RESEARCH ARTICLE

Bulletin of the London Mathematical Society

Entire functions on banach spaces with the *U*-property

Humberto D. Carrión V.

Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brasil

Correspondence

Humberto D. Carrión V., Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo Caixa Postal 66281 - CEP: 05311-970 - São Paulo, Brasil.

Email: leinad@ime.usp.br

Abstract

Let E be a Banach space without a copy of l_1 and with the U-property. We show that every entire function on Ewhich is weakly continuous on bounded sets is bounded on bounded sets of E. We answer this way, in the affirmative, to a problem raised by Aron, Hervés, and Valdivia in 1983, for these spaces. In particular, this is true for every Banach space which is an *M*-ideal in its bidual.

MSC (2020) 46G20 (primary), 46E50, 46G25 (secondary)

INTRODUCTION

Our aim in this paper is to give a positive solution for the denominated "the ℓ_1 -problem" (see [6, p. 138]) in certain Banach spaces. Indeed, in 1977 Valdivia [15] showed that a complex Banach space E is reflexive if and only if every weakly continuous function on bounded sets is weakly uniformly continuous on E. Motivated by this result Aron et al. [1] showed that for every Banach space E, every polynomial which is weakly continuous on bounded sets of E is uniformly continuous. So, the reflexivity is not a necessary condition for the polynomial case. A holomorphic version of this problem was proposed by these authors and it is considered an open problem.

Problem 1.1. If $f: E \to \mathbb{C}$ is a holomorphic function which is weakly continuous on bounded sets is f weakly uniformly continuous?

Dineen in [7] showed that this question has a positive answer if $E = c_0$ (the spaces of all null sequences). A careful analysis of the techniques given by Dineen allows us to conclude that the results follows true for all Banach space with unconditional and shrinking basis. So the reflexivity

© 2022 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

of E is not a necessary condition for giving a positive answer to Problem 1.1. In [2] there is a version of this result generalized to functions defined in balanced open sets of a Banach space E, with unconditionally and shrinking basis. The name given to Problem 1.1 must be awarded to Aron et al. [1], who proved that a positive answer to Problem 1.1 for ℓ_1 , the spaces of summable sequences, implies a positive answer for all Banach spaces E.

A partial answer to Problem 1.1 was given, by the author of this paper, in [3] for separable dual Banach space. However, some years later Valdivia found some mistakes in the technique used.

In this paper we extend the result of Dineen given in [7], and we show that Problem 1.1 has a positive answer when the Banach E has the U-property and does not have a copy of \mathcal{E}_1 . We finished the paper giving some examples.

2 | NOTATION AND BASIC DEFINITIONS

Now we give some notation. Let E be a complex Banach space with unity sphere S(E) and with dual space E'. We denote by $P(^nE,F)$ the space of all continuous n-homogenous polynomials and by H(E,F) the space of all entire functions from E into F. We denote by $H_{bk}(E,F)$ the space of all functions in H(E,F) which are bounded on weakly compact subsets of E and by $H_b(E,F)$ all functions in H(E,F) which are bounded on bounded subset of E. If $F=\mathbb{C}$, as usual we denote $P(^nE):=P(^nE,F)$ and $P(E):=P(^nE)$ and $P(E):=P(^nE)$ we denote by $P(E):=P(^nE)$ the unique continuous $P(E):=P(^nE)$ and $P(E):=P(^nE)$ are supposed associated to $P(E):=P(^nE)$. If $P(E):=P(^nE)$ is a function and $P(E):=P(^nE)$ is a compact subset of $P(E):=P(^nE)$, we denote $P(E):=P(^nE)$, the uniform norm of $P(E):=P(^nE)$ is a function and $P(E):=P(^nE)$.

For background material about polynomials and holomorphic functions in Banach spaces, we refer the reader to [12] or [6].

Let (y_i) be a sequence in E. Consider the formal series $y = \sum_{i=1}^{\infty} y_i$ and for each $m, n \in \mathbb{N}$, 0 < m < n, define

$$q^n y := \sum_{i=1}^n y_i \text{ and } q_m^n y := \sum_{i=m+1}^n y_i.$$

Let $(P_n) \subset P(^nE, F)$ be a sequence of n-homogeneous polynomials where, n = 1, 2, ... and $(m_i) \subset \mathbb{N}$ a strictly increasing sequence $(m_0 := 0)$. Then, if $n > m_1$, we obtain by Leibniz's formula [12, Theorem 1.8] the following inequality:

$$\begin{aligned} \left\| P_{n}(q^{n}(y)) \right\| &= \left\| \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \overset{\vee}{P}_{n} \left((q^{m_{1}}y)^{j} \left(q_{m_{1}}^{n}y \right)^{n-j} \right) \right\| \\ &\leq \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \left\| \overset{\vee}{P}_{n} \left((q^{m_{1}}y)^{j} \left(q_{m_{1}}^{n}y \right)^{n-j} \right) \right\|. \end{aligned}$$

Thus for some $j_{n,m_1} \in \mathbb{N}$ with $0 \le j_{n,m_1} \le n$ we have

$$||P_n(q^n(y))|| \le (n+1) \frac{n!}{j_{n,m_1}! (n-j_{n,m_1})!} ||P_n((q^{m_1}y)^{j_{n,m_1}} (q^n_{m_1}y)^{n-j_{n,m_1}})||.$$

If $n \ge m_2$ take

$$Q(y) = \overset{\vee}{P}_n \left((q^{m_1} y)^{j_{n,m_1}} \left(q^n_{m_1} y \right)^{n-j_{n,m_1}} \right),$$

then using again the Leibniz's formula, we obtain

$$Q(y) = \sum_{j=0}^{n-j_{n,m_1}} \frac{\left(n - j_{n,m_1}\right)!}{j! \left(n - j_{n,m_1} - j\right)!} \overset{\vee}{P}_n \left((q^{m_1} y)^{j_{n,m_1}} \left(q^{m_2}_{m_1} y \right)^j \left(q^n_{m_2} y \right)^{n-j_{n,m_1} - j} \right).$$

Now for some $j_{n,m_2} \in \mathbb{N}$ with $0 \le j_{n,m_2} \le n - j_{n,m_1}$ we have that

$$\begin{split} \|Q(y)\| & \leq \left(n - j_{n,m_1} + 1\right) \frac{\left(n - j_{n,m_1}\right)!}{j_{n,m_2}! \left(n - j_{n,m_1} - j_{n,m_2}\right)!} \times \\ & \times \left\| \stackrel{\vee}{P}_n \left((q^{m_1} y)^{j_{n,m_1}} \left(q^{m_2}_{m_1} y \right)^{j_{n,m_2}} \left(q^{n}_{m_2} y \right)^{n - j_{n,m_1} - j_{n,m_2}} \right) \right\|. \end{split}$$

