

We show that the quasiaverages again provide a tool suitable for describing the algebra of critical quantum

fluctuation operators in both the commutative and noncommutative cases.
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1. Introduction and summary

The concept of spontaneous symmetry breaking (SSB) is central in quantum physics, both in statistical
mechanics and in quantum field theory and particle physics. The definition of SSB was already well known
in the mid-1960s (see Sec. 6.5.2 in [1] and Sec. 4.3.4 in [2]). We recall that the starting point is a (ground
or thermal) state assumed to be invariant under a symmetry group G but with a nontrivial decomposition
into extremal states, which can be interpreted physically as pure thermodynamic phases (states). These
extremal states are not invariant under the action of G, only under the action of a proper subgroup H of G.

There are two basic ways to define extremal states:

1. by choosing boundary conditions for the Hamiltonians HΛ in finite regions Λ ⊂ R
d and then taking

the thermodynamic limit (Λ ↑ Z
d or Λ ↑ R

d) of expectations over the corresponding local states or

2. by replacing HΛ → HΛ + hBΛ, where BΛ is a suitable extensive operator and h is a real parameter,
and then taking first Λ ↑ Z

d or Λ ↑ R
d and second h → +0 (or h → −0). We here assume that the

states considered are locally normal or locally finite (see, e.g., [3] and the references therein).
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Method 2 is known as the Bogoliubov method of quasiaverages [4], [5].
We note that although the method of boundary conditions is quite clear, for example, for classical

lattice systems, it is unsatisfactory for continuous systems and even worse for quantum systems. Here, we
argue for using the Bogoliubov method of quasiaverages for quantum systems.

First, we elucidate how to use the Bogoliubov method of quasiaverages to study phase transitions with
SSB (see Sec. 2). For this, we consider the quantum phase transition that is the conventional one-mode
Bose–Einstein condensation (BEC) of the perfect Bose gas. In this simplest case, condensation occurs into
a single zero mode, which implies a spontaneous breaking of G, the gauge group of transformations (GSB).
We then consider the case where the condensation is dispersed over infinitely many modes. Analysis of
different types of this generalized condensation (gBEC) shows that the only physically reliable quantities
are those defined by the Bogoliubov method of quasiaverages (see Remark 2.3 and Theorem 2.1).

We extend this analysis to an imperfect Bose gas. It follows from the obtained results that we can
elucidate a general question posed by Lieb, Seiringer, and Yngvason [6] about the equivalence between
BEC and GSB defined via the one-mode Bogoliubov quasiaverage for any type of gBEC à la van den Berg–
Lewis–Pulé [7] and [8] (see Remark 2.6, where we also stress that quasiaverages lead to ergodic states and
this clarifies an important conceptual aspect of the quasiaverage trick).

Second, using the Bogoluibov method of quasiaverages and considering the example of a structural
quantum phase transition, we examine the relation between SSB and critical quantum fluctuations (see
Sec. 3). The analysis in Sec. 4 shows that the Bogoliubov quasiaverages again provide a tool suitable
for describing the algebra of fluctuation operators on the critical line of transitions. We study both the
commutative and noncommutative cases of this algebra (see Theorems 4.1 and 4.2).

We here note that Dmitrii Nikolaevich Zubarev was the first to indicate the relevance of Bogoliubov
quasiaverages in the theory of nonequilibrium processes [9]. In this case, the infinitesimal external sources
serve to break the time invariance of the Liouville equation for the statistical operator. Although well
known in mathematical physics as the limit-absorption principle, this approach was extended to many-
body problems in [9]. This elegant extension is now called the Zubarev nonequilibrium statistical operator
method [10], [11]. This interesting aspect of the Bogoliubov method of quasiaverages is outside the scope
of this paper.

2. Continuous boson systems

2.1. Conventional or generalized condensations and off-diagonal long-range order. We
note that the existence of gBEC makes boson systems more relevant than, for example, spin lattice systems
for demonstrating the effectiveness of Bogoliubov quasiaverages. This becomes clear even on the level of
the perfect Bose gas (PBG).

Therefore, we first consider the BEC of the PBG in a three-dimensional anisotropic parallelepiped
Λ := V α1 × V α2 × V α3 with a periodic boundary condition and α1 ≥ α2 ≥ α3, α1 + α2 + α3 = 1, i.e., the
volume |Λ| = V . In the boson Fock space FΛ := Fboson(L2(Λ)), the Hamiltonian of this system for the
grand canonical ensemble with a chemical potential μ < 0 is defined as

H0,Λ,μ = TΛ − μNΛ =
∑

k∈Λ∗

(εk − μ)b∗kbk, dom(H0,Λ,μ) = dom(TΛ). (2.1)

Here, one-particle kinetic-energy operator spectrum is {εk = k2}k∈Λ∗ , where the set Λ∗ is dual to Λ:

Λ∗ :=
{

kj =
2π

V αj
nj : nj ∈ Z

}d=3

j=1

, εk =
d∑

j=1

k2
j . (2.2)
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We let bk := b(ϕΛ
k ) and b∗k = (b(ϕΛ

k ))∗ denote the k-mode boson annihilation and creation operators
in the Fock space FΛ. They are indexed by the orthonormal basis {ϕΛ

k (x) = eikx/
√

V }k∈Λ∗ in L2(Λ)
generated by the eigenfunctions of the self-adjoint one-particle kinetic-energy operator −Δ with a periodic
boundary condition in L2(Λ). These operators formally satisfy the canonical commutation relations (CCR)
[bk, b∗k′ ] = δk,k′ for k, k′ ∈ Λ∗. Then Nk = b∗kbk is the occupation-number operator of the one-particle state
ϕΛ

k , and NΛ =
∑

k∈Λ∗ Nk denotes the total-number operator in Λ.
For a temperature β−1 := kBT (where kB is the Boltzmann constant) and a chemical potential μ, we

let ω0
β,μ,Λ( • ) denote the grand canonical Gibbs state of the PBG generated by (2.1):

ω0
β,μ,Λ( • ) =

TrFΛ(exp(−βH0,Λ,μ) • )
TrFΛ exp(−βH0,Λ,μ)

. (2.3)

The problem of the existence of a BEC is then related to the solution of the equation

ρ =
1
V

∑

k∈Λ∗

ω0
β,μ,Λ(Nk) =

1
V

∑

k∈Λ∗

1
eβ(εk−μ) − 1

(2.4)

for a given total particle density ρ in Λ. We note that by (2.2), the thermodynamic limit Λ ↑ R
3 in the

right-hand side of (2.4)

I(β, μ) = lim
Λ

1
V

∑

k∈Λ∗

ω0
β,μ,Λ(Nk) =

1
(2π)3

∫

R3
d3k

1
eβ(εk−μ) − 1

(2.5)

exists for any μ < 0. At μ = 0, it attains its (finite) maximum value I(β, μ)|μ=0 = ρc(β), which is called
the critical particle density for a given temperature.

We recall that the existence of a finite critical density ρc(β) (via the saturation mechanism) triggers a
zero-mode BEC: ρ0(β) := ρ − ρc(β), where the total particle density is ρc(β). We note that for α1 < 1/2,
all the condensate is indeed in the one-particle ground state mode k = 0:

ρ0(β) = ρ − ρc(β) = lim
Λ

1
V

ω0
β,μΛ(β,ρ),Λ(b∗0b0) = lim

Λ

[
1
V

1
e−βμΛ(β,ρ) − 1

]

ρ≥ρc(β)

, (2.6)

μΛ(β, ρ)
∣∣
ρ≥ρc(β)

= − 1
V

1
β(ρ − ρc(β))

+ o

(
1
V

)
, (2.7)

lim
Λ

1
V

ω0
β,μΛ(β,ρ),Λ(b∗kbk) = 0, (2.8)

where μΛ(β, ρ) is a unique solution of Eq. (2.4) and k = 0.
Following [7], we introduce the gBEC.

Definition 2.1. The total amount ρgBEC(β, μ) of the gBEC is defined by the double limit

ρgBEC(β, μ) := lim
δ→+0

lim
Λ

1
V

∑

k∈Λ∗ : ‖k‖≤δ

ωβ,μ,Λ(b∗kbk). (2.9)

Here, ωβ,μ,Λ( • ) denotes the corresponding finite-volume grand canonical Gibbs state.

According to the nomenclature proposed in [7], the zero-mode BEC in the PBG is just the gBEC of type
I. Indeed, it follows from (2.6) and (2.9) that a nonzero BEC implies a nontrivial gBEC: ρgBEC(β, ρ) > 0.
We write this relation as

BEC =⇒ gBEC. (2.10)
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Moreover, (2.6) and (2.9) yield ρ0(β, ρ) = ρgBEC(β, ρ).
We also recall that for the boson field

b(x) =
∑

k∈Λ∗

bkϕΛ
k (x), (2.11)

we have BEC ⇒ ODLRO.1 Indeed, by the definition of ODLRO [12], the value of the off-diagonal spatial
correlation LRO(β, ρ) of the Bose field is

LRO(β, ρ) = lim
‖x−y‖→∞

lim
Λ

ω0
β,μΛ,Λ(b∗(x)b(y)) =

= lim
Λ

ω0
β,μΛ,Λ

(
b∗0√
V

b0√
V

)
= ρ0(β, ρ) (2.12)

and coincides with the zero-mode spatial average correlation of local observables (2.11). We recall that the
p-mode spatial average ηΛ,p(b) of (2.11) is equal to

ηΛ,p(b) :=
1
V

∫

Λ

dx b(x)e−ipx =
bp√
V

, p ∈ Λ∗. (2.13)

As is known, for the PBG, the value LRO(β, ρ) of the ODLRO coincides with the BEC (and hence also
with the type-I gBEC) condensate density ρ0(β, ρ) [7].

To appreciate the importance of the gBEC compared with quasiaverages, we study a more anisotropic
thermodynamic limit in the case α1 = 1/2, known as the Casimir box. We then observe infinitely many
macroscopically occupied states, known as the gBEC of type II defined by (2.9). The total amount ρ0(β, ρ)
of this condensate is asymptotically distributed between infinitely many low-energy microscopic states
{ϕΛ

k }k∈Λ∗ such that

ρ0(β, ρ) = ρ − ρc(β) = lim
δ→+0

lim
Λ

1
V

∑

k∈Λ∗ : ‖k‖≤δ

{eβ(εk−μΛ(β,ρ)) − 1}−1 =

=
∑

n1∈Z

1
(2πn1)2/2 + A

, ρ > ρc(β). (2.14)

Here, the parameter A = A(β, ρ) ≥ 0 is a unique root of Eq. (2.14). The amount of the zero-mode BEC is
then

lim
Λ

1
V

ω0
β,μ,Λ(b∗0b0) = A−1(β, ρ).

We note that in contrast to the case of type I in (2.6), the zero-mode BEC A−1(β, ρ) is smaller than the
gBEC of type II in (2.6). Therefore, the relation between BEC and gBEC is nontrivial.

To elucidate this point, we consider α1 > 1/2 (the so-called van den Berg–Lewis–Pulé box [7]). We
then obtain

lim
Λ

ω0
β,μ,Λ

(
b∗kbk

V

)
= lim

Λ

1
V
{eβ(εk−μΛ(β,ρ)) − 1}−1 = 0, k ∈ Λ∗, (2.15)

i.e., there is no macroscopic occupation of any mode k ∈ Λ∗ for any value of the particle density ρ. Therefore,
the density of the zero-mode BEC is zero, but the gBEC (called type III) does exist in the same sense as
defined by (2.9):

ρ − ρc(β) = lim
δ→+0

lim
Λ

1
V

∑

k∈Λ∗ : ‖k‖≤δ

{eβ(εk−μΛ(β,ρ) − 1}−1 > 0, ρ > ρc(β), (2.16)

1ODLRO means off-diagonal long-range order.
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with the total density the same as for types I and II.
We note that calculating the ODLRO in the case of type-II and type-III gBECs is a nontrivial problem

even for the PBG. In particular, this concerns the regime where there is the second critical density ρm(β) >

ρc(β) separating different types of gBEC (see [13] and [8]). It is also clear that the zero-mode BEC is a
more restrictive concept than the gBEC.

