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Abstract

This study aimed to investigate the atherogenicity (quality) of LDL particles in patients with acute and recovered from
COVID-19 infection. The participants were adults, aged 18 years or older of both sexes. Those with positive RT-PCR results
at baseline were included in the Acute COVID-19 group (n=33), and those with negative RT-PCR six months after acute
infection, were included in the Recovered COVID-19 group (n=30). The LDL quality was evaluated using three validated
methods: Z-scan, UV-visible spectroscopy, and Lipoprint system. The Recovered COVID-19 group showed significantly
higher numbers of large LDL particles (less atherogenic) than the Acute COVID-19 group (P <0.05). We also found that
COVID-19 infection was associated with the oxidative modification of LDL particles. D-dimer and CRP levels were cor-
related with Z-scan results and antioxidant-amount estimate. Moreover, we noticed that the infection left a sequel in LDL
quality, even after six months of recovery. These findings highlight the importance of monitoring lipids during and after
recovery from COVID-19 infection, and their potential deleterious effect on the LDL profile might correlate with the pro-
gression of atherosclerosis and poor clinical outcomes.
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Although some studies showed that patients under lipid-
lowering therapy did not show better clinical outcomes
than normal or hypercholesterolemic patients [11-13], a
recent systematic review with meta-analysis found that
statin therapy in-hospital leaded a significant reduction
of all-cause mortality in COVI-19 patients [14]. The role
of statin on cardiovascular disease risk is not limit to its
lipid-lowering effect, but anti-inflammatory, antioxidant
and immunomodulatory effect. The last three can impact
directly on viral replication [15].

Lipoproteins are complex structures containing different
lipids, proteins, density, molecular weight, and minor com-
ponents (antioxidants, for example, tocopherols and poly-
phenols) that define their functionality [16, 17]. Therefore,
characteristics of lipoproteins other than lipid content may
be involved in COVID-19 infection and prognosis. Despite
that, the relevance of the quality of lipoprotein in COVID-
19 patients were not described yet. It was shown that small
and dense LDL (;pLDL) particles are more atherogenic than
large and dense LDL (; pLDL) subfractions [18]. ¢,LDL
migrates more quickly to the subendothelial layer, where
it associates with proteoglycans undergoing additional
oxidative modifications and is uptaken by macrophages
[19]. Therefore, qualitative aspects of lipoproteins can be
important for COVID-19 infection; however, this needs to
be confirmed.

In previous in vitro [20] and in vivo [21-24] studies, we
have shown that the nonlinear optical Z-scan experimental
technique [25] gives complementary information about the
atherogenic profile of the LDL. To the best of our knowl-
edge, the quality (defined hereafter as the better the qual-
ity of the LDL, the less atherogenicity of particle) of LDL
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in COVID-19 patients remains an interesting issue, mainly
when different stages of the disease are considered.

Based on this, our aim was to investigate the lipid pro-
file and the quality of LDL particles using three validated
methods (Z-scan, UV-visible spectroscopy, and the Lipo-
print system), which can improve the traditional lipid profile
investigation in patients infected by SARS-CoV2. For that,
we monitored independent acute and recovered COVID-19
adult patients who attended a public community hospital in
a low-middle-income area in Sdo Paulo, Brazil.

2 Materials and Methods
2.1 Study Population and Design

The study population was derived from a community-pro-
spective Cohort of COVID-19 patients (n=445) with flu-
like symptoms, including more severe cases of pneumonia.
These patients were attended in the emergency department
care (between February 2020 and March 2021) from a
community public secondary hospital, Hospital Universi-
tario (HU) from the University of Sdo Paulo, located in the
Butantan region, a low-middle income area in the western
region of Sdo Paulo city (Brazil). The Fig. 1 describes the
flowchart of study.