Set $d_{n,0} := n, d_{n,1} := n - j_{n,m_1}, d_{n,2} := n - j_{n,m_1} - j_{n,m_2}.$ Therefore

$$\begin{split} \left\| P_{n}(q^{n}(y)) \right\| &\leq (n+1) \frac{n!}{j_{n,m_{1}}! \left(n - j_{n,m_{1}}\right)!} \cdot \left(n - j_{n,m_{1}} + 1\right) \\ &\times \frac{\left(n - j_{n,m_{1}}\right)!}{j_{n,m_{2}}! \left(n - j_{n,m_{1}} - j_{n,m_{2}}\right)!} \\ &\times \left\| \stackrel{\vee}{P}_{n} \left(\left(q^{m_{1}}y\right)^{j_{n,m_{1}}} \left(q^{m_{2}}y\right)^{j_{n,m_{2}}} \left(q^{n}_{m_{2}}y\right)^{n - j_{n,m_{1}} - j_{n,m_{2}}} \right) \right\| \\ &= (n+1) \left(n - j_{n,m_{1}} + 1\right) \frac{n!}{j_{n,m_{1}}! j_{n,m_{2}}! \left(n - j_{n,m_{1}} - j_{n,m_{2}}\right)!} \\ &\times \left\| \stackrel{\vee}{P}_{n} \left(\left(q^{m_{1}}y\right)^{j_{n,m_{1}}} \left(q^{m_{2}}y\right)^{j_{n,m_{2}}} \left(q^{n}_{m_{2}}y\right)^{n - j_{n,m_{1}} - j_{n,m_{2}}} \right) \right\| \\ &= \left(d_{n,0} + 1\right) \left(d_{n,1} + 1\right) \frac{n!}{j_{n,m_{1}}! j_{n,m_{2}}! d_{n,2}!} \\ &\times \left\| \stackrel{\vee}{P}_{n} \left(\left(q^{m_{1}}y\right)^{j_{n,m_{1}}} \left(q^{m_{2}}y\right)^{j_{n,m_{2}}} \left(q^{n}_{m_{2}}y\right)^{d_{n,2}} \right) \right\|. \end{split}$$

By induction we obtain for $n \ge m_k$

$$||P_{n}(q^{n}(y))|| \leq \prod_{s=0}^{k-1} (d_{n,s} + 1) \frac{n!}{\prod_{s=1}^{k} j_{n,m_{s}} . d_{n,k}!}$$

$$\times || \stackrel{\vee}{P}_{n} \left(\prod_{s=1}^{k} \left(q_{m_{s-1}}^{m_{s}}(y) \right)^{j_{n,m_{s}}} . \left(q_{m_{k}}^{n}(y) \right)^{d_{n,k}} \right) ||,$$
(2.1)

where for all r with $0 \le r \le k$, we have that $0 \le \sum_{s=1}^r j_{n,m_s} \le n$, and

$$d_{n,r} = n - \sum_{k=0}^{r} j_{n,m_k},$$

 $(j_{n,m_0} := 0)$. Now, by the Cauchy's inequality combined with [12, Corollary 7.10] we have

$$\begin{aligned} \|P_{n}(q^{n}(y))\| &\leq \Pi_{s=0}^{k-1} \left(d_{n,s} + 1\right) \frac{n!}{\Pi_{s=1}^{k} j_{n,m_{s}}! d_{n,k}!} \\ &\times \left\| \stackrel{\vee}{P}_{n} \left(\Pi_{s=1}^{k} \left(q_{m_{s-1}}^{m_{s}} y\right)^{j_{n,m_{s}}} \left(q_{m_{k}}^{n} y\right)^{d_{n,k}}\right) \right\| \\ &\leq \Pi_{s=0}^{k-1} \left(d_{n,s} + 1\right) \sup_{\left|\theta_{s}\right|=1} \left\| P_{n} \left(\sum_{s=1}^{k} \theta_{s} q_{m_{s-1}}^{m_{s}}(y) + \theta_{k+1} q_{m_{k}}^{n}(y)\right) \right\|. \end{aligned}$$

Theses inequalities will be used extensively throughout this article.

The following result is well known, see [6], we include it here for the sake of the reader.

Lemma 2.1. Let $(P_n)_{n\geqslant 0}$ be a sequence of polynomials such that for all $n\in\mathbb{N}$, we have $P_n\in$ $P(^{n}E,F)$. Then

- (1) $f = \sum_{n} P_{n} \in H(E, F)$ if and only if $\limsup_{n} \|P_{n}\|_{K}^{1/n} = 0$ for all compact subsets K of E; (2) $f = \sum_{n} P_{n} \in H_{bk}(E, F)$ if and only if $\limsup_{n} \|P_{n}\|_{W}^{1/n} = 0$ for all relatively compact subsets W
- (3) $f = \sum_{n} P_n \in H_b(E, F)$ if and only if $\limsup \|P_n\|_{S(E)}^{1/n} = 0$.

Lemma 2.2. Let $(d_n) \subset \mathbb{N}$ be a strictly increasing sequence with $d_n \leq n$, for every n. For each n let $P_n \in P(^{d_n}E)$ be a polynomial of degree d_n . Suppose that

- (1) $(j_{n,1})_n, (j_{n,2})_n, \dots, (j_{n,i})_n \subset \mathbb{N}$ are sequences such that $0 \leq \sum_{k=1}^i j_{n,k} \leq n$, for every $n \in \mathbb{N}$,
- (2) $(y_{n,1})_n, (y_{n,2})_n, \dots, (y_{n,i})_n \subset E$ are weakly convergent sequences to $y_k \in E, k = 1, 2, \dots, i$,
- (3) (Q_n) is a sequence of homogeneous polynomials with degree $\deg(Q_n):=d_{n,i}:=n-\sum_{k=0}^i j_{n,k}$ $(j_{n,0} := 0)$, defined by:

$$Q_n(x) = \prod_{k=0}^{i-1} \left(d_{n,k} + 1 \right) \frac{d_n!}{\prod_{k=1}^{i} j_{n,k}! d_{n,i}!} P_n \left(\prod_{k=1}^{i} \left(y_{n,k} - y_k \right)^{j_{n,k}} x^{d_{n,i}} \right).$$

Suposse in addition that for all weakly compact subsets W of E, (P_n) satisfies that

$$\lim \sup_{n} \left\| P_n \right\|_{W}^{\frac{1}{n}} = 0.$$

Then for all weakly compact subsets W of E we have

$$\lim\sup \|Q_n\|_W^{\frac{1}{n}} = 0.$$

Proof. Let W be a weakly compact subset of E. By the Eberlein–Smulian theorem, it is not difficult to verify that the set

$$\Theta \otimes W = \left\{ \sum_{k=1}^{i} \theta_k \left(y_{n,k} - y_k \right) + \theta_{i+1} x : n \geqslant 1, \left| \theta_k \right| = 1, k = 1, 2, \dots, i+1, x \in W \right\}$$

is a relatively weakly compact set of E. Since

$$\Pi_{k=0}^{i-1} (d_{n,k}+1)^{\frac{1}{n}} \le (d_n+1)^{\frac{i}{n}} \le (n+1)^{\frac{i}{n}},$$

then by the the Cauchy's inequality we have

$$\begin{split} \left| Q_{n}(x) \right|^{1/n} &= \Pi_{k=0}^{i-1} \left(d_{n,k} + 1 \right)^{\frac{1}{n}} \\ &\times \left| \frac{d_{n}!}{\Pi_{k=1}^{i} j_{n,k}! d_{n,i}!} \overset{\vee}{P}_{n} \left(\Pi_{k=1}^{i} \left(y_{n,k} - y_{k} \right)^{j_{n,k}} x^{d_{n,i}} \right) \right|^{\frac{1}{n}} \\ &\leq (d_{n} + 1)^{\frac{i}{n}} \sup_{\left| \theta_{k} \right| = 1} \left| P_{n} \left(\sum_{k=1}^{i} \theta_{k} \left(y_{n,k} - y_{k} \right) + \theta_{i+1} x \right) \right|^{\frac{1}{n}} \\ &\leq (d_{n} + 1)^{\frac{i}{n}} \left\| P_{n} \right\|_{\Theta \otimes W}^{\frac{1}{n}} \\ &\leq (n + 1)^{\frac{i}{n}} \left\| P_{n} \right\|_{\Theta \otimes W}^{\frac{1}{n}} , \end{split}$$

where $\overline{\Theta \otimes W}$ is the closure in the weak topology of $\Theta \otimes W$ in E. Since $x \in W$ is arbitrary, we have

$$\|Q_n\|_W^{\frac{1}{n}} \leq (n+1)^{\frac{i}{n}} \|P_n\|_{\overline{\Theta \otimes W}}^{\frac{1}{n}}.$$

By hypothesis we have that $\limsup_n \|P_n\|_{\overline{\Theta \otimes W}}^{1/n} = 0$. So the claim follows.