The fact that the gBEC differs from the BEC is not necessarily due to a special anisotropy (α1 > 1/2)
or any other geometric feature of the PBG [8]. In fact, the phenomenon of the type-III gBEC occurs as a
result of a repulsive interaction. The Hamiltonian [14]

HΛ =
∑

k∈Λ∗

εkb∗kbk +
a

2V

∑

k∈Λ∗

b∗kb∗kbkbk, a > 0, (2.17)

is a simple example.
In summary, we note that the concept of gBEC (2.9) covers the cases (e.g., (2.17)) where calculating

the conventional BEC gives a trivial value: gBEC � BEC (cf. (2.10)). We also conclude that the relations
between the BEC, gBEC, and ODLRO are subtle. This motivates and supports the relevance of the
Bogoliubov method of quasiaverages [4], [5], which we also consider in connection with the SSB of the
gauge invariance for the Gibbs states (we call such SSB GSB in what follows).

2.2. Condensates, Bogoliubov quasiaverages, and pure states. We now study the states of
boson systems and assume (see Sec. 4.3.2 in [12]) that they are analytic in the sense of the definition in [15]
(see Sec. 5.2.3).

We start with the Hamiltonian with periodic boundary conditions for bosons in a cubic box Λ ⊂ R
3 of

side L and volume V = L3:
HΛ,μ = H0,Λ,μ + VΛ, (2.18)

where the interaction term has the form

VΛ =
1

2V

∑

k,p,q∈Λ∗

ν(p)b∗k+pb
∗
q−pbqbk (2.19)

and ν(p) is the Fourier transform in R
3 of the two-body potential v(x) with the bound

|ν(k)| ≤ ν(0) < ∞. (2.20)

We define the group G of (global) gauge transformations {τs}s∈[0,2π) by the Bogoliubov canonical maps
of the CCR:

τs(b∗(f)) = b∗(eisf) = eisb∗(f), τs(b(f)) = b(eisf) = e−isb(f), (2.21)

where b∗(f) and b(f) are the creation and annihilation operators smeared over test-functions f from the
Schwartz space. We note that for f = ϕΛ

k , they coincide with b∗k and bk in (2.11) and τs( • ) = eisNΛ( • )e−isNΛ

(see (2.1)). By definition (2.21) and by virtue of (2.1) and (2.19), Hamiltonian (2.18) is gauge invariant:

HΛ,μ = eisNΛHΛ,μe−isNΛ . (2.22)

We note that this property obviously implies that Gibbs state (2.3) in the case of Hamiltonian (2.18) of an
imperfect Bose gas is gauge invariant:

ωβ,μ,Λ( • ) = ωβ,μ,Λ(τs( • )) =
TrFΛ(exp(−βHΛ,μ)τs( • ))

TrFΛ exp(−βHΛ,μ)
. (2.23)
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This symmetry is a source of selection rules. For example,

ωβ,μ,Λ(An,m) = 0 for An,m =
n∏

i=1

m∏

j=1

b∗ki
bkj

, n �= m. (2.24)

We take the quasi-Hamiltonian corresponding to (2.18) with GSB sources in the form

HΛ,μ,λφ
= HΛ,μ + H

λφ

Λ . (2.25)

Here, the sources are switched on only in the zero mode (k = 0):

H
λφ

Λ =
√

V (λ̄φb0 + λφb∗0) (2.26)

for
λφ = λeiφ, λ ≥ 0, arctanλφ = φ ∈ [0, 2π). (2.27)

In this case, the corresponding Gibbs state is not gauge-invariant state (2.24), because, for example,

ωβ,μ,Λ,λφ
(bk) =

TrFΛ(exp(−βHΛ,μ,λφ
)bk)

TrFΛ exp(−βHΛ,μ,λφ
)

�= 0 for k = 0. (2.28)

The GSB of state (2.28), induced by the sources in (2.25), persists in the thermodynamic limit for the state
ωβ,μ,λφ

( • ) := limV →∞ ωβ,μ,Λ,λφ
( • ). But it can occur in this limit spontaneously without external sources.

We set
ωβ,μ( • ) := lim

V →∞
ωβ,μ,Λ,λφ

( • )
∣∣
λφ=0

. (2.29)

Definition 2.2. We say that the state ωβ,μ undergoes a spontaneous breaking of the G invariance
(GSB) if

1. ωβ,μ is G-invariant and

2. ωβ,μ has a nontrivial decomposition into ergodic states ω′
β,μ, which means that at least two such

distinct states occur in the representation

ωβ,μ( • ) =
∫ 2π

0

dν(s)ω′
β,μ(τs • )

and ω′
β,μ(τs • ) �= ω′

β,μ( • ) for some s.

We note that ergodic states are characterized by the clustering property, which implies a decorrelation
of zero-mode spacial averages (2.13) for the PBG and also in general for the imperfect Bose gas.

We initially take λ ≥ 0 and consider PBG (2.1) to define the Hamiltonian

H0,Λ,μ,λφ
= H0,Λ,μ + H

λφ

Λ , (2.30)

which is not globally gauge invariant. To separate the symmetry-breaking term H0, we rewrite (2.30) as
H0,Λ,μ,λφ

= H0 + Hk (with k �= 0), where

H0 = −μb∗0b0 +
√

V (λ̄φb0 + λφb∗0) = −μ

(
b0 −

√
V λφ

μ

)∗(
b0 −

√
V λφ

μ

)
+

V |λφ|2
μ

.
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We recall that the grand canonical partition function Ξ0,Λ for the PBG splits into a product over the
zero mode and the remaining modes. We introduce the canonical shift transformation

b̂0 := b0 −
λφ

√
V

μ
(2.31)

without altering the nonzero modes. Because μ < 0, we thus obtain

Ξ0,Λ(β, μ, λφ) = (1 − eβμ)−1 exp
(
−β|λφ|2

μ
V

)
Ξ′

0,Λ(β, μ) (2.32)

for the grand canonical partition function, where

Ξ′
0,Λ(β, μ) :=

∏

k 
=0

(1 − e−β(εk−μ))−1, εk = k2. (2.33)

We recall that the grand canonical state for the PBG is (see Sec. 2.1)

ω0
β,μ,Λ,λφ

( • ) :=
1

Ξ0,Λ(β, μ, λφ)
TrFΛ [e−βH0,Λ,μ,λφ ( • )]. (2.34)

It then follows from (2.32)–(2.34) that the mean density is

ρ = ω0
β,μ,Λ,λφ

(
NΛ

V

)
=

|λφ|2
μ2

+
1
V

1
e−βμ − 1

+
1
V

∑

k 
=0

1
eβ(εk−μ) − 1

. (2.35)

Equation (2.35) is the starting point of our analysis. Because the critical density ρc(β) = I(β, μ)|μ=0

is finite, we have the following statement.

Proposition 2.1. Let 0 < β < ∞ be fixed. Then for each ρc(β) < ρ < ∞ and each λ > 0, V < ∞,

there exists a unique solution of (2.35) of the form

μΛ(ρ, |λφ|) = − |λφ|√
ρ − ρc(β)

+ α(|λφ|, V ), (2.36)

where α(|λφ|, V ) ≥ 0 for all |λφ| and V , and such that

lim
|λφ|→0

lim
V →∞

α(|λφ|, V )
|λφ|

= 0. (2.37)

Proof. The proof of this statement is straightforward and follows from Eq. (2.35).

Remark 2.1. Proposition 2.1 holds not only for the cube Λ but also for a three-dimensional anisotropic
parallelepiped Λ := V α1×V α2×V α3 , with periodic boundary conditions and α1 ≥ α2 ≥ α3, α1+α2+α3 = 1,
i.e., when we have type-II or type-III condensations for λ = 0.

Because |λφ|2 = λφλ̄φ = λ2, we find that the limit of the expectation is related to the derivative of the
grand canonical pressure with respect to the symmetry-breaking sources (2.25):

lim
λ→+0

lim
V →∞

∂

∂λφ
pβ,μ,Λ,λφ

= − lim
λ→+0

lim
V →∞

ω0
β,μ,Λ,λφ

(
b∗0√
V

)
, (2.38)
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where

pβ,μ,Λ,λφ
:=

1
βV

log Ξ0,Λ(β, μ, λφ). (2.39)

We recall that the left-hand side of (2.38) is in fact the Bogoliubov quasiaverage of the operator of the
observable b∗0/

√
V .

Using (2.33) and (2.39), we obtain

∂

∂λφ
pβ,μ,Λ,λφ

= − λ̄φ

μ
. (2.40)

The asymptotic form of the chemical potential for a given ρ is (2.36), and taking (2.38) and (2.40) into
account, we therefore obtain

lim
λ→+0

lim
V →∞

ω0
β,μ,Λ,λφ

(
b∗0√
V

)
=

√
ρ0(β, ρ)e−iφ, (2.41)

where
ρ0(β, ρ) = ρ − ρc(β, ρ)

in accordance with (2.35) and (2.40) is the zero-mode PBG condensation. We can therefore see that the
phase in (2.38) remains in (2.41) even after the limit λ → +0.

The following definition was suggested in [6] using a more general method for studying an imperfect
Bose gas (see below).

Definition 2.3. We say that a state ωβ,μ,Λ,λφ
undergoes a spontaneous GSB in the sense of Bogoliubov

quasiaverages ((GSB)q-a) if limit state (2.29) remains gauge invariant while the state

ωβ,μ,φ( • ) := lim
λ→+0

lim
V →∞

ωβ,μ,Λ,λφ
( • ) (2.42)

is not gauge invariant and moreover ωβ,μ,φ �= ωβ,μ,φ′ for φ �= φ′.

We note that (GSB)q-a is equivalent to GSB in the sense of Definition 2.2, where the ergodic states ω′
β,μ

in point 2 of the definition coincide with the set of ωβ,μ,φ in (2.42) (see Theorem 2.1 below). Nevertheless,
the notion of (GSB)q-a is useful for comparison with the results in [6].

Remark 2.2. Using (2.35) together with Proposition 2.1 and relation (2.41), we obtain

ρ0(β, ρ) = lim
λ→+0

lim
V →∞

ω0
β,μ,Λ,λφ

(
b∗0√
V

b0√
V

)
=

= lim
λ→+0

lim
V →∞

ω0
β,μ,Λ,λφ

(
b∗0√
V

)
· lim

λ→+0
lim

V →∞
ω0

β,μ,Λ,λφ

(
b0√
V

)
. (2.43)

In addition to decorrelation of the zero-mode spatial averages ηΛ,0(b∗) = b∗0/
√

V and ηΛ,0(b) = b0/
√

V given
by (2.13), for the Bogoliubov quasiaverages, Eq. (2.43) also establishes an identity between the zero-mode
condensation fraction ρ0(β, ρ) and LRO(β, ρ) given by (2.12), denoted by (ODLRO)q-a. Decorrelation in
the right-hand side of (2.43) shows that in the presence of a condensate, we have a nontrivial GSB for the
Bogoliubov quasiaverages in the sense of Definition 2.3 (also see (2.41)).
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Remarks 2.1 and 2.2 lead to the definition of the quasiaverage states for the PBG as

ω0
β,μ,φ := lim

λ→+0
lim

V →∞
ω0

β,μ,Λ,λφ
, (2.44)

where the double limit along a subnet Λ ↑ R
3 exists by the ∗-weak compactness of the set of states [2].

Below, we use the notation ω for a Gibbs state in general case (2.18)–(2.20) and keep ω0 for the PBG.

Definition 2.4. We recall that a Bose gas undergoes the zero-mode BEC if

lim
V →∞

1
V

ωβ,μ,Λ(b∗0b0) = lim
V →∞

1
V 2

∫

Λ

∫

Λ

dx dy ωβ,μ,Λ(b∗(x)b(y)) > 0. (2.45)

Simultaneously, this means a nontrivial correlation (2.12),

lim
‖x−y‖→∞

lim
V →∞

ωβ,μ,Λ(b∗(x)b(y)) > 0, (2.46)

of zero-mode spatial averages (2.13), denoted by ODLRO.