All subjects of both sexes and aged 18 years or older
with positive COVID-19 confirmed by RT-PCR (n=445) at
hospital admission were potentially considered for inclusion
in the present study. Of the 445 patients with acute infection
due to COVID-19, 90 had plasma available for additional
analysis; however, 57 were excluded due to insufficient
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Fig. 1 Flowchart of study
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material to analyze LDL quality. Thus, 33 individuals had
their LDL quality evaluated during the acute phase (Acute
COVID-19 group). Additionally, 30 paired individuals by
sex, age and lipid-lowering medication had their lipid qual-
ity evaluated six months after acute infection (Recovered
COVID-19 group). Therefore, for both groups we enrolled a
non-probabilistic sampling of individuals with positive RT-
PCR to COVID-19 at acute and recovered phases. Local
Research Ethics Committees approved the study (Hospital
Universitario, Universidade de Sdo Paulo-HU/USP; CAAE:
59,599,722.9.0000.0076). All procedures followed the ethi-
cal principles for medical research involving human subjects
as stated in the Declaration of Helsinki and only were per-
formed after the participants signed the informed consent
agreement.

2.2 Clinical Characteristics of Individuals

At baseline, clinical information was obtained by direct
interview performed by a physician. For Recovered COVID-
19 group—6 months after discharge, the patients' clinical
characteristics were obtained via telephone and direct inter-
views performed by a trained interviewer. We collected data
on sociodemographic and clinical characteristics (sex, age,
race, smoking status, alcohol intake, and previous clini-
cal comorbidities such as diabetes mellitus, cardiovascular
diseases, severe acute respiratory syndrome, stroke, suba-
rachnoid hemorrhage, and chronic kidney disease). Regular
lipid-lowering drugs were collected from medical records
and direct interviews.

2.3 Blood Samples and LDL Purification

Blood samples were collected at hospital (Acute COVID-19
group) or at home (Recovered COVID-19 group) after 12h
of fasting in EDTA-2Na tubes, and plasma was obtained
after centrifugation (3000 rpm, 4°C for 15 min). Protease
inhibitors (10 pg/mL aprotinin, 10 uM benzamidine, and
5 uM phenylmethylsulphonyl fluoride—PMSF) and anti-
oxidant (100 uM butylated hydroxytoluene — BHT) were
added to the plasma, and samples were maintained at —80°C
until analysis. LDL was obtained from plasma by prepara-
tive sequential ultracentrifugation (40,000 rpm, 4°C for
18h) equipped with a fixed-angle rotor (Hitachi Himac CP
70MX, Tokyo, Japan). The total protein level in LDL was
determined using a bicinchoninic acid (BCA) protein com-
mercial assay kit (Pierce, Rockford, IL, USA), with bovine
serum albumin as the standard. More details about the LDL
separation can be found in our previous articles [22, 23, 26].
All experiments were performed by validated methods and
instructions of manufacturers for standard and commercial
kits.

2.4 Biochemistry Analysis

The concentration of total cholesterol (TC), HDL-C, and tri-
glycerides (TG) was determined using a colorimetric assay
using the following kits: Cholesterol Liquiform®, Choles-
terol HDL®, and Triglycerides Liquiform®, respectively
(Labtest, Minas Gerais, Brazil). The content of cholesterol in
LDL was calculated using the formula proposed by Friede-
wald [27]: LDL-C=(TC — HDL-C) — (TG/5). Additionally,
the C-reactive protein (CRP) level was measured by neph-
elometric technology (BN IITM System, Siemens Health-
ineers, Germany) and the D-dimer level by a fully automated
coagulation analyzer (Siemens Sysmex® CS-2500), follow-
ing the manufacturer’s instructions.

2.5 Lipids Analyses
2.5.1 Z-scan Technique

In order to measure the nonlinear optical properties of LDL
samples (1.0 mg/dL), the Z-scan technique was used. A
focused Gaussian laser beam, with a wavelength of 532 nm,
was used to illuminate the LDL samples. When converting
light energy into heat, the sample forms a thermal lens. Sev-
eral factors determine the strength of a thermal lens, includ-
ing the thermo-optic coefficient, linear absorption coeffi-
cient, and thermal conductivity. A temperature of 37°C was
used for all the Z-scan experiments. The amplitude of the
thermal lens 6 is a dimensionless parameter that measures
the strength of the thermal lens within LDL samples and is
related to the peak-to-valley amplitude measured from the
normalized transmittance as a function of the z-position of
the sample characteristic curve [25]. In the Z-scan setup,
a mechanical chopper modulated the light intensity with a
square pulse (30 ms pulse width). The samples were scanned
around the focal point, along the z-direction. The intensity
of the transmitted light was measured as a function of the
z-position of the sample. The thermal lens strength and, con-
sequently, the LDL particle modifications are proportional
to the peak-to-valley amplitude of the characteristic curves.

