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Abstract
Let 𝐸 be a Banach space without a copy of 𝑙1 and with
the𝑈-property. We show that every entire function on 𝐸
which is weakly continuous on bounded sets is bounded
on bounded sets of𝐸.We answer thisway, in the affirma-
tive, to a problem raised byAron,Hervés, andValdivia in
1983, for these spaces. In particular, this is true for every
Banach space which is an𝑀-ideal in its bidual.
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1 INTRODUCTION

Our aim in this paper is to give a positive solution for the denominated “the 𝓁1-problem” (see
[6, p. 138]) in certain Banach spaces. Indeed, in 1977 Valdivia [15] showed that a complex Banach
space 𝐸 is reflexive if and only if every weakly continuous function on bounded sets is weakly
uniformly continuous on 𝐸. Motivated by this result Aron et al. [1] showed that for every Banach
space 𝐸, every polynomial which is weakly continuous on bounded sets of 𝐸 is uniformly con-
tinuous. So, the reflexivity is not a necessary condition for the polynomial case. A holomorphic
version of this problem was proposed by these authors and it is considered an open problem.

Problem 1.1. If 𝑓 ∶ 𝐸 → ℂ is a holomorphic function which is weakly continuous on bounded sets
is 𝑓 weakly uniformly continuous?

Dineen in [7] showed that this question has a positive answer if 𝐸 = 𝑐0 (the spaces of all null
sequences). A careful analysis of the techniques given by Dineen allows us to conclude that the
results follows true for all Banach space with unconditional and shrinking basis. So the reflexivity
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of 𝐸 is not a necessary condition for giving a positive answer to Problem 1.1. In [2] there is a
version of this result generalized to functions defined in balanced open sets of a Banach space
𝐸, with unconditionally and shrinking basis. The name given to Problem 1.1 must be awarded to
Aron et al. [1], who proved that a positive answer to Problem 1.1 for 𝓁1, the spaces of summable
sequences, implies a positive answer for all Banach spaces 𝐸.
A partial answer to Problem 1.1 was given, by the author of this paper, in [3] for separable dual

Banach space. However, some years later Valdivia found some mistakes in the technique used.
In this paper we extend the result of Dineen given in [7], and we show that Problem 1.1 has

a positive answer when the Banach 𝐸 has the 𝑈-property and does not have a copy of 𝓁1. We
finished the paper giving some examples.

2 NOTATION AND BASIC DEFINITIONS

Now we give some notation. Let 𝐸 be a complex Banach space with unity sphere 𝑆(𝐸) and with
dual space 𝐸′. We denote by 𝑃(𝑛𝐸, 𝐹) the space of all continuous 𝑛-homogenous polynomials and
by 𝐻(𝐸, 𝐹) the space of all entire functions from 𝐸 into 𝐹. We denote by 𝐻𝑏𝑘(𝐸, 𝐹) the space of
all functions in 𝐻(𝐸, 𝐹) which are bounded on weakly compact subsets of 𝐸 and by 𝐻𝑏(𝐸, 𝐹) all
functions in 𝐻(𝐸, 𝐹) which are bounded on bounded subset of 𝐸. If 𝐹 = ℂ, as usual we denote

𝑃(𝑛𝐸) ∶= 𝑃(𝑛𝐸, 𝐹) and𝐻(𝐸) ∶= 𝐻(𝐸, ℂ). For each 𝑃 ∈ 𝑃(𝑛𝐸) we denote by
∨

𝑃 the unique contin-
uous 𝑛-linear symmetric mapping associated to 𝑃. If 𝑓 ∶ 𝐸 → ℂ is a function and Ω is a compact
subset of 𝐸, we denote ‖𝑓‖Ω = sup𝑥∈Ω |𝑓(𝑥)|, the uniform norm of 𝑓 on Ω.
For background material about polynomials and holomorphic functions in Banach spaces, we

refer the reader to [12] or [6].
Let (𝑦𝑖) be a sequence in 𝐸. Consider the formal series 𝑦 =

∑∞
𝑖=1 𝑦𝑖 and for each𝑚, 𝑛 ∈ ℕ, 0 <

𝑚 < 𝑛, define

𝑞𝑛𝑦 ∶=

𝑛∑
𝑖=1

𝑦𝑖 and 𝑞𝑛𝑚𝑦 ∶=
𝑛∑

𝑖=𝑚+1

𝑦𝑖.