As shown in Sec. 2.1, this definition is too restrictive even for the PBG because (2.45) might be trivial
although condensation does exist because of a finite critical density ρc(β, μ). We say that a Bose gas
undergoes a gBEC (Definition 2.1) if

lim
δ→+0

lim
Λ

1
V

∑

k∈Λ∗ : ‖k‖≤δ

ωβ,μ,Λ(b∗kbk) = ρ − ρc(β, μ) > 0. (2.47)

To classify different types of the gBEC, we must consider the values of the limits

lim
Λ

1
V

ωβ,μ,Λ(b∗kbk) =: ρk, k ∈ Λ∗. (2.48)

According to Sec. 2.1, we then have ρ0 = ρ− ρc for the type-I gBEC and ρ0 < ρ− ρc for the type-II gBEC.
If we have {ρk}k∈Λ∗ and a nontrivial (2.47), then the gBEC is of type III, i.e., where the condensate is zero
in the zero mode.

Definition 2.5. We say that a Bose gas undergoes BEC of the Bogoliubov quasiaverage type (BEC)q-a

if

lim
λ→+0

lim
V →∞

ωβ,μ,Λ,λφ

(
b∗0√
V

b0√
V

)
> 0. (2.49)

Remark 2.3. First, the facts noted in Remark 2.2 are independent of the anisotropy, i.e., of whether
the condensation for λ = 0 occurs into a single mode (k = 0) (i.e., BEC) or is extended to a larger number
of modes up to the gBEC of type II or III (see Sec. 2.1). The type-I condensate occurs into the mode k = 0
because of a special property of Hamiltonian (2.2) from which it follows that εk = 0 for k = 0.

Second, these results show that the Bogoliubov quasiaverage method for a perfect gas answers the
question about the equivalence between BEC, GSB, and ODLRO if they are defined in terms of the one-
mode quasiaverage k = 0:

(BEC)q-a ⇐⇒ (GSB)q-a ⇐⇒ (ODLRO)q-a (2.50)

(here ⇐⇒ denotes bi-implication).
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The quasiaverage for k �= 0, i.e., for εk > 0, needs a certain elucidation. For this, we reconsider
PBG (2.1) with symmetry-breaking sources (2.26) in a single mode q ∈ Λ∗, which in the general case is not
a zero mode:

H0
Λ(μ; h) := H0

Λ(μ) +
√

V (h̄bq + hb∗q), μ ≤ 0. (2.51)

For a fixed density ρ, Eq. (2.4) for the condensate in the grand canonical ensemble with Hamiltonian (2.51)
then becomes

ρ = ρΛ(β, μ, h) :=
1
V

∑

k∈Λ∗

ω0
β,μ,Λ,h(b∗kbk) =

=
1
V

(eβ(εq−μ) − 1)−1 +
1
V

∑

k∈Λ∗\q

1
eβ(εk−μ) − 1

+
|h|2

(εq − μ)2
. (2.52)

In accordance with the quasiaverage method, to investigate a possible condensation, we must first take the
thermodynamic limit in the right-hand side of (2.52) and then switch off the symmetry-breaking source,
h → 0. We recall that the critical density, which defines the saturation threshold in the boson system, is
equal to ρc(β) = I(β, μ)|μ=0 (see (2.5)), where I(β, μ) = limΛ ρΛ(β, μ, h)|h=0.

Because μ ≤ 0, we must now distinguish two cases:

1. Let the mode q ∈ Λ∗ be such that limΛ εq > 0. From (2.52), we then obtain the condensate equation
and the simplest q-mode GSB expectation:

ρ = lim
h→0

lim
Λ

ρΛ(β, μ, h) = I(β, μ), lim
h→0

lim
V →∞

ω0
β,μ,Λ,h

(
b∗q√
V

)
= lim

h→0

h̄

εq − μ
= 0.

This means that the quasiaverage coincides with the average. Hence, we return to the analysis of
condensate equation (2.52) with h = 0. This leads to finite-volume solutions μΛ(β, ρ) and consequently
to all possible types of condensation as a function of the anisotropy α1 (see Sec. 2.1 for the details).

2. On the other hand, if q ∈ Λ∗ is such that limΛ εq = 0, then the thermodynamic limit in the right-hand
side of condensate equation (2.52) and the q-mode GSB expectation are

ρ = lim
Λ

ρΛ(β, μ, h) = I(β, μ) +
|h|2
μ2

, lim
V →∞

ω0
β,μ,Λ,h

(
b∗q√
V

)
=

h̄

−μ
. (2.53)

If ρ ≤ ρc(β), then the limit of the solution of (2.53) is

lim
h→0

μ(β, ρ, h) = μ0(β, ρ) < 0,

where μ(β, ρ, h) = limΛ μΛ(β, ρ, h) < 0 is thermodynamic limit of the finite-volume solution of con-
densate equation (2.52). Therefore, there is no condensation in any mode, and according to (2.53),
the corresponding q-mode GSB expectation for h → 0 (the Bogoliubov quasiaverage) is again equal to
zero. But if ρ > ρc(β), then (2.52) yields limh→0 μ(β, ρ, h) = 0. Therefore, by (2.53), the condensate
density and the Bogoliubov quasiaverage are

ρ0(β) = ρ − ρc(β) = lim
h→0

|h|2
μ(β, ρ, h)2

,

lim
h→0

lim
V →∞

ω0
β,μΛ(β,ρ,h),Λ,h

(
b∗q√
V

)
=

= lim
h→0

lim
V →∞

ω0
β,μΛ(β,ρ,h),Λ,h

(
b∗0√
V

)
=

√
ρ0(β)e−i arg h.

(2.54)
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We consider the first case in more detail. Let limΛ εq =: εq > 0. Then by virtue of (2.52), the
expectation of the particle density in the q-mode in the finite-volume case is

ω0
β,μ,Λ,h

(
b∗qbq

V

)
=

1
V

(eβ(εq−μ) − 1)−1 +
|h|2

(εq − μ)2
. (2.55)

In the one-particle spectrum {εk}k∈Λ∗ , all εk ≥ 0 and, moreover, εk = 0 for k = 0 (see (2.2)). The solution
of (2.52) is therefore unique and negative: μΛ(β, ρ, h) < 0. The Bogoliubov quasiaverage of b∗qbq/V for any
particle density ρ > ρc(β) is then written as

lim
h→0

lim
Λ

ω0
β,μΛ(β,ρ,h),Λ,h

(
b∗qbq

V

)
=

= lim
h→0

lim
Λ

1
V

(eβ(εq−μΛ(β,ρ,h)) − 1)−1 + lim
h→0

lim
Λ

|h|2
(εq − μΛ(β, ρ, h))2

= 0. (2.56)

Condensate equation (2.52) and the q-mode GSB expectation now become

ρ = lim
Λ

ρΛ(β, μ, h) = I(β, μ) +
|h|2

(εq − μ)2
=: ρ(β, μ, h), (2.57)

lim
V →∞

ω0
β,μ,Λ,h

(
b∗q√
V

)
=

h̄

εq − μ
. (2.58)

Remark 2.4. Hamiltonian (2.51) is the simplest example of a condensation model depending on an
external source in a nonzero mode. Indeed, for the PBG with one-particle spectrum (2.2), the solution
μ(β, ρ, h) of condensate equation (2.57) satisfies the relations

lim
ρ→ρc(β,h)

μ(β, ρ, h) = 0, ρc(β, h) := sup
μ≤0

ρ(β, μ, h) = ρ(β, μ, h)
∣∣
μ=0

> ρc(β).

Because εq > 0 and ε0 = 0, the finite saturation density ρc(β, h) triggers the BEC mechanism in the zero
mode of PBG (2.51) if ρ > ρc(β, h). In connection with this, we note that from (2.52), (2.55), and (2.57),
we obtain

ρ − ρc(β, h) = lim
Λ

1
V

ω0
β,μΛ(β,ρ,h),Λ,h(b∗0b0), (2.59)

where the solution of (2.52) as V → ∞ has the asymptotic form

μΛ(β, ρ, h) = −
(
ρ − ρc(β, h)

)
V −1 + o(V −1).

As a result, model (2.51) is the PBG with external sources, and its behavior is not identical to that
of a Bose gas with h = 0 (see Sec. 2.1). For example, this concerns the higher critical density (2.57),
ρ(β, μ, h)|μ=0 ≥ ρc(β), and a nonzero expectation (2.55) of the particle density in a nonzero q-mode q �= 0.

We summarize the consideration of case 1. The nonzero-mode sources for the PBG and the corre-
sponding Bogoliubov quasiaverages give the same results as for the PBG without external sources. Hence,
the quasiaverages in this case have no impact and lead to the same conclusions (and problems) as the gBEC
in Sec. 2.1. If we keep the nonzero-mode source, then this gBEC has a source-dependent critical density as
in Remark 2.4.

We now consider case 2. We first note that by virtue of (2.52) and (2.53), we have μ(β, ρ, h) < 0,
h �= 0. Moreover, for any k �= q, even if limΛ εk = 0,

lim
h→0

lim
Λ

ω0
β,μΛ(β,ρ,h),Λ,h

(
b∗kbk

V

)
= lim

h→0
lim
Λ

1
V

1
eβ(εk−μΛ(β,ρ,h)) − 1

= 0. (2.60)
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This means that (BEC)q-a for any anisotropy α1 occurs only in the zero-mode (BEC type I), while the
gBEC for α1 > 1/2 is of type III (see Sec. 2.1). Diagonalization (2.31) bq → b̂q and (2.54) allow using the
quasiaverage method to calculate a nonzero (GSB)q-a for ρ > ρc(β):

lim
h→0

lim
Λ

ω0
β,μΛ(β,ρ,h),Λ,h

(
bq√
V

)
= lim

h→0

h

μ(β, ρ, h)
= ei arg h

√
ρ − ρc(β), (2.61)

where the limit is understood in the sense |h| → 0 for h = |h|ei arg h. Analyzing (2.56) and (2.61), we then
find that (GSB)q-a and (BEC)q-a are equivalent:

lim
h→0

lim
Λ

ω0
β,μΛ(β,ρ,h),Λ,h

(
b∗q√
V

)
ω0

β,μΛ(β,ρ,h),Λ,h

(
bq√
V

)
=

= lim
h→0

lim
Λ

ω0
β,μΛ(β,ρ,h),Λ,h

(
b∗qbq

V

)
= ρ − ρc(β). (2.62)

We note that (GSB)q-a and (BEC)q-a are then in turn equivalent to (ODLRO)q-a by virtue of (2.12). In
contrast to (BEC)q-a for the one-mode BEC, we obtain

lim
Λ

ω0
β,μΛ(β,ρ,0),Λ,0

(
b∗qbq

V

)
= lim

Λ
ωβ,μ0

Λ(β,ρ,0),Λ,0

(
b∗q√
V

)
ω0

β,μΛ(β,ρ,0),Λ,0

(
bq√
V

)
= 0

for any ρ and q ∈ Λ∗ as soon as α1 > 1/2 (see Sec. 2.1). On the other hand, the value of gBEC coincides
with (BEC)q-a.

Remark 2.5. For the zero mode, the conventional BEC and the quasiaverage (BEC)q-a for the PBG
are not equivalent: (BEC)q-a �=⇒ BEC, while (BEC)q-a ⇐⇒ gBEC. Equivalence (2.50) shows that the
Bogoliubov quasiaverage method is definitely applicable in the PBG case.

We note that (2.41) and (2.44) show that the states ωβ,μ,φ are not gauge invariant. If we assume
that they are ergodic states in the ergodic decomposition of ωβ,μ, then it follows for an interacting Bose
gas that (BEC)q-a ⇐⇒ (GSB)q-a, which is similar to the equivalence for the PBG. This illuminates
the explicit mechanism for the appearance of the symmetry-breaking phase φ connected with (2.36) in
Proposition 2.1 in the PBG case. We note that the chemical potential remains proportional to |λ| in this
case even after thermodynamic limit (2.40). This property also persists for an interacting Bose gas (see the
next subsection).