2.5.2 UV-visible Spectroscopy

In the UV-visible spectroscopy, the linear optical absorp-
tion of the sample is measured. The linear absorbance
spectra of LDL samples were obtained using quartz
cuvettes with a 1 cm optical path placed in the UV-vis-
ible spectrophotometer. The absorption of the sample was
calculated by removing the Rayleigh scattering from the
extinction spectra, measured with the spectrophotometer.
LDL particles are composed of different molecules which
absorb light in particular wavelengths. ApoB-100, choles-
terol, a-tocopherol, and phospholipids absorbance mainly
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range from 200 to 300 nm. The wavelength of 484 nm
corresponds to one of the broad peaks of the absorbance
of carotenoids (allowing the antioxidant-amount estimate),
which extends to higher wavelengths, reaching 532 nm,
used in our Z-Scan experiments. Under these experimental
conditions, we are able to evaluate the amount of carot-
enoids in the LDL particles. All the UV—visible spectros-
copy measurements were performed at 37°C.

2.5.3 Lipoprotein Subfractions Analysis

The LDL subfractions were determined using the
Lipoprint® System (Quantimetrix Corporation). First, 25
uL of plasma and 200 puL of a gel containing lipophilic
dye were pipetted for LDL analysis. After homogeniza-
tion (7x), the sample were applied to the polyacrylamide
gel underwent photopolymerization (30 min), followed
by electrophoresis in an electrophoresis buffer. The bands
show the relative amount of lipoprotein particles per
sample in decreasing order of particle size. One VLDL
band, IDL A, B, and C, and seven LDL subfractions were
obtained from the LDL subfraction kit. LDL-1 and 2 were
classified as larger and less dense particles (;pLDL).
Small dense particles (spLDL) were identified from the
sum of the LDL-3 to 7 subfractions. After the applica-
tion of the cut-off point based on total LDL size, pheno-
type A (>26.51 nm—Iless atherogenic) and phenotype B
(<26.5 nm—atherogenic) were identified. All results are
expressed as a percentage of the area under the curve,
adjusted by the total cholesterol content. HDL subfractions
were also analyzed in the same system. HDL-1 to HL-3 as
named as { yHDL, HDL-4 to HDL-7 as named as ;pHDL
and HDL-8 to HDL-10 as named as gpHDL.

2.6 Statistical Analysis

The statistical strategy was based in primary (differences
in new markers—Z-scan, UV-visible spectroscopy, and
lipoprotein subfractions) and secondary (traditional mark-
ers — lipid profile) outcomes in Acute and Recovered groups.
The median and interquartile ranges (IQR), or mean and
standard deviation (£ SD), were used to express continu-
ous variables according to their distribution. The normal-
ity of the data distribution was examined using the Shap-
iro—Wilk test. Depending on the distribution of a variable,
the Mann—Whitney U test or t-test was used. The Chi-square
and Fisher’s exact tests were used to compare categorical
variables. Spearman’s rank test was used to analyse corre-
lations between continuous variables. Statistical analyses
were performed using OriginPro 2021 software. Statistical
significance was defined as P-value <0.05 for all analyses.
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3 Results
3.1 Clinical and Biochemistry Parameters

Table 1 shows the results of the clinical parameters of all
patients. The mean time of recovering was 26.8 months
(min. = 10 months — max. =32 months), in which only 4
(16%) were two or more reinfection episodes during this
period of time. Between 6—12 months of follow-up, we
observed that 24% (n=8) patients in Acute group death.
Individuals in both the Acute and Recovered COVID-19
groups had similar profiles, except for D-dimer (1,362;
IQR =579-2,201 ng/mL versus 656; IQR =451-1,529 ng/
mL; P=0.0248), respectively. Together, CRP and D-dimer
levels in both groups indicated high cardiovascular risk at
baseline time. More than 60% of patients in both groups
presented SARS (P =0.41) during acute phase. Although
24% (n=8) of patients in Acute COVID-19 group and 3%
(n=1) in Recovered COVID-19 needed ICU admission,
only 9% (n=3) and 3% (n= 1), respectively, were submit-
ted to tracheal intubation. Almost 67% of the computed
tomography analyses in both groups were compatible with
COVID-19 infection, in which more than 48% and 37% of
lung were affected in Acute and Recovered groups, respec-
tively. Tiredness/shortness of breath (60%) were the most
frequent symptoms in Acute COVID-19 group and similar
profile was cited by 27% patients in Recovered group after
10 months of discharge.