П

3 | RESULTS

In 1983 Dineen [7] showed that if $E = c_0$, the space of null sequences, then

$$H_{bk}(c_0) = H_b(c_0).$$

Here we extend this result to Banach spaces E with the U-property and without a copy of ℓ_1 . Now, we recall that a series $\sum_{i=1}^{\infty} y_i$ in E is weakly unconditionally Cauchy (wuC) if for all $\rho \in E'$, we have that $\sum_{i=1}^{\infty} |\rho(y_i)| < \infty$. If the series $\sum_{i=1}^{\infty} y_i$ is wuC and $(n_k), (m_k)$ are sequences of strictly increasing positive integers with $m_k < n_k$ for all k, the sequence $(\sum_{i=m_k}^{n_k} y_i)_k$ weakly converges to zero. Also if (α_i) is a scalar sequence with $\lim \alpha_k = 0$, then $\sum_{k=1}^{\infty} \alpha_k y_k$ converges unconditionally in norm, see [11] or [4].

Definition 3.1. A Banach space E is said to have the U-property if for every weakly Cauchy sequence $(x_n) \subset E$, there exists a wuC-series $\sum y_i$ such that the sequence $(x_n - \sum_{i=1}^n y_i)_{n \geqslant 1}$ converges to zero in the weak topology.

This property was defined by Pelczynski in [14].

Lemma 3.2. Let E be a Banach space, $\sum_{i\geqslant 1}y_i$, a weakly unconditionally Cauchy series and $r\in\mathbb{N}$. Suposse that (d_{n_i}) , (n_i) are strictly increasing sequences of positive integers and (P_{n_i}) is a sequence of polynomials such that:

(1) for every $i \in \mathbb{N}$,

$$d_{n_i} \leqslant n_i$$
;

(2) for every $i \in \mathbb{N}$, $P_{n_i} \in P(^{d_{n_i}}E)$ and

$$\left| P_{n_i} \left(\sum_{s=1}^{n_i} y_s \right) \right| > 1;$$

(3) for all weakly compact subsets W of E

$$\lim \sup_{i} \left\| P_{n_i} \right\|_{W}^{\frac{1}{n_i}} = 0.$$

Then, there are a positive integer m_1 and sequences $(i(t))_t$, $(n_{i(t)})_t$, $(j_{n_{i(t)},m_1})_t$ of positive integers such that:

(1) (a) The sequences $(i(t))_t$, $(n_{i(t)})_t$, and $(d_{n_{i(t)}} - j_{n_{i(t)},m_1})_t$ are strictly increasing with

$$(n_{i(t)})_t \subset (n_i),$$

$$n_{i(1)} > m_1$$
.

$$0 \leqslant j_{n_{i(t)},m_1} \leqslant d_{n_i(t)}.$$

(2) The limit

$$\delta := \lim_{t} \frac{j_{n_{i(t)}, m_1}}{n_{i(t)}}$$

exists and $0 < \delta < 1$.

(3) For every $t \in \mathbb{N}$,

(a)

$$\frac{j_{n_{i(t)},m_1}}{n_{i(t)}} \leq 2\delta,$$

and

(b)

$$\begin{split} 1 & \leq \left(d_{n_{i(t)}} + 1\right) \begin{pmatrix} d_{n_{i(t)}} \\ j_{n_{i(t)}, m_1} \end{pmatrix} \\ & \times \left| \overset{\vee}{P}_{n_{i(t)}} \left(\left(\sum_{s=1}^{m_1} y_s\right)^{j_{n_{i(t)}, m_1}} \left(\sum_{s=m_1+1}^{n_{i(t)}} y_s\right)^{d_{n_{i(t)}} - j_{n_{i(t)}, m_1}} \right) \right|. \end{split}$$

Proof. For each $m \in \mathbb{N}$, with $m \leq n_i$, we have

$$1 \leq \left| P_{n_{i}} \left(\sum_{s=1}^{n_{i}} y_{s} \right) \right| \leq \left(d_{n_{i}} + 1 \right) \frac{d_{n_{i}}!}{j_{n_{i},m}! \left(d_{n_{i}} - j_{n_{i},m} \right)}$$

$$\times \left| \stackrel{\vee}{P}_{n_{i}} \left(\left(\sum_{s=1}^{m} y_{s} \right)^{j_{n_{i},m}} \left(\sum_{s=m+1}^{n_{i}} y_{s} \right)^{d_{n_{i}} - j_{n_{i},m}} \right) \right|$$
(3.1)

for some $j_{n_i,m} \in \mathbb{N}$ with $j_{n_i,m} \leq d_{n_i}$. We claim that there exists a m such that

$$0<\lim\inf_{i}\frac{j_{n_{i},m}}{n_{i}}.$$

Indeed, if $\lim \inf_i \frac{j_{n_i,m}}{n_i} = 0$ for all m, then given m there exists $n_{i_m} > m$ such that

$$\frac{j_{n_{i_m},m}}{n_{i_m}}<\frac{1}{m}.$$

Now, we get

$$\alpha_m = \begin{cases} e^{-\sqrt{\frac{n_{i_m}}{j_{n_{i_m},m}}}} & if & j_{n_{i_m},m} \neq 0 \\ 1/m & if & j_{n_{i_m},m} = 0, \end{cases}$$

SO

$$\lim_{m} \alpha_{m} = 0$$

$$\lim_{m} (\alpha_{m})^{\frac{j_{n_{i_{m}},m}}{n_{i_{m}}}} = \lim_{m} e^{-\sqrt{\frac{j_{n_{i_{m}},m}}{n_{i_{m}}}}} = 1.$$

Since the sequence $(\sum_{s=m+1}^{n_{i_m}} y_s)_m$ weakly converges to zero, $\lim_m \|\alpha_m(\sum_{i=1}^m y_i)\| = 0$, and for all weakly compact subsets W of $E \limsup_n \|P_n\|_W^{1/n} = 0$; by Lemma 2.2 we have

$$0 = \lim \sup_{m} \left(d_{n_{i_{m}}} + 1 \right)^{\frac{1}{n_{i_{m}}}} \left(\frac{d_{n_{i_{m}}}!}{j_{n_{i_{m}},m}! \left(d_{n_{i_{m}}} - j_{n_{i_{m}},m} \right)} \right)^{\frac{1}{n_{i_{m}}}}$$

$$\times \left| \stackrel{\vee}{P}_{n_{i_{m}}} \left(\left(\alpha_{m} \sum_{s=1}^{m} y_{s} \right)^{j_{n_{i_{m}},m}} \left(\sum_{s=m+1}^{n_{i_{m}}} y_{s} \right)^{d_{n_{i_{m}}} - j_{n_{i_{m}},m}} \right) \right|^{\frac{1}{n_{i_{m}}}}.$$