Let (𝑃𝑛) ⊂ 𝑃(𝑛𝐸, 𝐹) be a sequence of 𝑛-homogeneous polynomials where, 𝑛 = 1, 2, … and (𝑚𝑖) ⊂
ℕ a strictly increasing sequence (𝑚0 ∶= 0). Then, if 𝑛 > 𝑚1, we obtain by Leibniz‘s formula [12,
Theorem 1.8] the following inequality:

‖‖𝑃𝑛(𝑞𝑛(𝑦))‖‖ = ‖‖‖‖‖‖
𝑛∑
𝑗=0

𝑛!

𝑗!(𝑛 − 𝑗)!

∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗
(
𝑞𝑛𝑚1

𝑦
)𝑛−𝑗)‖‖‖‖‖‖

⩽

𝑛∑
𝑗=0

𝑛!

𝑗!(𝑛 − 𝑗)!

‖‖‖‖‖
∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗
(
𝑞𝑛𝑚1

𝑦
)𝑛−𝑗)‖‖‖‖‖.

Thus for some 𝑗𝑛,𝑚1 ∈ ℕ with 0 ⩽ 𝑗𝑛,𝑚1 ⩽ 𝑛 we have

‖‖𝑃𝑛(𝑞𝑛(𝑦))‖‖ ⩽ (𝑛 + 1) 𝑛!

𝑗𝑛,𝑚1 !
(
𝑛 − 𝑗𝑛,𝑚1

)
!

‖‖‖‖‖
∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗𝑛,𝑚1

(
𝑞𝑛𝑚1

𝑦
)𝑛−𝑗𝑛,𝑚1)‖‖‖‖‖.
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If 𝑛 ⩾ 𝑚2 take

𝑄(𝑦) =
∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗𝑛,𝑚1

(
𝑞𝑛𝑚1

𝑦
)𝑛−𝑗𝑛,𝑚1)

,

then using again the Leibniz‘s formula, we obtain

𝑄(𝑦) =

𝑛−𝑗𝑛,𝑚1∑
𝑗=0

(
𝑛 − 𝑗𝑛,𝑚1

)
!

𝑗!
(
𝑛 − 𝑗𝑛,𝑚1 − 𝑗

)
!

∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗𝑛,𝑚1

(
𝑞
𝑚2
𝑚1
𝑦
)𝑗(

𝑞𝑛𝑚2
𝑦
)𝑛−𝑗𝑛,𝑚1−𝑗)

.

Now for some 𝑗𝑛,𝑚2 ∈ ℕ with 0 ⩽ 𝑗𝑛,𝑚2 ⩽ 𝑛 − 𝑗𝑛,𝑚1 we have that

‖𝑄(𝑦)‖ ⩽ (𝑛 − 𝑗𝑛,𝑚1 + 1)
(
𝑛 − 𝑗𝑛,𝑚1

)
!

𝑗𝑛,𝑚2 !
(
𝑛 − 𝑗𝑛,𝑚1 − 𝑗𝑛,𝑚2

)
!
×

×
‖‖‖‖‖
∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗𝑛,𝑚1

(
𝑞
𝑚2
𝑚1
𝑦
)𝑗𝑛,𝑚2(

𝑞𝑛𝑚2
𝑦
)𝑛−𝑗𝑛,𝑚1−𝑗𝑛,𝑚2)‖‖‖‖‖.

Set 𝑑𝑛,0 ∶= 𝑛, 𝑑𝑛,1 ∶= 𝑛 − 𝑗𝑛,𝑚1 , 𝑑𝑛,2 ∶= 𝑛 − 𝑗𝑛,𝑚1 − 𝑗𝑛,𝑚2 .
Therefore

‖‖𝑃𝑛(𝑞𝑛(𝑦))‖‖ ⩽ (𝑛 + 1) 𝑛!

𝑗𝑛,𝑚1 !
(
𝑛 − 𝑗𝑛,𝑚1

)
!
.
(
𝑛 − 𝑗𝑛,𝑚1 + 1

)

×

(
𝑛 − 𝑗𝑛,𝑚1

)
!

𝑗𝑛,𝑚2 !
(
𝑛 − 𝑗𝑛,𝑚1 − 𝑗𝑛,𝑚2

)
!

×
‖‖‖‖‖
∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗𝑛,𝑚1

(
𝑞
𝑚2
𝑚1
𝑦
)𝑗𝑛,𝑚2(

𝑞𝑛𝑚2
𝑦
)𝑛−𝑗𝑛,𝑚1−𝑗𝑛,𝑚2)‖‖‖‖‖

= (𝑛 + 1)
(
𝑛 − 𝑗𝑛,𝑚1 + 1

)
𝑛!

𝑗𝑛,𝑚1!𝑗𝑛,𝑚2 !
(
𝑛 − 𝑗𝑛,𝑚1 − 𝑗𝑛,𝑚2

)
!