3.2 Lipid Profile

Total cholesterol in Acute COVID-19 group was sig-
nificantly lower than Recovered COVID-19 group
(TC=200.7; IQR=185.9-213.1 mg/dL) versus
TC=215.4; IQR =208.0-220.2 mg/dL; P=0.002),
and similar characteristics were observed for LDL-C
(101.6 +24.4 mg/dL versus 115.6 +18.1 mg/dL;
P=0.021). Triglycerides (TG=138.5; IQR =93.5-173.1
versus 109.3; IQR=73.9-171.4 mg/dL; P=0.121)
and HDL-C (70.4+21.6 versus 72.3+11.3 mg/dL;
P =0.693) showed similar profile between the Acute
and Recovered COVID-19 groups, respectively (Fig. 2).
Additionally, non-HDL levels in both groups were simi-
lar (Acute group=109.6 + 64.7 mg/dL and Recovered
group =123.4 +37.7 mg/dL; P=0.067).

3.3 Z-scan and UV-visible Results

Figure 3 shows a patient's typical UV—visible spectros-
copy and Z-scan results from the Acute and Recovered
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Table 1 Characteristics of individuals at baseline and after 6 months, according to the Acute and Recovered COVID-19 groups

Baseline > 6 months

Acute Recovered COVID-19 Recovered COVID-19 p* P

COVID-19 group (n=30) group (n=30)

group (n=33)
Age, years (mean, SD) 60+19 53+15 - 0.101 -
Sex, male (n, %) 21 (63) 13 (43) - 0.451 -
Race, white (n, %) 25 (75) 20 (66) - 0.890 -
Smoking (n, %) 2 (6) 3 (10) - 0.662 -
Alcoholism (n, %) 1(3) 00 - 1.000 -
Physical activity, yes (n, %)
Less - - 15 (60) - -
Similar - - 3(12) - -
High - - 7 (28) - -
Changes in medications (n, %)
Lipid-lowering - - 7 (28) - -
Anti-hypertensive - - 11 (44) - -
Anti-hyperglycaemia - - 9(37.5) - -
SARS 28 (84) 20 (66) - 0.411 -
SAH 12 (36) 13 (43) - 0.952 -
Comorbidities (n, %) 20 (61) 18 (60) 18 (60) 0.998 1.000
DM 927 6 (20) 6 (20) 0.933 1.000
Stroke 1(3) 0(0) 0(0) 1.000 1.000
Dyslipidaemia 1(3) 0 (0) 7 (28) 1.000 0.032
CVD 1(3) 0(0) 0(0) 1.000 1.000
COVID-19 infection (n, %)
<lI 33 (100.0) 30 (100.0) 26 (84) 1.00 0.076
>1 0(0.0) 0(0.0) 4 (16) - -
CRP (mg/L) 92 (49-195) 87 (56-175) - 0.840 -
D-dimer (ng/mL) 1,362 (579-2,201) 656(451-1,529) - 0.025 -
Sequaeles, yes (n, %)
Tiredness/Shortness of breath 20 (61.0) 16 (53.3) 6(27.3) 0.067 0.001
Forgetfulness/Dizziness 3(9.0) 0(0.0) 5(22.7) 0.089 0.048
Anosmia 6 (18.0) 7(23.3) 29.1) 0.124 0.042
Others 33 (100.0) 30 (100.0) 3(13.6) 0.244 <0.010

Results are shown in median (IQR), n (%) or mean +SD. DM, Diabetes Mellitus; SARS, severe acute respiratory syndrome; SAH, subarachnoid
haemorrhage; CVD, cardiovascular diseases; CRP, C-reactive protein. Categorical variables were compared using the Chi-square test or Fish-
er’s Exact test, and continuous variables using Mann—Whitney test or T-test according to the normality distribution. Significant level adopted
(P<0.05). *Acute COVID-19 group vs Recovered COVID-19 group at baseline. **Acute COVID-19 group vs Recovered COVID-19 group

after 6 months.