2.3. Interaction, quasiaverages, and the Bogoliubov c-number approximation. We con-
sider an imperfect Bose gas with interaction (2.18)–(2.20). Our tool is the famous Bogoliubov approxima-
tion [4] according to which ηΛ,0(b) and ηΛ,0(b∗) given by (2.13) are replaced with complex numbers (also
see [14], [16], [17]). The exactness of this procedure was proved by Ginibre [18] on the level of thermody-
namics. Later, Lieb, Seiringer, and Yngvason [19], [6] and independently Sütö [20] improved the arguments
in [18] and evaluated the exactness of the Bogoliubov approximation. In our analysis, we rely on the method
in [6], which uses the Berezin–Lieb inequality [21].

We recall that the Fock space FΛ � F0⊗F ′, where F0 denotes the zero-mode subspace and F ′ := ⊗Fk

with k �= 0 (see Sec. 2.1).
Let z ∈ C be a complex number and |z〉 = e−|z|2/2+zb∗0 |0〉 be the Glauber coherent vector in F0. As

in [6], let the operator (HΛ,μ,λ)′(z) be the lower symbol of the operator HΛ,μ,λ given by (2.25). The pressure
p′β,Λ,μ,λ corresponding to this symbol is then defined by

exp(βV p′β,Λ,μ,λ) = ΞΛ(β, μ, λ)′ =
∫

C

d2z TrF ′ exp(−β(HΛ,μ,λ)′(z)). (2.63)
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We consider the probability density

Wμ,Λ,λ(z) := ΞΛ(β, μ, λ)−1 TrF ′〈z| exp(−βHΛ,μ,λ)|z〉. (2.64)

As proved in [6], the density Wμ,Λ,λ(ζ
√

V ) for almost all λ > 0 converges as V → ∞ to a δ-density at the
point

ζmax(λ) = lim
V →∞

zmax(λ)√
V

,

where zmax(λ) maximizes the partition function TrF ′ exp(−β(HΛ,μ,λ)′(z)). Although φ = 0 was chosen
in (2.27) in [6], the results in the general case can be obtained using the simple substitution b0 → b0e

−iφ,
b∗0 → b∗0e

iφ motivated by (2.25). We note that expression (34) in [6] can hence be rewritten as

lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(b∗eiφ)) = lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(be−iφ)) =

=
∂p(β, μ, λ)

∂λ
= ζmax(λ) (2.65)

and consequently yields (see definition (2.13))

lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(b∗)ηΛ,0(b)) = |ζmax(λ)|2. (2.66)

Here, we let
p(β, μ, λ) = lim

V →∞
pβ,μ,Λ,λ (2.67)

denote the grand canonical pressure of the imperfect Bose gas in (2.18)–(2.20) in the thermodynamic limit.
Equality (2.65) follows from the convexity of pβ,μ,Λ,λ in λ = |λφ| by the Griffiths lemma [22]. It was shown
in [6] that the pressure is equal to

p(β, μ, λ)′ = lim
V →∞

p′β,μ,Λ,λ. (2.68)

Moreover, p(β, μ, λ) in (2.67) is also equal to the pressure p(β, μ, λ)′′, which is the thermodynamic limit of
the pressure associated with the upper symbol of the operator HΛ,μ,λ. The crucial point [6] is the proof
that all of these three pressures p′, p, and p′′ coincide with pmax(β, μ, λ), which is the pressure associated
with maxz TrF ′ exp(−β(HΛ,μ,λ)′(z)):

pmax(β, μ, λ) = lim
V →∞

1
βV

log{max
z

TrF ′ exp(−β(HΛ,μ,λ)′(z))}. (2.69)

We are now ready to prove a main result in this paper.

Theorem 2.1. If we have (ODLRO)q-a or (BEC)q-a in the system of interacting bosons given by

relations (2.18)–(2.27), then the limit

ωβ,μ,φ := lim
λ→+0

lim
V →∞

ωβ,μ,Λ,λφ

exists on the set of monomials {η0(b∗)mη0(b)n}m,n∈N∪ 0 and satisfies the equalities

ωβ,μ,φ(η0(b∗)) =
√

ρ0e
iφ, (2.70)

ωβ,μ,φ(η0(b)) =
√

ρ0e
−iφ, (2.71)
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and we also have (CSB)q-a,

ωβ,μ,φ(η0(b∗)η0(b)) = ωβ,μ,φ(η0(b∗))ωβ,μ,φ(η0(b)) = ρ0, φ ∈ [0, 2π), (2.72)

and

ωβ,μ =
1
2π

∫ 2π

0

dφ ωβ,μ,φ. (2.73)

On the Weyl algebra, the limit that defines ωβ,μ,φ, φ ∈ [0, 2π), exists along the nets in the variables (λ, V ).
The corresponding states are ergodic and coincide with the states obtained in Proposition A.1.

Conversely, if the (CSB)q-a occurs in the sense that (2.70) and (2.71) hold with ρ0 �= 0, then we have

(ODLRO)q-a and (BEC)q-a.

Proof. We prove only the first statement. The converse follows from the Schwarz inequality for the
states ωβ,μ,φ together with formula (2.80) presented below.

We show that (ODLRO)q-a =⇒ (GSB)q-a. We first assume that some state ωβ,μ,φ0, φ0 ∈ [0, 2π),
satisfies (ODLRO)q-a. Then by (2.66),

lim
λ→+0

lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(b∗)ηΛ,0(b)) = lim
λ→+0

|ζmax(λ)|2 =: ρ0 > 0. (2.74)

The limit exists by the convexity of p(β, μ, λ) in λ and (2.38). Hence,

lim
λ→+0

∂p(β, μ, λ)
∂λ

�= 0. (2.75)

At the same time, (2.65) shows that all states ωβ,μ,φ satisfy (2.74). Therefore, (GSB)q-a does not occur in
the states ωβ,μ,φ, φ ∈ [0, 2π). We have thus proved that assumption (2.45) implies that we have (ODLRO)q-a

in all states ωβ,μ,φ, φ ∈ [0, 2π).
The gauge invariance of ωβ,μ,Λ (or, equivalently, Hamiltonian HΛ,μ) with (2.26) and (2.47) taken into

account yields
ωβ,μ,Λ,λ(ηΛ,0(b∗)ηΛ,0(b)) = ωβ,μ,Λ,−λ(ηΛ,0(b∗)ηΛ,0(b)). (2.76)

Again using (2.26) and (2.36) and the gauge invariance of HΛ,μ, we obtain

lim
λ→−0

∂p(β, μ, λ)
∂λ

= − lim
λ→+0

∂p(β, μ, λ)
∂λ

.

Because the derivative ∂p(β, μ, λ)/∂λ is convex and monotonically increasing,

lim
λ→+0

∂p(β, μ, λ)
∂λ

= lim
λ→+0

ζmax(λ) =
√

ρ0, (2.77)

lim
λ→−0

∂p(β, μ, λ)
∂λ

= − lim
λ→+0

ζmax(λ) = −√
ρ0. (2.78)

Again using (2.76), we obtain

lim
λ→−0

lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(b∗)ηΛ,0(b)) = lim
λ→+0

lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(b∗)ηΛ,0(b)). (2.79)

According to [6], the weight Wμ,λ for λ = 0 is supported on a disc with the radius equal to right-
derivative (2.75). The convexity of the pressure as a function of λ implies that

∂p(β, μ, λ−
0 )

∂λ−
0

≤ lim
λ→−0

∂p(β, μ, λ)
∂λ

≤ lim
λ→+0

∂p(β, μ, λ)
∂λ

≤ ∂p(β, μ, λ+
0 )

∂λ+
0
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for any λ−
0 < 0 < λ+

0 . Therefore, by the Griffiths lemma (see, e.g., [22], [6]), we obtain

lim
λ→−0

lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(b∗)ηΛ,0(b)) ≤ lim
V →∞

ωβ,μ,Λ

(
b∗0b0

V

)
≤

≤ lim
λ→+0

lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(b∗)ηΛ,0(b)). (2.80)

Then (2.79) and (2.80) yield

lim
V →∞

ωβ,μ,Λ

(
b∗0b0

V

)
= lim

λ→+0
lim

V →∞
ωβ,μ,Λ,λ(ηΛ,0(b∗)ηΛ,0(b)), φ ∈ [0, 2π). (2.81)

This proves that all ωβ,μ,φ for all φ ∈ [0, 2π) satisfy (ODLRO)q-a, as asserted.
From (2.65) and (2.77), we obtain (2.70) and (2.71). Then (2.73) is a consequence of the gauge

invariance of ωβ,μ. The ergodicity of the states ωβ,μ,φ, φ ∈ [0, 2π), follows from (2.70), (2.71), and (2.81)
(see the second point in Definition 2.2).

An analogous construction can be presented using the Weyl algebra instead of the polynomial alge-
bra (see Sec. 4.3.2 in [12] and references therein for Proposition A.1). The limit along a subnet in the
variables (λ, V ) exists by the ∗-weak compactness and by the asymptotic Abelianness of the Weyl algebra
under space translations (see, e.g., Example 5.2.19 in [15]); ergodic decomposition (2.73), which is also a
central decomposition, is unique. Therefore, the ωβ,μ,φ, φ ∈ [0, 2π), coincide with the states constructed in
Proposition A.1.

Remark 2.6. Remark 2.3 and Theorem 2.1 elucidate a problem discussed in [6], where the authors
defined a generalized GSB via the quasiaverage (GSB)q-a, i.e., as the condition

lim
λ→+0

lim
V →∞

ωβ,μ,Λ,λ(ηΛ,0(b)) �= 0.

If the condition involves other than the gauge group, then we call it (SSB)q-a. Similarly, in that paper, the
definition of one-mode condensation (2.74) (denoted by (BEC)q-a) was modified, and the authors established
the equivalence (GSB)q-a ⇐⇒ (BEC)q-a. They also asked whether (BEC)q-a ⇐⇒ BEC.

In Theorem 2.1, we showed that (GSB)q-a (2.70) implies (ODLRO)q-a or (BEC)q-a. We note that for
the zero-mode BEC (see Definition 2.4), an analogous theorem shows that the answer to the posed question
is affirmative. This follows from the crucial fact that the state ωβ,μ is gauge invariant, which is consistent
with decomposition (2.73) and leads to inequalities (2.80).

On the other hand, for other types of condensation (but nevertheless equally important, as confirmed
in (2.17)), the comparison (from the standpoint of implication =⇒ or equivalence ⇐⇒) of values calculated
in the sense of quasiaverages or outside this method can turn out to be false. For example, for the PBG, the
value of (BEC)q-a is strictly greater than the zero-mode BEC for an anisotropy α1 ≥ 1/2, and (BEC)q-a �=⇒
BEC for α1 > 1/2 (see Sec. 2.1). The same can also be seen for interacting Bose gas (2.17), although in
both cases (PBG and model (2.17)), we obtain (BEC)q-a =⇒ gBEC (see Sec. 2.2). Therefore, the answer to
the question is negative in the general case. We note that as established in Theorem 2.1, the quasiaverages
lead to ergodic states, and this fact clarifies an important conceptual aspect of the method of quasiaverages.

Remark 2.7. The states ωβ,μ,φ in Theorem 2.1 have the second property in Proposition A.1: if
φ1 �= φ2, then ωβ,μ,φ1 �= ωβ,μ,φ2 . According to the Kadison theorem [23], two factor states are either
disjoint or quasiequivalent, and the states ωβ,μ,φ for different φ are therefore mutually disjoint. This
phenomenon also occurs for spontaneous magnetization in quantum spin systems. The word “degeneracy”
must be understood in this sense (cf. the discussion in [5]).
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3. Bogoliubov quasiaverages and critical quantum fluctuations

The aim in this section is to show that scaled symmetry-breaking external sources can have a nontrivial
impact on critical quantum fluctuations. This demonstrates that quasiaverages are useful not only in
studying phase transitions via (SSB)q-a but also in analyzing the corresponding critical, commutative and
noncommutative, quantum fluctuations. For this, as an illustration, we use the example of a concrete model
manifesting a quantum phase transition with a discrete (SSB)q-a [24].