×
‖‖‖‖‖
∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗𝑛,𝑚1

(
𝑞
𝑚2
𝑚1
𝑦
)𝑗𝑛,𝑚2(

𝑞𝑛𝑚2
𝑦
)𝑛−𝑗𝑛,𝑚1−𝑗𝑛,𝑚2)‖‖‖‖‖

=
(
𝑑𝑛,0 + 1

)(
𝑑𝑛,1 + 1

) 𝑛!

𝑗𝑛,𝑚1 !𝑗𝑛,𝑚2 !𝑑𝑛,2!

×
‖‖‖‖‖
∨

𝑃𝑛

(
(𝑞𝑚1𝑦)

𝑗𝑛,𝑚1

(
𝑞
𝑚2
𝑚1
𝑦
)𝑗𝑛,𝑚2(

𝑞𝑛𝑚2
𝑦
)𝑑𝑛,2)‖‖‖‖‖.

 14692120, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12564 by U

niversity O
f Sao Paulo - B

razil, W
iley O

nline L
ibrary on [17/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ENTIRE FUNCTIONS ON BANACH SPACES WITH THE 𝑈-PROPERTY 129

By induction we obtain for 𝑛 ⩾ 𝑚𝑘

‖‖𝑃𝑛(𝑞𝑛(𝑦))‖‖ ⩽ Π𝑘−1𝑠=0

(
𝑑𝑛,𝑠 + 1

) 𝑛!

Π𝑘
𝑠=1
𝑗𝑛,𝑚𝑠 .𝑑𝑛,𝑘!

(2.1)

×
‖‖‖‖‖
∨

𝑃𝑛

(
Π𝑘𝑠=1

(
𝑞
𝑚𝑠
𝑚𝑠−1

(𝑦)
)𝑗𝑛,𝑚𝑠

.
(
𝑞𝑛𝑚𝑘

(𝑦)
)𝑑𝑛,𝑘)‖‖‖‖‖,

where for all 𝑟 with 0 ⩽ 𝑟 ⩽ 𝑘, we have that 0 ⩽
∑𝑟
𝑠=1 𝑗𝑛,𝑚𝑠 ⩽ 𝑛, and

𝑑𝑛,𝑟 = 𝑛 −

𝑟∑
𝑘=0

𝑗𝑛,𝑚𝑘 ,

(𝑗𝑛,𝑚0 ∶= 0). Now, by the Cauchy‘s inequality combined with [12, Corollary 7.10] we have

‖‖𝑃𝑛(𝑞𝑛(𝑦))‖‖ ⩽ Π𝑘−1𝑠=0

(
𝑑𝑛,𝑠 + 1

) 𝑛!

Π𝑘
𝑠=1
𝑗𝑛,𝑚𝑠 !𝑑𝑛,𝑘!

×
‖‖‖‖‖
∨

𝑃𝑛

(
Π𝑘
𝑠=1

(
𝑞
𝑚𝑠
𝑚𝑠−1

𝑦
)𝑗𝑛,𝑚𝑠(

𝑞𝑛𝑚𝑘
𝑦
)𝑑𝑛,𝑘)‖‖‖‖‖

⩽ Π𝑘−1
𝑠=0

(
𝑑𝑛,𝑠 + 1

)
sup|𝜃𝑠|=1

‖‖‖‖‖‖𝑃𝑛
(

𝑘∑
𝑠=1

𝜃𝑠𝑞
𝑚𝑠
𝑚𝑠−1

(𝑦) + 𝜃𝑘+1𝑞
𝑛
𝑚𝑘
(𝑦)

)‖‖‖‖‖‖.
Theses inequalities will be used extensively throughout this article.
The following result is well known, see [6], we include it here for the sake of the reader.

Lemma 2.1. Let (𝑃𝑛)𝑛⩾0 be a sequence of polynomials such that for all 𝑛 ∈ ℕ, we have 𝑃𝑛 ∈
𝑃(𝑛𝐸, 𝐹). Then

(1) 𝑓 =
∑
𝑛 𝑃𝑛 ∈ 𝐻(𝐸, 𝐹) if and only if lim sup𝑛 ‖𝑃𝑛‖1∕𝑛𝐾 = 0 for all compact subsets 𝐾 of 𝐸;

(2) 𝑓 =
∑
𝑛 𝑃𝑛 ∈ 𝐻𝑏𝑘(𝐸, 𝐹) if and only if lim sup𝑛 ‖𝑃𝑛‖1∕𝑛𝑊 = 0 for all relatively compact subsets𝑊

of 𝐸;
(3) 𝑓 =

∑
𝑛 𝑃𝑛 ∈ 𝐻𝑏(𝐸, 𝐹) if and only if lim sup ‖𝑃𝑛‖1∕𝑛𝑆(𝐸) = 0.