COVID-19 groups. The Acute COVID-19 group shows
smaller light absorbance peaks at the visible wavelengths
(Fig. 1a) and smaller peak-to-valley amplitude (Fig. 1b)
when compared to the Recovered COVID-19 group.

In Fig. 4a, the box plot presents the measurements of
the phase shift  from the Acute and Recovered COVID-
19 groups. We observed a significant difference (P <0.001)
in the median value in the Acute COVID-19 group
(median 8=0.011; IQR =0.004-0.017) in comparison
to the Recovered COVID-19 group (median 6 =0.027,;
IQR =0.014-0.039). Figure 4b shows the box plot for

optical absorbance at wavelength 484 nm in both groups.
Median values of this parameter are also significantly lower
in the Acute COVID-19 group (median absorbance =0.076;
IQR =0.054-0.147 versus median absorbance=0.195;
IQR=0.121-0.315; P<0.001) than in the Recovered
COVID-19 group.

Figure 5a-b shows a significant negative correlation
between CRP level and carotenoids estimated by absorb-
ance at wavelength 484 nm (r=-0.58; P<0.001), and
phase shift 0 (r=-0.37; P=0.042) for the Acute COVID-
19 group. CRP level was consistently correlated with
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Fig. 3 The mean of UV-visible results (a), with the absorbance as a function of wavelength; and Z-scan results (b), with the normalized trans-
mittance as a function of the sample z-position from Acute and Recovered COVID-19 groups

fibrinogen in Acute COVID-19 (r=0.826; p=0.001) and
Recovered groups (r=3853; p=0.007). Figure 5c shows
a significant negative correlation between D-dimer and
carotenoids estimated in the Acute COVID-19 group
(r=-0.36; P=0.039). For the Acute and Recovered
COVID-19 groups (Fig. 5d), a significant positive correla-
tion between the phase shift (8) and carotenoids estimated

@ Springer

(r=0.84; P<0.001) was observed. The lipid profile was
not correlated with © and carotenoid levels in the LDL
particles. Additionally, we found a significant positive cor-
relation between age and CRP level (r=0.42; P=0.019)
in the Acute COVID-19 group; and a significant nega-
tive correlation between age and phase shift 0 (r=-0.59;
P <0.001).
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3.4 Lipoprotein Subfractions Analysis

and P =0.040, respectively), corresponding to LDL-1
(P=0.009) and LDL-2 (P=0.008) when compared to the

The results of LDL subfraction analysis are shown in
Table 2. The Recovered COVID-19 group showed signifi-
cantly higher values for ; pLDL (% and mg/dL) (P =0.025

Acute COVID-19 group. The mean LDL size did not dif-
fer between the Acute and Recovered COVID-19 groups
(P=0.336), impacting similar phenotype A (43% versus
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Table 2 Low-density lipoprotein subfractions, according to the Acute

and Recovered COVID-19 groups

Variables Acute Recovered P
COVID-19 (n=33) COVID-19 (n=30)