$$(3.2)$$

On the other hand, the inequality (3.1) implies that

$$\begin{split} &\left(d_{n_{i_{m}}}+1\right)^{\frac{1}{n_{i_{m}}}}\left(\frac{d_{n_{i_{m}}}!}{j_{n_{i_{m}},m}!\left(d_{n_{i_{m}}}-j_{n_{i_{m}},m}\right)}\right)^{n_{i_{m}}}\\ &\times\left|\overset{\vee}{P}_{n_{i_{m}}}\left(\left(\alpha_{m}\sum_{s=1}^{m}y_{s}\right)^{j_{n_{i_{m}},m}}\left(\sum_{s=m+1}^{n_{i_{m}}}y_{s}\right)^{d_{n_{i_{m}}}-j_{n_{i_{m}},m}}\right)\right|^{\frac{1}{n_{i_{m}}}}\\ &=\left(\alpha_{m}\right)^{\frac{j_{n_{i_{m}},m}}{n_{i_{m}}}}\left(d_{n_{i_{m}}}+1\right)^{\frac{1}{n_{i_{m}}}}\left(\frac{d_{n_{i_{m}}}!}{j_{n_{i_{m}},m}!\left(d_{n_{i_{m}}}-j_{n_{i_{m}},m}\right)}\right)^{\frac{1}{n_{i_{m}}}}\\ &\times\left|\overset{\vee}{P}_{n_{i_{m}}}\left(\left(\sum_{s=1}^{m}y_{s}\right)^{j_{n_{i_{m}},m}}\left(\sum_{s=m+1}^{n_{i_{m}}}y_{s}\right)^{d_{n_{i_{m}}}-j_{n_{i_{m}},m}}\right)\right|^{\frac{1}{n_{i_{m}}}}\\ &\geqslant\left(\alpha_{m}\right)^{\frac{j_{n_{i_{m}},m}}{n_{i_{m}}}} \end{split}$$

and $\limsup_{m} (\alpha_m)^{\frac{j_{n_{i_m},m}}{n_{i_m}}} = 1$. This is a contradiction to (3.2).

We fix m_1 , satisfying the above condition. Then

$$0 < \delta := \lim \inf_{i} \frac{j_{n_i, m_1}}{n_i}.$$

We choose a strictly increasing sequence (i(t)) such that $(n_{i(t)})$ is strictly increasing

$$\begin{split} &i(1) > r, \; n_{i(1)} > m_1 \\ &\lim_t \frac{j_{n_{i(t)},m_1}}{n_{i(t)}} = \lim\inf_t \frac{j_{n_i,m_1}}{n_i} \\ &\frac{j_{n_{i(t)},m_1}}{n_{i(t)}} \leqslant 2\delta, \quad for \; every \; t = 1,2, \dots \end{split}$$

As $(n_{i(t)}) \subset (n_i)$ then for every t we have

$$\begin{split} 1 & \leq \left(d_{n_{i(t)}} + 1\right) \begin{pmatrix} d_{n_{i(t)}} \\ j_{n_{i(t)}, m_1} \end{pmatrix} \\ & \times \left| P_{n_{i(t)}} \left(\left(\sum_{s=1}^{m_1} y_s\right)^{j_{n_{i(t)}, m_1}} \left(\sum_{s=m_1+1}^{n_{i(t)}} y_s\right)^{d_{n_{i(t)}} - j_{n_{i(t)}, m_1}} \right) \right|. \end{split}$$

Now we show that $\lim_{t} \frac{j_{n_{i(t)},m_1}}{n_{i(t)}} < 1$. In fact, if $\lim_{t} \frac{j_{n_{i(t)},m_1}}{n_{i(t)}} = 1$, then

$$\lim_{t} \frac{n_{i(t)} - j_{n_{i(t)}, m_1}}{n_{i(t)}} = 0.$$

As $d_{n_i(t)} \le n_i(t)$ then we have

$$\lim_{t} \frac{d_{n_{i(t)}} - j_{n_{i(t)}, m_1}}{n_{i(t)}} = 0.$$
(3.3)

Equation (3.3) leads to a contradiction. In fact, consider

$$\alpha_t := \begin{cases} e^{-\sqrt{\frac{n_{i(t)}}{dn_{i(t)} - j_{n_{i(t)}, m_1}}}} & if \quad d_{n_{i(t)}} - j_{n_{i(t)}, m_1} \neq 0 \\ 1/t & if \quad d_{n_{i(t)}} - j_{n_{i(t)}, m_1} = 0, \end{cases}$$

then $\lim_t \alpha_t = 0$ and $\lim_t \alpha_t^{\frac{d_{n_{l(t)}} - j_{n_{l(t)},m_1}}{n_{l(t)}}} = 1$. Now, since $\lim_t \|\alpha_t(\sum_{s=m_1+1}^{n_{l(t)}} y_s)\| = 0$ and $\sum_{s=1}^{m_1} y_s$ is a fix vector of E, Lemma 2.2 implies that

П

$$\begin{split} 0 &= \lim\sup_{t} \left(d_{n_{i(t)}} + 1\right)^{\frac{1}{n_{i(t)}}} \left(\frac{d_{n_{i(t)}}!}{j_{n_{i(t)},m_{1}}! \left(d_{n_{i(t)}} - j_{n_{i(t)},m_{1}}\right)!}\right)^{\frac{1}{n_{i(t)}}} \\ &\times \left| \overset{\vee}{P}_{n_{i(t)}} \left(\left(\sum_{s=1}^{m_{1}} y_{s}\right)^{j_{n_{i(t)},m_{1}}} \left(\alpha_{t} \sum_{s=m+1}^{n_{i(t)}} y_{s}\right)^{d_{n_{i(t)}} - j_{n_{i(t)},m_{1}}}\right) \right|^{\frac{1}{n_{i(t)}}} \\ &= \lim\sup_{t} \alpha_{t}^{\frac{d_{n_{i(t)}} - j_{n_{i(t)},m_{1}}}{n_{i(t)}}} \left(d_{n_{i(t)}} + 1\right)^{\frac{1}{n_{i(t)}}} \left(\frac{d_{n_{i(t)}}!}{j_{n_{i(t)},m_{1}}! \left(d_{n_{i(t)}} - j_{n_{i(t)},m_{1}}\right)!}\right)^{\frac{1}{n_{i(t)}}} \\ &\times \left| \overset{\vee}{P}_{n_{i(t)}} \left(\left(\sum_{s=1}^{m_{1}} y_{i}\right)^{j_{n_{i(t)},m_{1}}} \left(\sum_{s=m_{1}+1}^{n_{i(t)}} y_{s}\right)^{d_{n_{i(t)}} - j_{n_{i(t)},m_{1}}}\right) \right|^{\frac{1}{n_{i(t)}}} \\ &\geqslant \lim\sup_{t} \alpha_{t}^{\frac{d_{n_{i(t)}} - j_{n_{i(t)},m_{1}}}{n_{i(t)}}} = 1, \end{split}$$

which is a contradiction. Thus

$$0 < \delta := \lim \frac{j_{n_{i(t)}, m_1}}{n_{i(t)}} < 1.$$

Finally, the sequence $(d_{n_{i(t)}} - j_{n_{i(t)},m_1})_t$ is unbounded. Otherwise

$$\lim_{t} \left(\frac{d_{n_{i(t)}} - j_{n_{i(t)}, m_1}}{n_{i(t)}} \right) = 0$$

and we have already shown that this equation leads to a contradiction.

Lemma 3.3. For each $n \in \mathbb{N}$, let $P_n \in P(^nE)$ be a polynomial. If for all weakly compact subsets W of E, $\limsup_{M \to \infty} \|P_n\|_W^{\frac{1}{n}} = 0$, then for all weakly unconditionally Cauchy series, $\sum y_i$, we have

$$\lim \sup_{n} \left| P_n \left(\sum_{s=1}^n y_s \right) \right|^{\frac{1}{n}} = 0.$$

Proof. We will show the existence of subsequences $(P_{n_{i_k(t)}})_t$ (k=1,2,...) of the sequence of polynomials (P_n) , which satisfy some properties. Indeed, using the diagonal process we choose the sequence $(P_{n_{i_k(k)}})$, and we obtain a contradiction.