3.1. Algebra of fluctuation operators. We first consider a general setup to recall the concept of
quantum fluctuations based on the noncommutative central limit theorem and the corresponding CCR.

To describe any quantum statistical model (on a lattice Z
d), we must first define a microscopic dynam-

ical system, which is a triplet (A, ω, αt), where

a. A = ∪ΛAΛ is the quasilocal algebra of observables (here, the Λ are a bounded subset of Z
d, and

[AΛ′ ,AΛ′′ ] = 0 if Λ′ ∩ Λ′′ = ∅),

b. ω is a state on A (if τx is space translation automorphism of translations over the distance x ∈ Z
d,

i.e., the map τx : AΛ � A → τx(A) ∈ AΛ+x, then the state ω is translation invariant if ω � τx(A) ≡
ω(τx(A)) = ω(A) and space-clustering if lim|x|→∞ ω(Aτx(B)) = ω(A)ω(B) for A, B ∈ A), and

c. αt is the dynamics described by a family of local Hamiltonians {HΛ}Λ⊂Zd (αt is usually defined as
a norm limit of the local dynamics: αt(A) := limΛ exp(itHΛ)A exp(−itHΛ), i.e., αt : A → A is the
norm closure of A; for equilibrium states, we assume time invariance, ω �αt = ω).

We usually also assume that space and time translations commute: τx(αt(A)) = αt(τx(A)), where A ∈ AΛ

and Λ ⊂ Z
d.

Making the transition from the microsystem (A, ω, αt) to the macrosystem of physical observables, we
must distinguish two essentially different classes of macrosystems.

The first class (macrosystem I) corresponds to the weak law of large numbers and is well suited for
describing order parameters in the system. This class of observables is formally defined as follows. For any
A ∈ A, we define the local spatial mean by the map

mΛ : A → mΛ(A) := |Λ|−1
∑

x∈Λ

τx(A).

The limit map m : A → C, defined as

m(A) = w − lim
Λ

mΛ(A), A ∈ A, (3.1)

then exists in the ω-weak topology induced by the ergodic state ω (see point b in the definition).
Let m(A) = {m(A) : A ∈ A}. Macrosystem I then has the properties that

Ia. m(A) is a set of observables at infinity because [m(A),A] = 0,

Ib. m(A) is an Abelian algebra, m(A) = ω(A) ·11, and the states on m(A) are hence probability measures,

Ic. the map m : A → m(A) is not injective, because m(τa(A)) = m(A) (this is a mathematical expression
of coarse graining under the weak law of large numbers), and

Id. the macrodynamics α̃t(m(A)) := m(αt(A)) induced by the microdynamics αt on m(A) is trivial
because m(αt(A)) = ω(αt(A)) · 11 = ω(A) · 11 = m(A).
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The second class of macroscopic observables (macrosystem II) corresponds to the quantum central limit
theorem and is well suited for describing quantum fluctuations and, in particular, collective and elementary
excitations (phonons, plasmons, excitons, etc.) in many-body quantum systems [12].

The construction of macrosystem II must be more precise. Let A ∈ Asa := {B ∈ A : B = B∗} be
self-adjoint operators in a Hilbert space H. We can then define the local map F δA

k,Λ : A → F δA

k,Λ(A), where

F δA

k,Λ(A) :=
1

|Λ|1/2+δA

∑

x∈Λ

(
τx(A) − ω(A)

)
eikx, k, δA ∈ R. (3.2)

This is just the local fluctuation operator A for the mode k. If δA = 0, then this fluctuation operator is
said to be normal.

The next important concept is due to [25]–[27] and a further development in [28].

Quantum Central Limit Theorem. Let

γω(r) := sup
Λ,Λ′

sup
A∈AΛ,
B∈AΛ′

{
ω(AB) − ω(A)ω(B)

‖A‖ ‖B‖ : r ≤ dist(Λ, Λ′)
}

,
∑

x∈Zd

γω(|x|) < ∞.

Then for any A ∈ Asa, the corresponding limit characteristic function exists for the normal fluctuation

operator (δA = 0) for the zero mode k = 0:

lim
Λ

ω(eiuFΛ(A)) = e−u2Sω(A,A)/2, u ∈ R, (3.3)

where Sω(A, B) is sesquilinear form

Sω(A, B) := Re
∑

x∈Zd

ω((A − ω(A)) τx(B − ω(B))), A, B ∈ Asa.

We list the properties of macrosystem II.

IIa. Result (3.3) explains the meaning of the quantum central limit for normal fluctuation operators.
If (3.3) exists for δA,B �= 0 with the modified sesquilinear form

Sω,δA,B (A, B) = lim
Λ

Re
1

|Λ|δA+δB

∑

x∈Zd

ω((A − ω(A)) τx(B − ω(B))), (3.4)

then we say that the quantum central limit exists for the zero-mode abnormal fluctuations:

lim
Λ

F δA

Λ (A) = F δA(A). (3.5)

The fluctuation operators F δA(A), A ∈ Asa, act in a Hilbert space H, which is defined by the
reconstruction theorem corresponding to (3.3) and (3.4).

IIb. We regard Asa as a vector space with the symplectic form σω( • , • ), which is well defined in the case
δA + δB = 0 by the weak law of large numbers:

iσω(A, B) · 11 = lim
Λ

[F δA

Λ (A), F δB

Λ (B)] = 2iIm
∑

y∈Zd

(
ω(Aτy(B)) − ω(A)ω(B)

)
. (3.6)
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Let W (Asa, σω) be the Weyl algebra, i.e., the family of Weyl operators W : Asa � A �→ W (A) such
that

W (A)W (B) = W (A + B)e−iσω(A,B)/2, (3.7)

where the operators A, B ∈ Asa act in the Hilbert space H.

Reconstruction Theorem. Let ω̃ be a quasifree state on the Weyl algebra W (Asa, σω) defined by

the sesquilinear form Sω( • , • ):
ω̃(W (A)) := e−Sω(A,A)/2. (3.8)

It follows from (3.7) that W (A) := eiΦ(A), where Φ: A �→ Φ(A) are boson field operators acting in the Hilbert

space Hω̃ of representations of the CCR corresponding to the state ω̃. Relations (3.2)–(3.8) therefore yield

identifications of the spaces H = Hω̃ and of the operators

lim
Λ

F δA

Λ (A) =: F δA(A) = Φ(A). (3.9)

IIc. The reconstruction theorem gives a transition from the microsystem (Asa, ω) to the macrosystem of
fluctuation operators (F (Asa, σω), ω̃). We note that F (Asa, σω) = {F δA(A)}A∈Hsa is the CCR algebra
on the symplectic space (Asa, σω) (see (3.7)–(3.9)).

IId. The map F : Asa → F (Asa, σω) is not injective (the zero-mode coarse graining). For example,
τ̃x(F (A)) := F (τx(A)) = F (A), but it has a nontrivial macrodynamics α̃t(F (A)) := F (αt(A)). There-
fore, macrosystem II defined by the algebra of fluctuation operators is the triplet (F (Asa, σω), ω̃, α̃t).

The definition of the algebra of fluctuation operators F (Asa, σω) for a given microsystem ((A, ω, αt))
with the CCR algebra of the boson field operators allows describing the so-called collective excitations
(phonons, plasmons, excitons, etc.) in the pure state ω mathematically.

Deviating from the theme of this paper, we note that this approach also allows mathematically justifying
one more physical idea, linear response theory [26]. In this case, it is understandable that the fluctuation
algebra is more sensitive to “gentle” perturbations of the microscopic Hamiltonian by external sources than,
for example, the algebra at infinity m(A). This property becomes even more significant if the (pure) state
ω belongs to the critical domain [24]. Perturbations of the microscopic Hamiltonian that do not change
the equilibrium state ω (“gentle” pertubations) can produce different fluctuation algebras independent of
quantum or classical nature of the microsystem.

As we understood in Sec. 2.2, the idea that perturbation of the Hamiltonian produces equilibrium
states goes back to the Bogoliubov quasiaverages. This method was generalized to mixed states [29]. We
recall that it can be formulated as follows.

Let {Bl = τl (B)}l∈Z be operators breaking the symmetry of the original system and

HΛ(h) := HΛ −
∑

l∈Λ

hlBl, hl ∈ R
1.

Then the limit states for hl = h,
〈 • 〉 = lim

h→0
lim
Λ
〈 • 〉Λ,h, (3.10)

select pure states in the sense of the decomposition corresponding to the symmetry (Bogoliubov quasiaver-
ages).

If the external field h = ĥ/|Λ|α, then the obvious generalization of (3.10) gives either pure states (for
α < αc) or a family of mixed states indexed by ĥ and α ≥ αc (see [29]).
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It was shown in [24] that the algebra of fluctuations for a quantum model of a ferroelectric (structural
phase transitions) depends on the parameter α in the critical domain (below the critical line) even for pure
states, i.e., for α < αc = 1, we obtain δQ = α/2 for correlation critical exponents (3.2), while δP = 0 (for
T �= 0, where T is the temperature). Here, A := Q and B := P are the respective atomic displacement
and momentum operators at the site l = 0 of the lattice Z. The second observation in [24] concerns the
quantum nature of the critical fluctuations F δ( • ), i.e., fluctuations in the pure state ω, which belongs to
the critical line. It was shown that expected Abelian properties of critical fluctuations can change into
non-Abelian commutations between F δQ(Q) and F δP (P ) with δQ = −δP > 0 at the quantum critical point
T = 0, λ = λc. Here, λ := �/

√
m is the quantum parameter of the model, where m is the mass of atoms in

the sites of the lattice Z.
Because we usually have long-range correlations on the critical line, we can expect that the critical

fluctuations are sensitive to the “gentle” perturbations h = ĥ/|Λ|α mentioned above. On the other hand,
they must also be sensitive to decay of a direct interaction between the particles. In our model, the decay
of the harmonic force matrix elements is given by

φl,l′ ∼ |l − l′|−(d+σ) as |l − l′| → ∞. (3.11)

If σ ≥ 2, then we assume that interaction (3.11) is short-range, and if 0 < σ < 2, then we assume that it is
long range because the corresponding discrete Fourier transform has the two types of asymptotic forms as
k → 0:

φ̃(k) ∼

⎧
⎨

⎩
aσkσ + o(kσ), 0 < σ < 2,

a2k2 + o(k2), σ ≥ 2.
(3.12)

Therefore, our goal is to find exponents δA as a function of α and σ for a quantum ferroelectric model
with local interaction (3.11). We note that δQ = δQ(α, σ) is directly related to the critical exponent η

describing decay of the two-point correlation function for displacements on the critical line: η = 2−2dδA [30].

3.2. Quantum phase transition, fluctuations, and quasiaverages. Let Z a d-dimensional
square lattice. with each lattice site l occupied by a particle of mass m, we associate the position op-
erator Ql ∈ R

1 and the momentum operator Pl = �

i
∂

∂Ql
in the Hilbert space Hl = L2(R1, dx). Let Λ be a

finite cubic subset of Z, V = |Λ|, and the set Λ∗ be dual to Λ with respect to periodic boundary conditions.
The local Hamiltonian HΛ of the model is a self-adjoint operator on the domain dom(HΛ) ⊂ HΛ given by

HΛ =
∑

l∈Λ

P 2
l

2m
+

1
4

∑

l,l′∈Λ

φl,l′(Ql − Ql′)2 +
∑

l∈Λ

U(Ql) − h
∑

l∈Λ

Ql. (3.13)

Here, the local Hilbert space is HΛ := ⊗l∈ΛHl. We note that the second term in (3.13) represents the
harmonic interaction between particles, the last term represents the action of an external field, and the
third term is the anharmonic on-site potential acting in each l ∈ Z. We recall that potential U must have
a double-well form to describe a displacing structural phase transition attributed to the one-component
ferroelectric [30]. For example,

U(x) =
a

2
Q2

l + W (Q2
l ), W (x) =

1
2
bx2, a < 0, b > 0.