VLDL (%) 25.4 (0.0-35.5) 27.8 (0.0-58.4) 0.875
IDL-C (%) 15.0 (7.2-22.2) 13.5 (5.7-28.1) 0.124
IDL-B (%) 6.8 (0.2-15.7) 8.2 (0.0-22.7) 0.417
IDL-A (%) 5.7 (0.0-11.7) 6.4 (0.0-19.8) 0.099
LDL-1 (%) 14.1 (2.6-26.5) 17.0 (2.0-31.7) 0.266
LDL-2 (%) 8.9 (0.0-23.0) 12.9 (0.0-24.7) 0.008
LDL-3 (%) 1.8 (0.0-9.4) 3.1 (0.0-12.5) 0.060
LDL-4 (%) 0.0 (0.0-4.7) 0.0 (0.0-8.4) 0.261
LDL-5 (%) 0.0 (0.0-1.2) 0.0 (0.0-5.0) 0.046
LDL-6 (%) 0.0 (0.0-2.2) 0.0 (0.0-2.2) 0.502
LDL-7 (%) 0.0 (0.0-30.6) 0.0 (0.0-11.0) 0.657
LpoLDL (%) 23.1 (2.6-39.0) 29.9 (2.0-50.2) 0.025
spLDL (%) 3.2 (0.0-32.8) 4.8 (0.0-25.1) 0.153
pLDL/ ¢pLDL 7.9 (0.3-37) 11.5 (0.2-50) 0.291
VLDL (mg/dL)  53.6 (26.4-71.9) 58.8 (0.0-117.5) 0.324
IDL-C (mg/dL)  25.9 (7.3-59.7) 28.5 (60.1-13.5) 0.340
IDL-B (mg/dL)  13.2 (3.9-26.2) 17.6 (0.0-51.9) 0.089
IDL-A (mg/dL)  10.6 (4.0-55.0) 13.8 (0.0-45.0) 0.147
LDL-1 (mg/dL)  23.9 (2.5-58.2) 35 (4.5-70.1) 0.009
LDL-2 (mg/dL)  24.6 (0.0-47.6) 27.1(0.0-53.2) 0.489
LDL-3 (mg/dL) 8.1 (0.0-39.8) 6.3 (0.0-28.1) 0.548
LDL-4 (mg/dL) 0.0 (0.0-13.9) 0.0 (0.0-17.8) 0.753
LDL-5 (mg/dL) 0.0 (0.0-3.4) 0.0 (0.0-10.7) 0.039
LDL-6 (mg/dL) 0.0 (0.0-0.0) 0.0 (0.04.3) 0.195
LDL-7 (mg/dL) 0.0 (0.0-8.5) 0.0 (0.0-25.2) 0.029
pLDL (mg/dL)  49.4 (2.5-94.6) 60.9 (4.5-108.3) 0.040
spLDL (mg/dL) 8.3 (0.0-53.7) 10.1 (0.0-53.6) 0.595
pLDL/ spLDL 5.9 (0.2-21.8) 11.9 (0.2-54.0) 0.051
LDL size (nm) 267 (205-276) 266 (201-275) 0.336
Phenotype A (%) 15 (45) 11 (36) 0.996

Variables are expressed as median (min—max) and n (%). Variables
compared between groups using two samples T-test, Mann—Whit-
ney tests or qui-square test. Bold numbers: significant difference
(P<0.05).

41%; P=0.996). Although (rLDL was similar between
groups, individuals in the Recovered COVID-19 group had
higher LDL-5 (% and mg/dL), (P=0.046 and P=0.039,
respectively) and LDL-7 (mg/dL) (P=0.029) than the
Acute COVID-19 group. The | )LDL to ¢pLDL ratio in
Recovered COVID-19 group was higher, suggesting posi-
tive net quality in individuals after at least 10 months after
acute phase. The | pLDL to ¢nLDL ratio showed a ten-
dency to high in Recovered COVID-19 group (P=0.051).
In Recovered COVID-19 group, the ; ,LDL to ¢xLDL
ratio (% and mg/dL) were negatively correlated with CRP
(r=-0.517; p=0.020 and r=-0.563; p=0.010, respec-
tively) (data not shown).
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Lipoprotein subfractions and size were not correlated
with 0 and the carotenoid estimate; however, a positive cor-
relation between D-dimer and LDL-2 (r=0.35; P=0.043)
was observed in the Acute COVID-19 group. Moreover, this
LDL subfraction was positively correlated with CRP level
(r=0.37; P=0.044).

4 Discussion

COVID-19 and lipid metabolism have an interesting rela-
tionship that can modify the disease's acute phase and prog-
nosis. Here, we expand the state-of-the-art addition to tra-
ditional lipid profile, data on quality of LDL subfractions,
using validated and innovative methods.

Our results showed that the TC and LDL-C levels in
the Recovered COVID-19 group were higher than those
observed in the Acute COVID-19 group, confirming previ-
ous studies on the hypocholesterolaemia response associated
with COVID-19 infection [1, 4-7]. During the acute phase of
infection, the intense viral replication requires cholesterol for
the synthesis of new cell membranes [1]. Cholesterol is the
main energy source for many viruses, including COVID-19
[1, 28]. The study by Fan et al. [5], based on a similar design
but including lipid profile prior to the COVID-19 infection,
described lower TC and LDL-C levels during the acute
phase. Interestingly, in the same study, patients with poor
outcomes had lower lipid levels than those observed in the
previous stages of infection. Regarding the close relationship
between COVID-19 and lipid levels, the potential impact
of lipid-lowering drugs has been hypothesized. According
to Gil and Ambrose [29], the intensity of COVID-19 infec-
tion can be reduced in individuals with lower TC levels.
Type of medication and time under therapy can affect the
lipid profile and its relationship with COVID-19 infection.
Patients in our study were under lipid-lowering medication,
but the frequency of these drugs was similar in both groups.
Furthermore, the impact of lipid-lowering in quality of lipo-
protein is not clear in literature. The clinical protocol used
for patients in our study not preview statin use. Therefore,
the significant differences observed in quality of LDL in our
study cannot be explained by statin therapy.