Suppose that $\limsup |P_n(\sum_{i=1}^n y_i)|^{1/n} = \rho > 0$. So, taking a subsequence of (P_n) , if necessary, and the series $\rho^{-1} \sum_i y_i$, we can suppose that

$$\left| P_n \left(\sum_{s=1}^n y_s \right) \right| \geqslant 1$$

for all n.

Now, we use a procedure analogous to that given in [7, Theorem 7]: As $\lim_n n/(\ln(n+1)) = +\infty$, given $i \in \mathbb{N}$ there exists $n_i \ge i$ such that $n_i/(\ln(n_i+1)) \ge i$. So we obtain $1/(n_i+1) \ge 1/e^{n_i/i}$ and therefore

$$\frac{1}{(n_i+1)^{1/n_i}} \geqslant \frac{1}{e^{\frac{1}{i}}} > \frac{1}{e}, \quad for \ every \ i = 1, 2, \dots$$
 (3.4)

and

$$\left| P_{n_i} \left(\sum_{s=1}^{n_i} y_s \right) \right| \geqslant 1$$

for every i.

By Lemma 3.2, there exist a positive integer m_1 and strictly increasing sequences $(i_1(t)), (n_{i_1(t)}), (n_{i_1(t)} - j_{n_{i_1(t)}, m_1})$ with $i_1(1) > 1, n_{i_1}(1) > m_1$, and

$$0 \le j_{n_{i_1(t)},m_1} \le n_{i_1(t)}, \text{ for every } t = 1,2,...$$

$$0<\lim_{t}\frac{j_{n_{i_{1}(t)},m_{1}}}{n_{i_{1}(t)}}:=\delta_{1}<1,\;with\;\frac{j_{n_{i_{1}(t)},m_{1}}}{n_{i_{1}(t)}}<2\delta_{1},\;\;for\;every\;t=1,2,...$$

and

$$\begin{split} 1 & \leq \left(n_{i_{1}(t)} + 1\right) \frac{n_{i_{1}(t)}!}{j_{n_{i_{1}(t)}, m_{1}}! \left(n_{i_{1}(t)} - j_{n_{i_{1}(t)}, m_{1}}\right)!} \\ & \times \left| \overset{\vee}{P}_{n_{i_{1}(t)}} \left(\left(\sum_{s=1}^{m_{1}} y_{s}\right)^{j_{n_{i_{1}(t)}, m_{1}}} \left(\sum_{s=m_{1}+1}^{n_{i}} y_{s}\right)^{n_{i_{1}(t)} - j_{n_{i_{1}(t)}, m_{1}}} \right) \right|. \end{split}$$

Now we define $d_{n_{i_1(t)},m_0} := n_{i_1(t)}$ and $d_{n_{i_1(t)},m_1} := d_{n_{i_1(t)},m_0} - j_{n_{i_1(t)},m_1}$. Then we have that

$$\begin{split} 1 &\leqslant \left(d_{n_{i_{1}(t)},m_{0}}+1\right) \frac{n_{i_{1}(t)}!}{j_{n_{i_{1}(t)},m_{1}}!d_{n_{i_{1}(t)},m_{1}}!} \\ &\times \left|\overset{\vee}{P}_{n_{i_{1}(t)}} \left(\left(q^{m_{1}}y\right)^{j_{n_{i_{1}(t)},m_{1}}} \left(q^{n_{i_{1}(t)}}_{m_{1}}y\right)^{d_{n_{i_{1}(t)},m_{1}}}\right), \right| \end{split}$$

where $q^{m_1}y = \sum_{s=1}^{m_1} y_s$ and $q_{m_1}^{n_{i_1(t)}}(y) = \sum_{s=m_1+1}^{n_{i_1(t)}} y_s$.

For t with $n_{i_1(t)} > m_1$, consider the polynomial $Q: E \to \mathbb{C}$ defined by

$$Q_{t}(x) = \left(d_{n_{i_{1}(t)},m_{0}} + 1\right) \frac{n_{i_{1}(t)}!}{j_{n_{i_{1}(t)},m_{1}}!d_{n_{i_{1}(t)},m_{1}}!} \overset{\vee}{P}_{n_{i_{1}(t)}} \left(\left(q^{m_{1}}y\right)^{j_{n_{i_{1}(t)},m_{1}}} \left(x\right)^{d_{n_{i_{1}(t)},m_{1}}} \right).$$

Then $\deg Q_t(x) = d_{n_{i_1(t)}, m_1} \le n_{i_1(t)}$ and

$$\left|Q_t\left(q_{m_1}^{n_{i_1(t)}}y\right)\right| = \left|Q_t\left(\sum_{s=m_1+1}^{n_{i_1(t)}}y_s\right)\right| \geqslant 1.$$

As $q^{m_1}y$ is a fixed vector and, by hypothesis, for every weakly compact subsets $W \subset E$, we have $\limsup_n \|P_n\|_W^{1/n} = 0$, by Lemma 2.2, we have that for every weakly compact subsets $W \subset E$

$$\lim \sup_{t} \left\| Q_{t} \right\|_{W}^{\frac{1}{n_{i_{1}(t)}}} = 0.$$

Since the sequence $(d_{n_{i_1(t)},m_1})_t$ is strictly increasing, by Lemma 3.2, there exists a positive integer $m_2 > m_1$, and strictly increasing sequences $(i_2(t)), (n_{i_2(t)}), (d_{i_2(t)} - j_{n_{i_2(t)},m_2})$ with

$$\begin{split} (i_2(t)) &\subset (i_1(t)), \ i_2(1) > 2, \ n_{i_2}(1) > m_2, \\ 0 &\leqslant j_{n_{i_2(t)},m_2} \leqslant d_{n_{i_2(t)},m_1} \leqslant n_{i_2(t)}, \ for \ every \ t = 1,2, \dots \\ 0 &< \lim \frac{j_{n_{i_2(t)},m_2}}{n_{i_2(t)}} = \delta_2 < 1 \\ \\ \frac{j_{n_{i_2(t)},m_2}}{n_{i_2(t)}} &\leqslant 2\delta_2, \ \ for \ every \ t = 1,2, \dots \end{split}$$

and

$$\begin{split} 1 & \leq \left(d_{n_{i_{2}(t)},m_{1}} + 1\right) \frac{d_{n_{i_{2}(t)},m_{1}}!}{j_{n_{i_{2}(t)},m_{2}}! \left(d_{n_{i_{2}(t)},m_{1}} - j_{n_{i_{2}(t)},m_{2}}\right)!} \\ & \times \left| \bigvee_{l=1}^{V} \left(q_{m_{1}}^{m_{2}} y\right)^{j_{n_{i_{2}(t)},m_{2}}} \left(q_{m_{2}}^{n_{i_{2}(t)}} y\right)^{d_{n_{i_{2}(t)},m_{1}} - j_{n_{i_{2}(t)},m_{2}}} \right| \end{split}$$

or

$$\begin{split} &1\leqslant \left(d_{n_{i_{2}(t)},m_{1}}+1\right)\frac{d_{n_{i_{2}(t)},m_{1}}!}{j_{n_{i_{2}(t)},m_{2}}!\left(d_{n_{i_{2}(t)},m_{1}}-j_{n_{i_{2}(t)},m_{2}}\right)!}\\ &\qquad \times \left(d_{n_{i_{2}(t)},m_{0}}+1\right)\frac{n_{i_{2}(t)}!}{j_{n_{i_{2}(t)},m_{1}}!d_{n_{i_{2}(t)},m_{1}}!}\\ &\qquad \times \left|\overset{\vee}{P}_{n_{i_{2}(t)}}\left(\left(q^{m_{1}}y\right)^{j_{n_{i_{2}(t)},m_{1}}}\left(q^{m_{2}}_{m_{1}}y\right)^{j_{n_{i_{2}(t)},m_{2}}}\left(q^{n_{i_{1}(t)}}_{m_{2}}y\right)^{d_{n_{i_{2}(t)},m_{1}}-j_{n_{i_{2}(t)},m_{2}}}\right)\right|, \end{split}$$