Lemma 2.2. Let (𝑑𝑛) ⊂ ℕ be a strictly increasing sequence with 𝑑𝑛 ⩽ 𝑛, for every 𝑛. For each 𝑛 let
𝑃𝑛 ∈ 𝑃(

𝑑𝑛𝐸) be a polynomial of degree 𝑑𝑛. Suppose that

(1) (𝑗𝑛,1)𝑛, (𝑗𝑛,2)𝑛, … , (𝑗𝑛,𝑖)𝑛 ⊂ ℕ are sequences such that 0 ⩽
∑𝑖
𝑘=1 𝑗𝑛,𝑘 ⩽ 𝑛, for every 𝑛 ∈ ℕ,

(2) (𝑦𝑛,1)𝑛, (𝑦𝑛,2)𝑛, … , (𝑦𝑛,𝑖)𝑛 ⊂ 𝐸 are weakly convergent sequences to 𝑦𝑘 ∈ 𝐸, 𝑘 = 1, 2, … , 𝑖,
(3) (𝑄𝑛) is a sequence of homogeneous polynomials with degree deg(𝑄𝑛) ∶= 𝑑𝑛,𝑖 ∶= 𝑛 −

∑𝑖
𝑘=0 𝑗𝑛,𝑘

(𝑗𝑛,0 ∶= 0), defined by:

𝑄𝑛(𝑥) = Π
𝑖−1
𝑘=0

(
𝑑𝑛,𝑘 + 1

) 𝑑𝑛!

Π𝑖
𝑘=1
𝑗𝑛,𝑘!𝑑𝑛,𝑖!

∨

𝑃𝑛

(
Π𝑖
𝑘=1

(
𝑦𝑛,𝑘 − 𝑦𝑘

)𝑗𝑛,𝑘𝑥𝑑𝑛,𝑖).
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130 CARRIÓN V.

Suposse in addition that for all weakly compact subsets𝑊 of 𝐸, (𝑃𝑛) satisfies that

lim sup
𝑛

‖‖𝑃𝑛‖‖ 1𝑛𝑊 = 0.

Then for all weakly compact subsets𝑊 of 𝐸 we have

lim sup ‖‖𝑄𝑛‖‖ 1𝑛𝑊 = 0.

Proof. Let𝑊 be aweakly compact subset of𝐸. By the Eberlein–Smulian theorem, it is not difficult
to verify that the set

Θ⊗𝑊 =

{
𝑖∑

𝑘=1

𝜃𝑘
(
𝑦𝑛,𝑘 − 𝑦𝑘

)
+ 𝜃𝑖+1𝑥 ∶ 𝑛 ⩾ 1,

||𝜃𝑘|| = 1, 𝑘 = 1, 2, … , 𝑖 + 1, 𝑥 ∈ 𝑊
}

is a relatively weakly compact set of 𝐸. Since

Π𝑖−1
𝑘=0

(
𝑑𝑛,𝑘 + 1

) 1
𝑛 ⩽ (𝑑𝑛 + 1)

𝑖
𝑛 ⩽ (𝑛 + 1)

𝑖
𝑛 ,

then by the the Cauchy’s inequality we have

||𝑄𝑛(𝑥)||1∕𝑛 = Π𝑖−1𝑘=0(𝑑𝑛,𝑘 + 1) 1𝑛
×

||||||
𝑑𝑛!

Π𝑖
𝑘=1
𝑗𝑛,𝑘!𝑑𝑛,𝑖!

∨

𝑃𝑛

(
Π𝑖
𝑘=1

(
𝑦𝑛,𝑘 − 𝑦𝑘

)𝑗𝑛,𝑘𝑥𝑑𝑛,𝑖)||||||
1
𝑛

⩽ (𝑑𝑛 + 1)
𝑖
𝑛 sup|𝜃𝑘|=1

||||||𝑃𝑛
(

𝑖∑
𝑘=1

𝜃𝑘
(
𝑦𝑛,𝑘 − 𝑦𝑘

)
+ 𝜃𝑖+1𝑥

)||||||
1
𝑛

⩽ (𝑑𝑛 + 1)
𝑖
𝑛 ‖‖𝑃𝑛‖‖ 1𝑛Θ⊗𝑊

⩽ (𝑛 + 1)
𝑖
𝑛 ‖‖𝑃𝑛‖‖ 1𝑛Θ⊗𝑊,

where Θ⊗𝑊 is the closure in the weak topology of Θ⊗𝑊 in 𝐸. Since 𝑥 ∈ 𝑊 is arbitrary, we
have

‖‖𝑄𝑛‖‖ 1𝑛𝑊 ⩽ (𝑛 + 1)
𝑖
𝑛 ‖‖𝑃𝑛‖‖ 1𝑛Θ⊗𝑊.