Changes in lipid levels are part of an inflammatory storm
typical of COVID-19 and a widespread event in other viral
infections related to SARS [4]. Although we did not perform
a wide cytokine panel, the CRP and D-dimer levels used to
monitor acute inflammation response and thrombotic risk,
respectively, confirmed the proinflammatory status of the
Acute COVID-19 group. We observed that these markers
did not correlate with both groups' TC and LDL-C levels.
The inflammatory process is a positive stimulus for oxida-
tive stress in different molecules, including LDL particles
[30-32]. For the last twenty years, we [23, 33, 34] and other
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groups [35, 36] have investigated the relationship between
modified LDL levels and diseases using different methods.
For the first time in the literature, we demonstrated that
COVID-19 infection is associated with oxidative modi-
fication of LDL using the nonlinear optical Z-scan tech-
nique (measuring the amplitude of the thermal lens formed
when the LDL interacts with the light from a laser — 0) and
antioxidant-amount estimate, in addition to the changes in
classical lipid markers. In fact, the Recovered COVID-19
group, when compared with individuals during the acute
COVID-19 phase had higher 0 values and antioxidant-
amount estimate. A positive correlation between them con-
firmed this complementary profile. Inflammatory processes
and oxidative stress may play a relevant role in the severity
of COVID-19 [37]. Coronavirus-infected host cells produce
more free radicals during infection, which results in severe
inflammation [38, 39]. The lipid molecules present in LDL
are oxidized by these toxic free radicals [10, 40].

Previously, we demonstrated in a transversal study that
patients with acute periodontitis had improved LDL quality
after treatment, as evaluated by increased 0 in the Z-scan
results [24, 26]. More recently, we observed that diabetes
patients under nutritional supplementation based on green
banana biomass (rich in fibers and antioxidants) showed a
significant improvement in antioxidant-amount estimate
[22]. Low levels of lutein/zeaxanthin, a- and f-carotene,
and total carotenoids are strongly related to higher oxida-
tive stress and inflammation [41, 42]. Despite the potential
mechanisms related to and promisors’ results [43, 44], there
is a gap in controlled and randomized clinical trials testing
the supplementation of antioxidant nutrients for the preven-
tion and treatment of COVID-19.

In order to broaden our understanding of the relation-
ship between lipids and COVID-19, we monitored indi-
viduals according to LDL subfractions in addition to the
oxidative aspects of LDL. The Recovered COVID-19
patients had higher | jLDL than those with acute COVID-
19 did. Large, dense LDL are less atherogenic than smaller
LDL because they transport fewer oxidized lipids and
migrate less to the subendothelial space [45, 46]. Addi-
tionally, large LDL have high a-tocopherol content and
lipid peroxidation evaluated by TBARS, as previously
demonstrated, suggesting a non-atherogenic profile com-
pared to smaller particles [47]. LDL subfractions were
not significantly correlated with 6 and antioxidant-amount
estimate; however, LDL-2 subfraction and oxidized LDL
were independently correlated with inflammation (CRP)
and prothrombotic event risk (D-dimer). Based on this,
we propose that the Z-scan technique and the Lipoprint
test can be used as adjuvant methods to understand better
the cardiovascular disease risk of COVID-19 in patients
with unbalanced lipid metabolism. Small dense LDL
was investigated in the Multi-Ethnic of Atherosclerosis