469121, 20.22.1, Downloaded from https://andandasce.onlinelibrary.wiley.com/dai/10.1112/btns.12554 by University Of Sa Polato - Bazzil, Wiley Online Library on [17.06.02025]. See the Terms and Conditions (there') on the Terms and Conditions of Wiley Online Library for rules of use of use

this is,

$$\begin{split} &1 \leqslant \left(d_{n_{i_{2}(t)},m_{0}}+1\right)\left(d_{n_{i_{2}(t)},m_{1}}+1\right) \\ &\times \frac{n_{i_{2}(t)}!}{j_{n_{i_{2}(t)},m_{1}}!j_{n_{i_{2}(t)},m_{2}}!\left(d_{n_{i_{2}(t)},m_{1}}-j_{n_{i_{2}(t)},m_{2}}\right)!} \\ &\times \left|\overset{\mathsf{N}}{P}_{n_{i_{2}(t)}}\left(\left(q^{m_{1}}y\right)^{j_{n_{i_{2}(t)},m_{1}}}\left(q^{m_{2}}_{m_{1}}y\right)^{j_{n_{i_{2}(t)},m_{2}}}\left(q^{n_{i_{2}(t)},m_{2}}_{m_{2}}y\right)^{d_{n_{i_{2}(t)},m_{2}}}\right)\right|, \end{split}$$

where $d_{n_{i_2(t)},m_2} = d_{n_{i_2(t)},m_1} - j_{n_{i_2(t)},m_2}$. Observe that $i_2(1) > 2$ implies $i_2(2) > i_2(1) > 2$. Proceeding inductively we find

- (i) a strictly increasing sequence $(m_i)_{i \ge 1}$ of positive integer,
- (ii) strictly increasing sequences $(i_k(t))_t$, (k = 1, 2, ...) of positive integers such that every k

$$(i_{k+1}(t)) \subset (i_k(t)),$$

 $i_k(k) > k,$
 $n_{i_k}(1) > m_k,$

(iii) sequences $(j_{n_{i_k(t)},m_k})_t$ (k=1,2,...) of positive integers with

$$0 < \lim_{t} \frac{j_{n_{i_k(t)}, m_k}}{n_{i_k(t)}} = \delta_k < 1, \ for \ every \ k = 1, 2, ...$$

$$\frac{j_{n_{i_k(t)}, m_k}}{n_{i_k(t)}} < 2\delta_k, \ \ for \ every \ t = 1, 2,$$

and

$$1 \leq \prod_{s=1}^{k} \left(d_{n_{i_{k}(t)}, m_{s-1}} + 1 \right) \cdot \frac{n_{i_{k}(t)}!}{d_{n_{i_{k}(t)}, m_{k}}! \prod_{s=1}^{k} j_{n_{i_{k}(t)}, m_{s}}!}$$

$$\times \left| \stackrel{\vee}{P}_{n_{i_{k}(t)}} \left(\prod_{i=1}^{k} \left(q_{m_{s-1}}^{m_{s}} y \right)^{j_{n_{i_{k}(t)}, m_{s}}} \left(q_{m_{k}}^{n_{i_{k}(t)}} y \right)^{d_{n_{i_{k}(t)}, m_{k}}} \right) \right|,$$

$$(3.6)$$

where $d_{n_{i_k(t)},m_k} := d_{n_{i_k(t)},m_{k-1}} - j_{n_{i_k(t)},m_k} \leqslant d_{n_{i_k(t)},m_{k-1}} \leqslant n_{i_k(t)}$ and $(d_{n_{i_k(t)},m_k})_t$ are strictly creasing, for k=1,2,...

We observe that $(i_k(t)) \subset (i_s(t))$ for $k \ge s$ and therefore

$$\lim_t \frac{j_{n_{i_k(t)}}, m_s}{n_{i_k(t)}} = \delta_s, \text{ for every } k = s, s+1, \dots$$

$$\frac{j_{n_{i_k(t)}}, m_s}{n_{i_k(t)}} < 2\delta_s, \ \ for \ every \ k = s, s+1, ... \ \ and \ t = 1, 2, ...$$

Now, we show that the sequence (δ_k) is summable. Indeed, as

$$0 \leq \sum_{s=1}^{k} j_{n_{i_k(t)}, m_s} \leq n_{i_k(t),}$$

it is

$$0 \leqslant \sum_{s=1}^{k} \frac{j_{n_{i_k(t)}, m_s}}{n_{i_k(t)}} \leqslant 1$$

for all t = 1, 2, ... and k = 1, 2, ... Then we have

$$\begin{split} \sum_{s=1}^k \delta_s &= \lim_t \frac{j_{n_{i_k(t)}, m_1}}{n_{i_k(t)}} + \lim_t \frac{j_{n_{i_k(t)}, m_2}}{n_{i_k(t)}} + \dots + \lim_t \frac{j_{n_{i_k(t)}, m_k}}{n_{i_k(t)}} \\ &= \lim_t \left(\frac{j_{n_{i_k(t)}, m_1}}{n_{i_k(t)}} + \frac{j_{n_{i_k(t)}, m_2}}{n_{i_k(t)}} + \dots + \frac{j_{n_{i_k(t)}, m_k}}{n_{i_k(t)}} \right) \leqslant 1. \end{split}$$

Since k is arbitrary, we obtain that $\sum_{k=1}^{\infty} \delta_k \leq 1$.

Consider $(\alpha_i) \in c_0$ such that

$$\Pi_{i=1}^{\infty} \alpha_i^{\delta_i} = 2. \tag{3.7}$$

Since $\frac{j_{n_{i_k(t)},m_s}}{2n_{i_k(t)}} < \delta_s < 1$, for every $k \ge s$, t = 1, 2, ... and $\lim_s \alpha_s = 0$ we can suppose that

$$\Pi_{s=1}^{k} \alpha_{s}^{\frac{j_{n_{i_{k}(k)}, m_{s}}}{n_{i_{k}(k)}}} > \Pi_{s=1}^{k} \alpha_{s}^{2\delta_{s}}.$$

Now, by the inequality (3.6) we obtain that

$$\begin{split} G_k(y) := & \left(\frac{n_{i_k(k)}!}{d_{n_{i_k(k)},m_k}! \Pi_{s=1}^k j_{n_{i_k(k)},m_s}!} \right)^{\frac{1}{n_{i_k(k)}}} \\ & \times \left| \stackrel{\vee}{P}_{n_{i_k(k)}} \left(\Pi_{s=1}^k \left(\alpha_s q_{m_{s-1}}^{m_s} y \right)^{j_{n_{i_k(k)},m_s}} \left(q_{m_k}^{n_{i_k(k)}} y \right)^{d_{n_{i_k(k)},m_k}} \right) \right|^{\frac{1}{n_{i_k(k)}}} \\ & = \Pi_{s=1}^k \alpha_s^{\frac{j_{n_{i_k(k)},m_s}}{n_{i_k(k)}}} \left(\frac{n_{i_k(k)}!}{d_{n_{i_k(k)},k}! \Pi_{s=1}^k j_{n_{i_k(k)},m_s}!} \right)^{\frac{1}{n_{i_k(k)}}} \end{split}$$

$$\times \left| \overset{\vee}{P}_{n_{i_{k}(k)}} \left(\prod_{s=1}^{k} \left(q_{m_{s-1}}^{m_{s}} y \right)^{j_{n_{i_{k}(k)}, m_{s}}} \left(q_{m_{k}}^{n_{i_{k}(k)}} y \right)^{d_{n_{i_{k}(k)}, m_{k}}} \right) \right|^{\frac{1}{n_{i_{k}(k)}}}$$

$$\ge \prod_{s=1}^{k} \alpha_{s}^{2\delta_{s}} \frac{1}{\prod_{s=1}^{k} \left(d_{n_{i_{k}(k)}, m_{s-1}} + 1 \right)^{1/n_{i_{k}(k)}}}.$$