Another example is a nonpolynomial U such that a > 0 and W (x) = be−ηx/2, η > 0 for b > 0. Then (3.13)
becomes

HΛ =
∑

l∈Λ

P 2
l

2m
+

1
4

∑

l,l′∈Λ

φl,l′(Ql − Ql′)2 +
a

2

∑

l∈Λ

Q2
l +

∑

l∈Λ

W (Q2
l ) − h

∑

l∈Λ

Ql. (3.14)

175



We recall that model (2.2) manifests a structural phase transition breaking the Z2 symmetry {Ql → −Ql}l∈Z

at low temperatures if the quantum parameter λ < λc, [31], [32].
We note that a modified model (3.14) can be solved exactly in the approximation

∑

l∈Λ

W (Q2
l ) → V W

(
1
V

∑

l∈Λ

Q2
l

)
,

known as the model of self-consistent phonons (SCP) [30]. In this case, we obtain a model with the
Hamiltonian

HSCP
Λ =

∑

l∈Λ

P 2
l

2m
+

1
4

∑

l,l′∈Λ

φl,l′(Ql − Ql′)2 +
a

2

∑

l∈Λ

Q2
l + V W

(
1
V

∑

l∈Λ

Q2
l

)
− h

∑

l∈Λ

Ql, (3.15)

which can be solved by the approximating Hamiltonian method [33] (also see [34] and [24]). The free-energy
density for the Hamiltonian HΛ(c) approximating (3.15) is the equal to

fΛ[HΛ(c)] := − 1
βV

log TrHΛ e−βHΛ(c), β :=
1

kBT
. (3.16)

According to the approximating Hamiltonian method,

HΛ(c) :=
∑

l∈Λ

P 2
l

2m
+

1
4

∑

l,l′∈Λ

φl,l′ (Ql − Ql′)2 +
a

2

∑

l∈Λ

Q2
l +

+ V

[
W (c) + W ′(c)

(
1
V

∑

l∈Λ

Q2
l − c

)]
− h

∑

l∈Λ

Ql, (3.17)

and we can therefore write free-energy density (3.16) in the explicit form

fΛ[HΛ(cΛ,h(T, λ))] =
1

βV

∑

q∈Λ∗

log
[
2 sinh

βλΩq(cΛ,h(T, λ))
2

]
− 1

2
h2

Δ(cΛ,h(Tc, λ))
+

+ [W (cΛ,h(T, λ)) − cΛ,h(T, λ)W ′(cΛ,h(T, λ))].

Here, c = cΛ,h(T, λ) is a solution of the self-consistency equation

c =
h2

Δ2(c)
+

1
V

∑

q∈Λ∗

λ

2Ωq(c)
coth

βλ

2
Ωq(c). (3.18)

The spectrum Ωq(cΛ,h(T, λ)), q ∈ Λ∗, of HΛ(cΛ,h(T, λ)) is defined by the harmonic spectrum ωq and by the
gap Δ(cΛ,h(T, λ)):

Ω2
q(cΛ,h(T, λ)) := Δ(cΛ,h(T, λ)) + ω2

q ,

where Δ(cΛ,h(T, λ)) := a + 2W ′(cΛ,h(T, λ)) and

ω2
q :=: φ̃(0) − φ̃(q), φ̃(q) :=

∑

l∈Λ

φl,0e
−iql.

The approximating Hamiltonian method in the thermodynamic limit Λ → Z gives the stability condi-
tion for HΛ(cΛ,h(T, λ)) ≥ 0:

Δ(ch(T, λ)) = lim
Λ

Δ(cΛ,h(T, λ)) ≥ 0, ch(T, λ) := lim
Λ

cΛ,h(T, λ). (3.19)

Let a > 0 and W : R
1
+ → R

1
+ be a monotonically decreasing function with W ′′(c) ≥ w > 0. Then by

the definition of the spectral gap Δ(cΛ,h(T, λ)) and with (3.19) taken into account, we obtain the stability
domain: D = [c∗,∞), where c∗ = inf{c ≥ 0: Δ(c) ≥ 0} and Δ(c∗) = a + 2W ′(c∗) = 0.
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Theorem 3.1. We have the equality

lim
Λ

fΛ[HSCP
Λ ] = lim

Λ
sup
c≥c∗

fΛ[HΛ(c)] =: f(β, h). (3.20)

By the main theorem of the approximating method [24], the thermodynamics of the systems HSCP
Λ

and HΛ(c) are equivalent for c = cΛ,h(T, λ) given by (3.18). Therefore, to study the phase diagram of
model (3.15), we must consider Eq. (3.18) in the thermodynamic limit Λ → Z:

ch(T, λ) = ρ(T, λ, h) + Id(ch(T, λ), T, λ). (3.21)

Here, we split the thermodynamic limit of integral sum (3.18) into the zero-mode term plus h-term and the
rest:

ρ(T, λ, h) = lim
Λ

ρΛ(T, λ, h) :=

:= lim
Λ

{
h2

Δ2(cΛ,h(T, λ))
+

1
V

λ

2
√

Δ(cΛ,h(T, λ))
coth

βλ

2

√
Δ(cΛ,h(T, λ))

}
,

Id(ch(T, λ), T, λ) :=
λ

(2π)d

∫

q∈Bd

ddq
1

2Ωq(ch(T, λ))
coth

βλ

2
Ωq(ch(T, λ)),

(3.22)

Here, Bd = {q ∈ R
d : |q| ≤ π} is the first Brillouin zone.

To analyze the solution of (3.21), we consider two cases h = 0 and h �= 0 below.

Case h = 0. From (3.21) and (3.22), we easily find that for T = 0, there exists a λc such that
c∗ ≤ Id(c∗, 0, λ) for λ ≥ λc and c∗ = Id(c∗, 0, λc) defines the critical value of the quantum parameter λ. The
line (λ, Tc(λ)) of critical temperatures, which separates the phase diagram (λ, T ) into two domains (A)-(B),
then satisfies the identity

c∗ = Id(c∗, Tc(λ), λ) for λ ≤ λc, Tc(λc) = 0. (3.23)

Taking (3.21) and (3.22) into account, we can express conditions (3.23) as the critical-line equation

ρc∗(Tc(λ), λ) := ρ(T, λ, h)
∣∣
ch(T,λ)=c∗

= c∗ − Id(c∗, Tc(λ), λ) = 0. (3.24)

We thus obtain two solutions of (3.21) distinguished by the value of gap (3.19):

ρ(T, λ, 0) = 0, c0(T, λ) > c∗ or Δ(c0(T, λ)) > 0: T > Tc(λ) ∨ λ > λc, (A)

ρ(T, λ, 0) ≥ 0, c0(T, λ) = c∗ or Δ(c0(T, λ)) = 0: 0 ≤ Tc(λ) ∧ λ ≤ λc. (B)

For a fixed λ < λc, looking along the vertical line (λ = const), we observe the well-known temperature-
driven phase transition at Tc(λ) > 0 with an order parameter that can be defined in terms of ρ. On the other
hand, for a fixed T < Tc(0), looking along the horizontal line (T = const), we observe a phase transition at
λ, Tc(λ) = T , which is driven by the quantum parameter λ = �/

√
m.

We note that for λ > λc, i.e., for light atoms, the temperature-driven phase transition is suppressed
by quantum tunneling or quantum fluctuations. The decreasing Tc(λ) for light atoms is well known as an
isotopic effect in ferroelectrics [30]. Because the thermodynamics of model (3.15) and the approximating
Hamiltonian HΛ(cΛ,h(T, λ)) are equivalent by Theorem 3.1, the proof that we have the same effect in
model (3.15) including the existence of λc therefore follows from the solution of (3.15) and the monotonicity
of λ �→ Id(c∗, 0, λ). The proof of the isotopic effect for model (3.13) was obtained in [35] (also see [31], [32]).
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Further, we introduce canonical Gibbs states for Hamiltonians (3.14), (3.15), and (3.17):

ωβ,Λ,∗( • ) =
TrHΛ [exp(−βHΛ,∗)( • )]

TrHΛ exp(−βHΛ,∗)
, HΛ,∗ = HΛ, HSCP

Λ , HΛ(c). (3.25)

We note that these states for h = 0 inherit the Z
2 symmetry of Hamiltonians (3.14), (3.15), and (3.17):

Ql → −Ql:
ωβ,Λ,∗(Ql) = lim

Λ
ωβ,Λ,∗(−Ql) = 0. (3.26)

Case h �= 0. In this case, we obtain

ωβ,ch
(Ql) =

h

Δ(ch(T, λ))
. (3.27)

For disordered phase (A), we have limh→0 ch(T, λ) = c(T, λ) > c∗. Hence, Δ(c) > 0 and

lim
h→0

ωβ,ch
(Ql) = 0. (3.28)

For ordered phase (B), we have limh→0 ch(T, λ) = c∗, and then by (3.22),

ρc∗(T, λ) = c∗ − Id(c∗, T, λ) = lim
h→0

h2

Δ2(ch)
> 0. (3.29)

Finally, (3.27) and (3.29) yield the values of the physical order parameters

ωβ,±(Ql) := lim
h→±0

ωβ,ch
(Ql) = ±

√
ρc∗(T, λ) �= 0. (3.30)

Therefore, using Bogoliubov quasiaverage (3.30) and the results in Sec. 2.2, we obtain two extremal
translation-invariant equilibrium states ωβ,+ and ωβ,− such that

ωβ,+(Ql) = −ωβ,−(Ql) = [ρc∗(T, λ)]1/2 �= 0, l ∈ Z. (3.31)

In this case, it is easily verified that position and momentum fluctuations are normal, δQ = δP = 0 [24].
We return to this observation below in the framework of a more general approach of scaled Bogoliubov
quasiaverages.

Definition 3.1. We say that external sources in (3.14), (3.15), and (3.17) correspond to the scaled

Bogoliubov quasiaverage h → 0 if it is coupled to the thermodynamic limit Λ ↑ Z by the relation

hα :=
ĥ

V α
, α > 0. (3.32)

This choice of the quasiaverage is sufficiently flexible to scan between weak and strong external sources
as a function of α > 0. This gives a basis for the following proposition [24].

Proposition 3.1. If α < 1, then the limit equilibrium states remain pure,

lim
Λ

ωβ,ch
(Ql) = sgn ĥ [ρc∗(T, λ)]1/2,

which is similar to the limit h → ±0 of standard (nonscaled) Bogoliubov quasiaverage (3.31).
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If α ≥ 1, then the limit state ωβ,ĥ(Ql) becomes a mixture of pure states:

ωβ,ĥ(Ql) = aωβ,+(Ql) + (1 − a)ωβ,−(Ql),

where a := a(ĥ, α, ρc∗(T, λ)) ∈ [0, 1] is given by

a(ĥ, α, ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(
1 +

ĥ

ξ
√

ρ

)
, α = 1,

1
2
, α > 1.

(3.33)

Here, ξ := limΛ[Δ(cΛ,h(T, λ))V ] = (2βρ)−1 +
√

(2βρ)−2 + ĥ2/ρ.

Our next step is to study the influence of the scaled quasiaverage sources on the quantum fluctuation
operators. We consider the zero-mode (k = 0 in (3.2)) position and momentum fluctuation operators:

FδQ(Q) = lim
Λ

1
V 1/2+δQ

∑

i∈Λ

(
Qi − ωβ,Λ,ch

(Qi)
)
, (3.34)

FδP (P ) = lim
Λ

1
V 1/2+δP

∑

i∈Λ

(
Pi − ωβ,Λ,ch

(Pi)
)
. (3.35)

Because the approximating Hamiltonian is quadratic operator form (3.17), we can calculate the variances
of fluctuation operators (3.34) and (3.35) explicitly:

lim
Λ

ωβ,Λ,ch

({
1

V 1/2+δQ

∑

i∈Λ

(
Qi − ωβ,Λ,ch

(Qi)
)}2

)
=

= lim
Λ

1
V 2δQ

λ

2
√

Δ(cΛ,h(T, λ))
coth

βλ

2

√
Δ(cΛ,h(T, λ)), (3.36)

lim
Λ

ωβ,Λ,ch

({
1

V 1/2+δP

∑

i∈Λ

(
Pi − ωβ,Λ,ch

(Pi)
)}2 )

=

= lim
Λ

1
V 2δP

λm
√

Δ(cΛ,h(T, λ))
2

coth
βλ

2

√
Δ(cΛ,h(T, λ)). (3.37)

Here, ch := cΛ,h(T, λ) is a solution of self-consistent equation (3.18) and by the Z
2 symmetry Pl → −Pl of

Hamiltonian (3.15), we have ωβ,Λ,ch
(Pl) = 0 in (3.37) for all l ∈ Λ and for any values of β and h.