(MESA) and The Atherosclerosis Risk in Communities
(ARIC) Study and associated with increased cardiovascu-
lar risk [48, 49]. Small LDL was also found to be involved
in the inflammatory pathway in other outcomes, such as
diabetes patients [50]. In the context of COVID-19, it is
essential to remember that some patients evolve to throm-
botic events; however, the specific risk factors for that are
unclear. Previously, a case—control study including acute
ischemic stroke (AIS) matched by healthy individuals veri-
fied that an adverse lipoprotein subfraction profile (pLDL
and nHDL) was a predictor of stroke and mortality [51],
and based on that, we speculate that LDL subfractions can
improve the traditional estimate of stroke risk in COVID-
19 patients. Small LDL (% and mg/dL) were similar in
both the Acute and Recovered COVID-19 groups; how-
ever, when we evaluated smaller LDL, the LDL-5 and
LDL-7 in Recovered COVID-19 group were lower than
those in the Acute COVID-19 group, suggesting a lower
thrombotic risk.

A striking finding of our study is that the quality of LDL
particles is higher in patients after recovery. In the Recov-
ered COVID-19 group, there is a significant increase in the
value of the parameter 0, concerning the value from the
Acute COVID-19 group. This result reveals that the LDL
particles from patients in the Recovered COVID-19 group
are less modified and better protected against oxidation. This
last conclusion comes from the higher number of carote-
noids in LDL particles evaluated in patients in the Recovered
COVID-19 group.

At this point, an interesting question could be proposed:
Is there a sequel due to COVID-19 infection concerning
the quality of the LDL particles in patients diagnosed with
severe COVID-19? To shed some light in this direction, one
possibility is to compare our present values of 6 with those
obtained from a group of “healthy” individuals (no diabetes
mellitus, no history of cardiovascular diseases, no hyperten-
sion, and no smoking), which were investigated in a previous
study [24]. As this study was conducted in 2009, the selected
individuals were not infected with SARS-CoV-2. The ampli-
tude of the parameter 6 (median) from healthy individuals,
normalized to the same experimental conditions of the pre-
sent study, is 8;;=0.047 (0.028-0.078). The same parameters
for the Acute COVID-19 and Recovered COVID-19 groups
are 0, =0.011 (0.004-0.017) and 63 =0.027 (0.014-0.039),
respectively. The difference between these three groups is
also significant (P <0.001, Kruskal-Wallis ANOVA test,
post hoc Dunn’s test (0, versus 0;;; P <0.001 and 65 versus
Oy; P=0.024)). These numbers bring interesting information
about the quality of the LDL particles among these three
groups: 6, <0y <0y. Since the quality of the LDL particles
in patients recovered from severe COVID-19 infection, after
6 months from the PCR-RT negative result, did not reach the
typical value of that characteristic of healthy individuals, a
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sequel of the infection seems to be present. The follow-up
of these patients with time may inform about their recovery
for this aspect.

This study has some limitations. First, the cross-sec-
tional design not allow to establish a causality relationship
between quality of LDL and clinical parameters. Despite
that, both groups were paired by demographic and clini-
cal data. Second, multivariable regression models were not
tested because some relevant variables not full fill statistical
assumption such as collinearity, correlations (p>0.2) and/
or for small sample size. Third, although all comparisons
were based in adequate statistical tests, we cannot avoid the
false-positive p-values that can occur in a simple comparison
analysis. Although of the innovative and validated methods
applied represent strengths of this study and expand the cur-
rent view about COVID-19 and cardiovascular disease risk,
the reduced sample size needs further confirmation in a large
population and therefore, current results must be interpreted
with caution. Furthermore, the simultaneous investigation
of traditional and emerging markers of lipoprotein quality
expands the classical approaches applied to COVID-19 and
cardiovascular disease risk.

5 Conclusions

In conclusion, the quality of LDL particles in COVID-19
patients improved after recovery. The significant increase
in physical parameters (0 and absorbance at 484 nm) after
recovery of COVID-19 patients and the increasing large
LDL subfraction observed by Lipoprint experiment sup-
ports this finding. Moreover, comparing our present results
with those from previous experiments, we noticed that the
infection left a sequel in the quality of LDL, even after 6
months of recovery. These findings highlight the importance
of monitoring lipids during and after recovery from intense
inflammatory states, such as COVID-19 infection, due to
potential deleterious effects in the LDL profile that might
corroborate the progression of atherosclerosis, resulting in
poor clinical cardiovascular outcomes.
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