Now by 3.4, as $i_k(k) \ge k$, for every k = 1, 2, ..., we have

$$\frac{1}{\prod_{s=1}^k \left(d_{n_{i_k(k)},m_{s-1}} + 1\right)^{1/n_{i_k(k)}}} \geqslant \frac{1}{\prod_{s=1}^k \left(n_{i_k(k)} + 1\right)^{1/n_{i_k(k)}}} \geqslant \frac{1}{e^{\frac{k}{i_k(k)}}} \geqslant \frac{1}{e}.$$

Thus,

$$G_k(y) \geqslant \frac{1}{e} \Pi_{s=1}^k \alpha_s^{2\delta_s},$$

and by (3.7), we have

$$\lim \sup_{k} G_k(y) \geqslant \lim \sup_{k} \frac{1}{e} \Pi_{s=1}^k \alpha_s^{2\delta_s} = 4/e.$$
 (3.8)

On the other hand, as $\sum_{j=1}^{m} y_j$ is a weakly unconditionally Cauchy series, then the series $\sum_{i=1}^{\infty} \sum_{j=m_{i-1}+1}^{m_i} y_i$ is also weakly unconditionally Cauchy and therefore the series

$$\alpha_1 \left(\sum_{k=1}^{m_1} y_i \right) + \alpha_2 \left(\sum_{k=m_1+1}^{m_2} y_i \right) + \dots + \alpha_k \left(\sum_{k=m_{k-1}+1}^{m_k} y_i \right) + \dots$$

is unconditionally convergent in norm and the sequence

$$\left(q_{m_k}^{n_{i_k(k)}}(y)\right)_k = \left(\sum_{s=m_k+1}^{n_{i_k(k)}} y_s\right)_k$$

weakly converges to zero. Then the set

$$W = \left\{ \sum_{s=1}^{k} \alpha_{s} \theta_{s} q_{m_{s-1}}^{m_{s}}(y) + \theta_{k+1}. q_{m_{k}}^{n_{i_{k}(k)}}(y) : \left| \theta_{s} \right| = 1, \ k \geqslant 1, \ m_{0} := 0 \right\}$$

is relatively weakly compact. So by [12, Corollary 7.10],

$$\begin{split} G_k(y) &\leqslant \sup_{\left|\theta_j\right| = 1} \left\{ \left| P_{n_{i_k(k)}} \left(\sum_{s=1}^k \alpha_s \theta_s q_{m_{s-1}}^{m_s} y + \theta_{k+1}. q_{m_k}^{n_{i_k(k)}} y \right) \right|^{\frac{1}{n_{i_k(k)}}} \right\} \\ &\leqslant \left\| P_{n_{i_k(k)}} \right\|^{\frac{1}{n_{i_k(k)}}}, \end{split}$$

where \overline{W} is the weak closure of W. Now, by assumption, we have

$$\lim \sup_{k} G_{k}(y) \leqslant \lim \sup_{k} \left\| P_{n_{i_{k}(k)}} \right\|_{\overline{W}}^{\frac{1}{n_{i_{k}(k)}}} = 0.$$

It is a contradiction to inequality (3.8).

The following theorem generalizes a result obtained by Dineen in [7] for the space c_0 .

Theorem 3.4. Let E be a Banach space with the U-property and without a copy of ℓ_1 . Then

$$H_{bk}(E) = H_b(E)$$
.

Proof. It is clear that $H_b(E) \subset H_{bk}(E)$. Consider $f = \sum_{n=0}^{\infty} P_n \in H_{bk}(E)$ and suppose that $f \notin H_b(E)$, so $\limsup \|P_n\|^{1/n} = \rho > 0$. We can choose a subsequence, if necessary, and we suppose that $\|P_n\|^{1/n} \ge \rho$ for all $n \ge 1$. Then, by continuity, there exist a sequence $(x_n) \subset E$ with $\|x_n\| = 1$ for all n, such that

$$\left|P_n(x_n)\right|^{\frac{1}{n}} > \rho/2$$

or $|P_n(\frac{2}{\rho}x_n)| > 1$ for all $n \ge 1$. Since E does not have a copy of ℓ_1 and the sequence $(z_n) := (\frac{2}{\rho}x_n)$ is bounded, then by Rosenthal's Theorem, there exists a weakly Cauchy subsequence $(z_{n_i}) := (\frac{2}{\rho}x_{n_i}) \subset (z_n)$. As E has the U-property, there is a weakly unconditionally Cauchy series (wuC) $\sum_{k=1}^{\infty}y_k$, such that the sequence $(z_{n_i} - \sum_{k=1}^{n_i}y_k)_i$ converges to zero in the weak topology. Now, for each n_i we have, by the Leibniz formula,

$$P_{n_i}(z_{n_i}) = \sum_{j=0}^{n_i} \frac{n_i!}{j!(n_i - j)!} P_{n_i}^{\vee} \left(\left(z_{n_i} - \sum_{k=1}^{n_i} y_k \right)^j \left(\sum_{k=1}^{n_i} y_k \right)^{n_i - j} \right).$$

So given n_i there exist j_{n_i} with $0 \le j_{n_i} \le n_i$ for each i such that

$$1 \leq \left| P_{n_{i}} \left(z_{n_{i}} \right) \right| \leq (n_{i} + 1) \frac{n_{i}!}{j_{n_{i}}! \left(n_{i} - j_{n_{i}} \right)!}$$

$$\times \left| P_{n_{i}}^{\vee} \left(\left(z_{n_{i}} - \sum_{k=1}^{n_{i}} y_{k} \right)^{j_{n_{i}}} \left(\sum_{k=1}^{n_{i}} y_{k} \right)^{n_{i} - j_{n_{i}}} \right) \right|.$$
(3.9)

We define the polynomials $Q_{n_i}: E \to \mathbb{C}$ by

$$Q_{n_i}(x) = \frac{(n_i + 1)n_i!}{j_{n_i}! (n_i - j_{n_i})!} P_{n_i}^{\vee} \left(z_{n_i} - \sum_{k=1}^{n_i} y_k \right)^{j_{n_i}} (x)^{n_i - j_{n_i}}, \quad for \ i = 1, 2, \dots$$

CARRIÓN V.