We note that existence of nontrivial variances (3.36) and (3.37) suffices to prove the existence of
characteristic function (3.3) with the sesquilinear form Sω( • , • ). The next ingredient is the symplectic
form σω( • , • ) corresponding to the fluctuation operator algebra. For this, we must calculate the limit of
commutator (3.6). From (3.34) and (3.35), we obtain

lim
Λ

[F δP

Λ (P ), F δQ

Λ (Q)] = lim
Λ

1
V 1+δP +δQ

∑

l,l′∈Λ

[Pl, Ql′ ] = lim
Λ

1
V δP +δQ

�

i
. (3.38)

We conclude this subsection with a list of remarks and comments.

1(A). Let h = 0 and [0, λc] � λ �→ Tc(λ). If the point (λ, T ) on the phase diagram is above the
critical line, T > Tc(λ), or if λ > λc (see (3.23)), then we have case (A), where Δ(ch(T, λ)) > 0 for
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h = 0. Consequently, nontrivial variances (3.36) and (3.37) are possible only for δQ = δP = 0. Hence,
momentum and displacement fluctuation operators (3.34) and (3.35) satisfy the central limit theorem. They
are called normal or noncritical fluctuation operators. In this case, commutator (3.38) is nonzero because
the operators F0(P ) and F0(Q) are generators of the non-Abelian algebra of normal fluctuations. Because
in this domain of the phase diagram, the order parameter ρ(T, λ, h) = 0 for h = 0 (see (3.22)), we say that
this pure phase is disordered. We note that ωβ,Λ,ch

(Ql) = 0 even without reliance on Z2 symmetry (3.22).

1(B). Let h = 0. If the point (λ, T ) on the phase diagram is below the critical line, T < Tc(λ) and
λ < λc, then limΛ cΛ,h=0(T, λ) = c∗, i.e., for (3.19), we have limΛ Δ(cΛ,h(T, λ))|h=0 = 0, and the order
parameter ρ(T, λ, h)|h=0 > 0 (see (3.22)). Consequently, we obtain δQ = 1/2 using (3.36) and δP = 0
using (3.37), which ensures a nonzero central limit. Hence, the displacement fluctuation operator F1/2(Q)
is abnormal, while the momentum fluctuation operator F0(P ) is normal. Based on (3.38), we conclude
that the operators F1/2(Q) and F0(P ) given by (3.34) and (3.35) commute, i.e., they generate an Abelian
algebra of fluctuations. We note that ρ(T, λ, h)|h=0 > 0. The presence of Z2 symmetry (3.22) implies that
displacement order parameter ωβ,c∗(Ql) = 0. Bogoliubov quasiaverage (3.30) gives a nonzero value for this
order parameter. This means that ωβ,c∗ is the one-half mixture of the pure states ωβ,± given by (3.31) and
explains the abnormal displacement fluctuation.

2. We now assume that h �= 0 and consider the standard Bogoliubov quasiaverages.

2(A). Because Δ(ch(T, λ)) > 0, using (3.36) and (3.37), we obtain the finite quasiaverages

lim
h→0

lim
Λ

ωβ,Λ,ch

({
1

V 1/2

∑

i∈Λ

(
Qi − ωβ,Λ,ch

(Qi)
)}2

)
,

lim
h→0

lim
Λ

ωβ,Λ,ch

({
1

V 1/2

∑

i∈Λ

(
Pi − ωβ,Λ,ch

(Pi)
)}2

)
.

This leads to normal fluctuations as in case 1(A).
2(B). Because h �= 0, the difference from case 1(B) arises because of limΛ Δ(cΛ,h(T, λ)) > 0 in (3.19)

and inequality (3.29), which holds in the ordered phase. The quasiaverage used to calculate displacement
variance (3.36),

lim
h→0

lim
Λ

1
V 2δQ

λ

2
√

Δ(cΛ,h(T, λ))
coth

βλ

2

√
Δ(cΛ,h(T, λ)), (3.39)

then has no nontrivial value for any δQ. Moreover, the quasiaverage for momentum variance (3.37) is
nontrivial only with δP = 0.

2∗(B). The difficulty in analyzing case 2(A) is one reason to consider the scaled Bogoliubov quasiaverage
with the parameter hα given by (3.32) instead of (3.39).

1∗(B). We conclude our remarks with the case where h = 0 and the point (λ, T ) belongs to the critical
line: (λ, Tc(λ)) and λ ≤ λc. Therefore, for h = 0, the gap limΛ Δ(cΛ,h(Tc(λ), λ)) = 0, and the order
parameter ρ(Tc(λ), λ, h)|h=0 = 0.

If λ < λc, then Tc(λ) > 0. Hence, with (3.37) taken into, the momentum fluctuation operator is normal,
δP = 0, while the displacement fluctuation operator is abnormal with the degree δQ > 0, which depends on
the asymptotic order O(V −γ), γ > 0, of the gap Δ(cΛ,h(Tc(λ), λ)) for h = 0 in thermodynamic limit. We
note that in the scaled limit limΛ Δ(cΛ,hα(Tc(λ), λ)) = 0, the asymptotic order O(V −γ) and hence δQ > 0
can be modified by varying the degree α, although it leaves δP = 0 unchanged. We study this phenomenon
in the next section. Based on (3.38), we conclude that the corresponding algebra of fluctuations is Abelian.

If λ = λc, then Tc(λc) = 0 in (3.22), and we observe a zero-temperature quantum phase transition
at the critical point (0, λc) by varying the quantum parameter λ. In this case, variances (3.36) and (3.37)
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become

lim
Λ

1
V 2δQ

λc

2
√

Δ(cΛ,h(0, λc))
, (3.40)

lim
Λ

1
V 2δP

λcm
√

Δ(cΛ,h(0, λc))
2

. (3.41)

Because Δ(cΛ,hα(0, λc)) = O(V −γ), expression (3.40) shows that the displacement fluctuation operator is
abnormal with the degree δQ = γ/4 > 0, which can be modified by varying the degree α. The momentum
fluctuation operator is also abnormal, but it satisfies the strict condition δP = −γ/4 < 0, which follows
from (3.41). We note that δQ + δP = 0 lead to a nontrivial commutator (3.38). Therefore, the algebra of
abnormal fluctuations generated by FδQ(Q) and FδP (P ) is non-Abelian and possibly depends on α.

In the next section, we elucidate a relation between the definition of quantum fluctuation operators
and the scaled Bogoliubov quasiaverages considered in the remarks above.

4. Quasiaverages for critical quantum fluctuations

4.1. Quantum fluctuations below the critical line. We now consider the (difficult) case 2∗(B).
We show that the scaled Bogoliubov quasiaverage with the parameter hα given by (3.32) is well suited for
analyzing fluctuations below the critical line.

Proposition 4.1. Let 0 ≤ T < Tc(λ) and λ < λc. Then the momentum fluctuation operator is

normal, δP = 0, while the displacement fluctuation operator is abnormal with a degree 0 < δQ ≤ 1/2,

which depends on the scaled Bogoliubov quasiaverage parameter α (see (3.32)). The fluctuation algebra is

Abelian.

Proof. Let 0 < α < 1. Using (3.22), (3.29), and (3.32), we obtain

ωβ,sgn ĥ(Ql) = lim
Λ

ωβ,Λ,ch
(Ql) = lim

Λ

ĥ

V αΔ(cΛ,h(T, λ))
= sgn ĥ

√
ρc∗(T, λ). (4.1)

This indicates that the limit corresponding to the scaled quasiaverage gives pure state (3.31) and that the
variance of the displacement fluctuation operator with (3.36) taken into account is finite only if δQ = α/2.
In this case,

0 < lim
Λ

ωβ,Λ,ch

({
1

V 1/2+δQ

∑

i∈Λ

(
Qi − ωβ,Λ,ch

(Qi)
)}2

)
= lim

Λ

1
V 2δQ−α

√
ρc∗(T, λ)

2β|ĥ|
< ∞. (4.2)

On the other hand, finite limit (3.37) implies that δP = 0, i.e., the momentum fluctuation operator is
normal. Because α > 0, using (3.38), we conclude that the fluctuation algebra is Abelian.

Now let α = 1. Taking (3.21), (3.22), and (3.32) into account, we then obtain

ρc∗(T, λ) = lim
Λ

ρΛ(T, λ, h) = lim
Λ

{
ĥ2

[V Δ(cΛ,h(T, λ))]2
+

1
V Δ(cΛ,h(T, λ))

}
=

= c∗ − Id(c∗, T, λ) > 0, (4.3)

and this implies that wĥ(T, λ) := limΛ[V Δ(cΛ,h(T, λ))] > 0 is bounded for h = ĥ/V . The displacement
order parameter then satisfies the relations

−
√

ρc∗(T, λ) < lim
Λ

ωβ,Λ,ch
(Ql) = lim

Λ

ĥ

V Δ(cΛ,h(T, λ))
=

ĥ

wĥ((T, λ)))
<

√
ρc∗(T, λ).
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This means that the equilibrium Gibbs state

ωβ,ĥ( • ) = ξωβ,+( • ) + (1 − ξ)ωβ,−( • ), ξ =
1
2

[
1 +

ĥ

(wĥ(T, λ)
√

ρc∗(T, λ) )

]
∈ (0, 1), (4.4)

is a convex combination of pure states (4.1). We note that (3.36) and the boundedness of wĥ(T, λ) imply
that δQ = 1/2, while (3.37) gives δP = 0. Hence, in the mixed state ωβ,ĥ( • ), the displacement fluctuations
are abnormal, but the momentum fluctuation operator remains normal, and the fluctuation algebra is
Abelian, as in the preceding case.

Let α > 1. Then again by (3.21), (3.22), and (3.32), we obtain

ρc∗(T, λ) = lim
Λ

1
V Δ(cΛ,h(T, λ))

= c∗ − Id(c∗, T, λ) > 0, (4.5)

whence using (3.27), we obtain the order parameter for the displacement operator:

lim
Λ

ωβ,Λ,ch
(Ql) = lim

Λ

ĥ

V αΔ(cΛ,h(T, λ))
= 0. (4.6)

We note that scaled quasiaverages (4.5) and (4.6) in ordered phase (B) differ essentially from standard
quasiaverages (3.29) and (3.30). Using (3.36) and (3.37), we obtain δQ = 1/2 and δP = 0, which coincide
with the case α = 1, including the Abelian fluctuation algebra. The case α > 1 is formally equivalent to
the case α = 1 for ĥ → 0, which implies ξ → 1/2 (see (4.4)). This can also be deduced from (4.6).