As $f = \sum_{n=0}^{\infty} P_n \in H_{bk}(E)$ then for all weakly compact subsets W of E we have $\lim \|P_n\|_W^{1/n} = 0$, then by Lemma 2.2, we have

$$0 = \lim \sup_{i} \left\| Q_{n_i} \right\|_{W}^{\frac{1}{n_i}}$$

for all weakly compact subset $W \subset E$. By Lemma 3.3, this implies that

$$0 = \lim \sup_{i} \left| Q_{n_{i}} \left(\sum_{k=1}^{n_{i}} y_{k} \right) \right|^{\frac{1}{n_{i}}}$$

$$= \lim \sup_{i} \left| \frac{(n_{i}+1)n_{i}!}{j_{n_{i}}! (n_{i}-j_{n_{i}})!} P_{n_{i}}^{\vee} \left(\left(z_{n_{i}} - \sum_{k=1}^{n_{i}} y_{k} \right)^{j_{n_{i}}} \left(\sum_{k=1}^{n_{i}} y_{k} \right)^{n_{i}-j_{n_{i}}} \right) \right|^{\frac{1}{n_{i}}},$$

which is a contradiction by inequality (3.9).

Corollary 3.5. Let E be a Banach space with the U-property and without a copy of l_1 . Then for every Banach space F we have

$$H_{hk}(E,F) = H_h(E,F).$$

Proof. It is clear that $H_b(E,F) \subset H_{bk}(E,F)$. Consider $f = \sum_{n=0}^{\infty} P_n \in H_{bk}(E,F)$ and suppose that $f \notin H_b(E,F)$. Then there exist a sequence $(x_n) \in S(E)$ such that $\lim_{n \to \infty} \|f(x_n)\| = \infty$. On the other hand, we have that for every $\phi \in F'$, $\phi \circ f \in H_{bk}(E)$. Thus, by Theorem 3.4, there is $M_\phi \in \mathbb{R}$ such that for every $x \in S(E)$, $|\phi(f(x))| \leq M_\phi$. This is, if $y_n = f(x_n) \in F$, then for every $\phi \in F'$, we have that $|\phi(y_n)| \leq M_\phi$. By the uniform boundedness principle, we have that $\sup_n \|f(x_n)\| = \sup_n \|y_n\| < \infty$. A contradiction. Thus $f \in H_b(E,F)$ and therefore $H_{bk}(E,F) = H_b(E,F)$.

We introduce some necessary notation for the next corollary. Let $H_w(E,F)$ denote the space of all entire functions on E into F which are weakly continuous on bounded sets of E. We denote $H_{wu}(E,F)$ the space of all entire functions on E into F which are weakly uniformly continuous on bounded sets of E. In [1] Aron, Herves, and Valdivia posed the following question: Is every weakly continuous function on bounded sets of E also weakly uniformly continuous on bounded sets of E? or is $H_w(E,F) = H_{wu}(E,F)$? for all Banach space E? It is clear that the inclusion $H_{wu}(E,F) \subset H_w(E,F)$ is true. In [1, Example 3.5], they showed that the problem is equivalent to show that the inclusion $H_w(E,F) \subset H_b(E,F)$ holds. Since every weakly continuous function on bounded sets on E is bounded in weakly compact sets on E, Theorem 3.4 implies that when E is a Banach space with the U-property and without a copy of ℓ_1 , then $H_{wu}(E,F) \subset H_w(E,F)$. So, for theses spaces the ℓ_1 problem has a positive answer. Also it is true for all subspace $G \subset E$, since the U-property is hereditary.

Let $H_{wsc}(E,F)$ be the space of all entire functions which apply weakly convergent sequences of E into convergent sequences of F. So $H_{wu}(E,F) \subset H_w(E,F) \subset H_{wsc}(E,F)$. In the next corollary we give conditions on E such that we get equality between these spaces.

Corollary 3.6. Let E be a Banach space with the U-property and without a copy of l_1 . Then

$$H_w(E,F) = H_{wsc}(E,F) = H_{wu}(E,F).$$

Proof. By [1, Proposition 3.3], $H_w(E,F) = H_{wsc}(E,F)$ and by the remark above we have that $H_w(E,F) = H_{wu}(E,F)$.

We recall that a Banach space has Dunford–Pettis property and does not contain a copy of ℓ_1 , if only if E' is a Schur space. This condition permits us to get the next corollary.

Corollary 3.7. Let E be a Banach space with the U-property such that E' is a Schur space. Then

$$H_{wu}(E) = H_w(E) = H_h(E) = H_{hk}(E).$$

Proof. Since E' is Schur, then E has the Dunford–Pettis property and by [13, Proposition 4] we have that $H_{bk}(E) = H_w(E)$, once E does not have a copy of ℓ_1 . The corollary follows from Theorem 3.4 and Corollary 3.6 because E has the U-property.

Now, we give some examples of spaces that satisfy the conditions of Corollary 3.7

Example 3.8. Every M-ideal in its bidual is an Asplund space and therefore does not contain a copy of ℓ_1 . This space has the U-property, see [9, Theorem 3.8] and [9, Theorem 3.1]). A list of Banach spaces that are M-ideals in their bidual is given in [9, Example 1.4, p. 105].

The spaces $l_2(c_0)$ and $\mathbb{C} \bigoplus_1 c_0$ are examples of Banach spaces without a copy of ℓ_1 with the *U*-property, which are not *M*-ideal in their bidual. These are examples of h-ideals. See [8, Examples 5, 6 of Section 4] and [8, final remark of Section 8].

There are spaces C(K) which are not M-ideals in their biduals, yet all separable subspaces of C(K) are isomorphic to subspaces of c_0 , in particular this is an Asplund space (see [10, Example 2]). For such space we have that the conclusion of Theorem 3.4 is true. In fact, if $f \in H_{bk}(C(K))$ and $f \notin H_b(C(K))$, then there exist a bounded sequence $(x_n) \subset C(K)$ such that $|f(x_n)| > n$ for n. Now, consider $G = \overline{span}(x_n)$ the closed subspace generated by (x_n) , F a closed subspace of c_0 , F is F of the isomorphism, and F and F is F the bounded sequence in F such that F is F in F in F in F in F is F in F is F in F

ACKNOWLEDGEMENT

The author is grateful to the referee for his rigorous review, corrections, and helpful comments in the original manuscript.

JOURNAL INFORMATION

The *Bulletin of the London Mathematical Society* is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES

- R. M. Aron, C. Hervés, and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189–203.
- S. Berrios, Weakly continuous holomorphic functions on Banach spaces with a shrinking and unconditional basis, J. Math. Anal. Appl. 337 (2008), 556–575.
- 3. H. Carrión, Entire functions on Banach spaces with a separable dual, J. Funct. Anal. (2002), 496-514.
- 4. J. Diestel, Sequences and series in Banach spaces, Springer, New York, 1984.
- 5. J. Diestel, A survey of results related to the Dunford-Pettis property, Contemp. Math. 2 (1980), 15-60.
- 6. S. Dineen, Complex analysis on infinite dimensional spaces, Springer, London, 1999.
- 7. S. Dineen, *Entire functions onc*₀, J. Funct. Anal. **52** (1983), 205–218.
- G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59.
- 9. P. Harmand, D. Werner, W. Werner, M-ideals in Banach spaces and Banach algebras, Springer, New York, 1993.
- W. B. Johnson and J. Lindestrauss, Some remarks on weakly compactly generated Banach Spaces, Israel J. Math. 17, 219–230. Corregendum. Inbid 32 (1979), 382–383.
- 11. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer, New York, 1977.
- J. Mujica, Complex analysis in Banach spaces, vol. 120, North-Holland Mathematics Studies, Amsterdam; New York, 1986.
- 13. L. A. Moares, Weakly continuous holomorphic mappings, Math. Proc. R. Ir. Acad. 97 (1997), 139–144.
- A. Pelczynski, A connections between weakly unconditional convergence and weak completeness of Banach spaces, Bull. Pol. Acad. Sci. Math. 6 (1958), 251–253.
- 15. M. Valdivia, Some new results on weak compactness, J. Funct. Anal. 24 (1977), 1–10.