4.2. Abelian algebra of fluctuations on the critical line. Here, we find the exponents δQ and
δP on the critical line as functions of the parameters d, σ, and α (if it depends on α. For this, we proceed
as follows. The critical line is defined by (3.24). Hence, ρc∗(Tc(λ), λ) = 0, and expression (3.22) in the limit
limΛ Δ(cΛ,h(T, λ)) = c∗ then becomes

lim
Λ

{
1
V

λ

2
√

Δ(cΛ,h(T, λ))
coth

βcλ

2

√
Δ(cΛ,h(T, λ)) +

ĥ2

V 2αΔ2(cΛ,h(T, λ))

}
= 0, (4.7)

where βc := 1/kBTc(λ).
Because we choose h = ĥ/V α for scaled quasiaverage (3.32), from (3.22) and (3.24), we find that

limΛ cΛ,h(Tc(λ), λ) = c∗. Hence, limΛ Δ(cΛ,h(T, λ)) = 0. We must now consider two cases:

a. if Tc(λ) > 0, then (4.7) is equivalent to

lim
Λ

{
1

V Δ(cΛ,h(T, λ))βc
+

ĥ2

V 2αΔ2(cΛ,h(T, λ))

}
= 0, (4.8)

b. if Tc(λc) = 0, then (4.7) is equivalent to

lim
Λ

{
λ

2V
√

Δ(cΛ,h(0, λ))
+

ĥ2

V 2αΔ2(cΛ,h(0, λ))

}
= 0. (4.9)

In both cases, the gap Δ in (4.7) behaves asymptotically as V → ∞ as Δ � V −γ either with 0 < γ < 1
and 0 < γ < α in (4.8) or with 0 < γ < 2 and 0 < γ < α in (4.9). We note that Eq. (3.18) is the key for
calculating this behavior. To make this obvious, we rewrite (3.18) in the equivalent form

(cΛ − c∗) + [c∗ − Id(cΛ, Tc(λ), λ)] +

+
[
Id(cΛ, Tc(λ), λ) − 1

V

∑

q∈Λ∗,
q 
=0

λ

2Ωq(cΛ)
coth

βcλΩq(cΛ)
2

]
=

(
ĥ

V αΔ

)
2

+
1
V

λ

2
√

Δ
coth

βcλ
√

Δ
2

, (4.10)
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where we set cΛ := cΛ,h(Tc(λ), λ) and Δ := Δ(cΛ,h(Tc(λ), λ). The asymptotic behavior of the left-hand side
of (4.10) results from the assumption that h = ĥ/V α and from the rate of convergence of the Darboux–
Riemann sum to the integral Id(cΛ, Tc(λ), λ). This together with the asymptotic form of the right-hand
side gives the exponent γ.

Proposition 4.2. If (T, λ) belongs to the critical line (Tc(λ), λ) with Tc(λ) > 0, then the spectral gap

Δ(cΛ,h(T, λ)) behaves asymptotically with respect to the volume as

γ =

⎧
⎪⎪⎨

⎪⎪⎩

2α

3
, α < αc,

1
2
, α ≥ αc,

αc =
3
4
,

if d > 2σ, as

γ =

⎧
⎪⎪⎨

⎪⎪⎩

2α

3
+ 0, α < αc,

1
2

+ 0, α ≥ αc,

αc =
3
4
,

if d = 2σ, and as

γ =

⎧
⎪⎨

⎪⎩

2α
σ

d + σ
, α < αc,

1
2
, α ≥ αc,

αc =
1
2

+
σ

2d
,

if σ < d < 2σ.

Because Tc(λ) > 0, the right-hand side of (4.10) has asymptotic behavior (4.8) or

O[(V Δ)−1 + (V αΔ)−2]. (4.11)

We choose αc such that O[(V Δ)−1] = O[(V αcΔ)−2]. We then obviously obtain O[(V Δ)−1 + (V αcΔ)−2] =
O[(V Δ)−1] for asymptotic behavior (4.11), i.e., for α = αc, the gap Δ has the same asymptotic behavior as
for ĥ = 0. The three regimes of the potential decreasing in dependence on σ presented in Proposition 4.2
were considered in detail in [36].

Theorem 4.1. If (T, λ) belongs to the critical line (Tc(λ), λ) with Tc(λ) > 0, then the algebra of

fluctuation operators is Abelian. The momentum fluctuation operator FδP (P ) is normal (δP = 0), while

the position fluctuation operator FδQ(Q) is abnormal with the critical exponent given by

δQ =

⎧
⎪⎨

⎪⎩

α

3
, α < αc,

1
4
, α ≥ αc,

αc =
3
4
,

if d > 2σ, by

δQ =

⎧
⎪⎨

⎪⎩

α

3
+ 0, α < αc,

1
4

+ 0, α ≥ αc,

αc =
3
4
,

if d = 2σ, and by

δQ =

⎧
⎪⎨

⎪⎩

α
σ

d + σ
, α < αc,

σ

2d
, α ≥ αc,

, αc =
1
2

+
σ

2d
,

if σ < d < 2σ.
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Proof. To verify that the algebra of fluctuation operators generated by F δQ and F δP is Abelian, it
suffices to note that the limit of the commutator satisfies the equality

lim
Λ

[F δP

Λ , F
δQ

Λ ] = lim
Λ

1
|Λ|1+δP +δQ

∑

l,l′∈Λ

[Pl, Ql′ ] = 0.

The second part of the theorem follows from (3.36) and (3.37), which on the critical line for h = ĥ/V α

become

lim
Λ

ωβ,Λ,ch

({
1

V 1/2+δQ

∑

i∈Λ

(
Qi − ωβ,Λ,ch

(Qi)
)}2

)
= lim

Λ

1
V 2δQ

kBTc(λ)
Δ(cΛ,h(Tc(λ), λ)

, (4.12)

lim
Λ

ωβ,Λ,ch

({
1

V 1/2+δP

∑

i∈Λ

(
Pi − ωβ,Λ,ch

(Pi)
)}2 )

= lim
Λ

1
V 2δP

mkBTc(λ). (4.13)

Therefore, variance (4.12) is nontrivial if and only if δQ = γ/2, and (4.13) is nontrivial if and only if δP = 0.
Here, the value of δQ is taken from Proposition 4.2.

If we set σ = 2 in the theorem, then the statement corresponds to short-range interactions with σ ≥ 2
(see (3.12)). This observation coincides with the result in [24] if we set α = ∞, i.e., in the case with no
quasiaverage sources.

4.3. Non-Abelian algebra of fluctuations on the critical line. We have the following statement.

Proposition 4.3. If (T, λ) coincides with the critical point (0, λc), then the asymptotic volume be-

havior of the gap Δ(cΛ,h(0, λ), 0) is given by

γ =

⎧
⎪⎪⎨

⎪⎪⎩

2α

3
, α < αc,

2
3
, α ≥ αc,

αc = 1,

if d > 3σ/2, by

γ =

⎧
⎪⎪⎨

⎪⎪⎩

2α

3
+ 0, α < αc,

1
2

+ 0, α ≥ αc,

αc = 1,

if d = 3σ/2, and by

γ =

⎧
⎪⎨

⎪⎩

2α
σ

2d + 3σ
, α < αc,

σ

d
, α ≥ αc,

αc =
1
2

+
3σ

4d
,

if σ/2σ < d < 3σ/2.

At the point (0, λc) on the critical line, we obtain limit (4.9), i.e., the gap has the asymptotic value
Δ � V −γ . The right-hand side of (4.10) then has the asymptotic form O[(V αΔ)−2 +(V Δ1/2)−1]. Similarly
to Proposition 4.2, we define α = αc such that O[(V αΔ)−2] = O[(V Δ1/2)−1]. We must again consider three
regimes for the value of σ in Proposition 4.3 [36].
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Theorem 4.2. If (T, λ) coincides with the critical point (0, λc), then the algebra of fluctuation op-

erators is non-Abelian because the position fluctuation operator FδQ(Q) is abnormal (δQ > 0), while the

momentum fluctuation operator FδP (P ) is supernormal (squeezed) with δP = −δQ, and the exponent δQ

is given by

δQ =

⎧
⎪⎨

⎪⎩

α

6
, α < αc,

1
6
, α ≥ αc,

αc = 1,

if d > 3σ/2, by

δQ =

⎧
⎪⎨

⎪⎩

α

6
+ 0, α < αc,

1
8

+ 0, α ≥ αc,

αc = 1,

if d = 3σ/2, and by

δQ =

⎧
⎪⎨

⎪⎩

α
σ

2d + 3σ
, α < αc,

σ

4d
, α ≥ αc,

αc =
1
2

+
3σ

4d
,

if σ/2σ < d < 3σ/2.

Proof. Taking (3.23) into account in limλ→λc−0(Tc(λ), λ) = (0, λc), we obtain βc = (kBTc(λ))−1 → ∞.
Variances (3.36) and (3.37) then become

lim
Λ

ω∞,Λ,ch

({
1

V 1/2+δQ

∑

i∈Λ

(
Qi − ωβ,Λ,ch

(Qi)
)}2

)
= lim

Λ

1
V 2δQ

λ√
Δ(cΛ,h(0, λc))

,

lim
Λ

ω∞,Λ,ch

({
1

V 1/2+δP

∑

i∈Λ

(
Pi − ωβ,Λ,ch

(Pi)
)}2 )

= lim
Λ

1
V 2δP

λm

2

√
Δ(cΛ,h(0, λc)).

Because Δ � V −γ , it suffices to apply Proposition 4.3 with δQ = γ/4 = −δP to obtain the possible values
of δQ for nontrivial variances. The non-Abelian nature of the algebra of fluctuation operators follows from
commutator (3.38).

We note that the same remark about σ = 2 at the end of Sec. 4.2 also holds for the quantum fluctuations
at the point (0, λc).

5. Concluding remarks

We have analyzed the Bogoliubov method of quasiaverages for quantum systems in which phase tran-
sitions with an order parameter occur.

First, we verified the possibility to use this method in analyzing phase transitions with SSB. For this,
we considered examples of the BEC in continuous perfect and interacting systems. The existence of different
types of condensation led to the conclusion that only quantities defined in terms of Bogoliubov quasiaverages
are physically meaningful (see Secs. 2.2 and 2.3).

The innovation in the second part of the paper is that we presented arguments supporting the use of the
Bogoluibov method of the scaled quasiaverages. Taking the structural phase transition as a basic example,
we investigated the relation between SSB and critical quantum fluctuations. Our analysis in Sec. 3 showed
that the scaled quasiaverages are again a tool suitable for describing the algebra of quantum fluctuation
operators. The subtlety of quantum fluctuations already becomes noticeable on the level of the question
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of the existence of the order parameter, which can be destroyed by quantum fluctuations even at a zero
temperature (see Sec. 3.2). We note that the standard Bogoluibov method suffices for this analysis.

A relevance of the scaled Bogoluibov quasiaverages becomes evident for mesoscopic quantum fluctuation
operators defined by the quantum central limit because this limit is sensitive to the quantity α determining
the behavior of the scaling parameter. In contrast to the non-Abelian algebra of normal fluctuation operators
in the disordered phase, the critical quantum fluctuations in the ordered phase and on the critical line depend
on α (see Sec. 4). This concerns both abnormal and supernormal (squeezed) quantum fluctuations. They
form various Abelian and non-Abelian algebras of fluctuation operators, which all depend on α (see Secs. 4.1
and 4.2).

Several points connected with this paper were developed in [37], [38].

Appendix A

For the reader’s convenience, we present the statement of the basic Fannes–Pulé–Verbeure theorem [39]
(also see the extension to nonzero momenta in [40] and [12]). Unfortunately, neither [39] nor [40] show that
the states ωβ,μ,φ, φ ∈ [0, 2π) in the theorem below are ergodic. The simple, but instructive, proof of this
was given in [12].

Proposition A.1. Let ωβ,μ be an analytic gauge-invariant equilibrium state. If ODLRO (2.45) holds

for ωβ,μ, then there exist ergodic states ωβ,μ,φ, φ ∈ [0, 2π), that are not gauge invariant and satisfy the

following conditions:

1. ωβ,μ,φ �= ωβ,μ,θ for all θ, φ ∈ [0, 2π) such that θ �= φ,

2. the state ωβ,μ has the decomposition

ωβ,μ =
1
2π

∫ 2π

0

dφωβ,μ,φ,

3. for each polynomial Q in the operators η(b0) and η(b∗0) and for each φ ∈ [0, 2π),

ωβ,μ,φ(Q(η(b∗0), η(b0)X) = ωβ,μ,φ(Q(
√

ρ0e
−iφ,

√
ρ0e

iφ)X), X ∈ A.

Following [12], we note that the proof of this proposition is constructive. An important point is that
the state ωβ,μ is separating (or faithful), i.e., if ωβ,μ(A) = 0, then A = 0. This property, which depends on
the extension of the states ωβ,μ to the von Neumann algebra πω(A)′′ [15], [41] applies to thermal states but
not to ground states, even without their extension. In fact, a ground state (or vacuum) is unfaithful on A
(see Proposition 3 in [42]). We therefore see that thermal states and ground states can differ with regard
to the ergodic decomposition in point 2 of Proposition A.1 (also cf. our discussion in Sec. 5).
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