By hypothesis we have that lim sup𝑛 ‖𝑃𝑛‖1∕𝑛
Θ⊗𝑊

= 0. So the claim follows. □
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ENTIRE FUNCTIONS ON BANACH SPACES WITH THE 𝑈-PROPERTY 131

3 RESULTS

In 1983 Dineen [7] showed that if 𝐸 = 𝑐0, the space of null sequences, then

𝐻𝑏𝑘(𝑐0) = 𝐻𝑏(𝑐0).

Here we extend this result to Banach spaces 𝐸 with the 𝑈-property and without a copy of 𝓁1.
Now, we recall that a series

∑∞
𝑖=1 𝑦𝑖 in 𝐸 is weakly unconditionally Cauchy (𝑤𝑢𝐶) if for all 𝜌 ∈ 𝐸

′,
we have that

∑∞
𝑖=1 |𝜌(𝑦𝑖)| < ∞. If the series

∑∞
𝑖=1 𝑦𝑖 is𝑤𝑢𝐶 and (𝑛𝑘), (𝑚𝑘) are sequences of strictly

increasing positive integers with𝑚𝑘 < 𝑛𝑘 for all 𝑘, the sequence (
∑𝑛𝑘
𝑖=𝑚𝑘

𝑦𝑖)𝑘 weakly converges to
zero. Also if (𝛼𝑖) is a scalar sequence with lim𝛼𝑘 = 0, then

∑∞
𝑘=1 𝛼𝑘𝑦𝑘 converges unconditionally

in norm, see [11] or [4].

Definition 3.1. A Banach space 𝐸 is said to have the 𝑈-property if for every weakly Cauchy
sequence (𝑥𝑛) ⊂ 𝐸, there exists a 𝑤𝑢𝐶-series

∑
𝑦𝑖 such that the sequence (𝑥𝑛 −

∑𝑛
𝑖=1 𝑦𝑖)𝑛⩾1 con-

verges to zero in the weak topology.

This property was defined by Pelczynski in [14].

Lemma 3.2. Let 𝐸 be a Banach space,
∑
𝑖⩾1 𝑦𝑖 , a weakly unconditionally Cauchy series and 𝑟 ∈ ℕ.

Suposse that (𝑑𝑛𝑖 ), (𝑛𝑖) are strictly increasing sequences of positive integers and (𝑃𝑛𝑖 ) is a sequence of
polynomials such that:

(1) for every 𝑖 ∈ ℕ,

𝑑𝑛𝑖 ⩽ 𝑛𝑖;

(2) for every 𝑖 ∈ ℕ, 𝑃𝑛𝑖 ∈ 𝑃(
𝑑𝑛𝑖 𝐸) and

||||||𝑃𝑛𝑖
(

𝑛𝑖∑
𝑠=1

𝑦𝑠

)|||||| > 1;
(3) for all weakly compact subsets𝑊 of 𝐸

lim sup
𝑖

‖‖‖𝑃𝑛𝑖‖‖‖ 1
𝑛𝑖

𝑊
= 0.

Then, there are a positive integer 𝑚1 and sequences (𝑖(𝑡))𝑡 , (𝑛𝑖(𝑡))𝑡 , (𝑗𝑛𝑖(𝑡),𝑚1)𝑡 of positive integers
such that:

(1)
(a) The sequences (𝑖(𝑡))𝑡 , (𝑛𝑖(𝑡))𝑡 , and (𝑑𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1)𝑡 are strictly increasing with(

𝑛𝑖(𝑡)
)
𝑡
⊂ (𝑛𝑖),

𝑖(1)>𝑟,

𝑛𝑖(1)>𝑚1.
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132 CARRIÓN V.

(b) For every 𝑡 ∈ ℕ,

0 ⩽ 𝑗𝑛𝑖(𝑡),𝑚1 ⩽ 𝑑𝑛𝑖(𝑡).

(2) The limit

𝛿 ∶= lim
𝑡

𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)

exists and 0 < 𝛿 < 1.
(3) For every 𝑡 ∈ ℕ,

(a)

𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)
⩽ 2𝛿,

and
(b)

1 ⩽
(
𝑑𝑛𝑖(𝑡) + 1

)( 𝑑𝑛𝑖(𝑡)
𝑗𝑛𝑖(𝑡),𝑚1

)

×

|||||||
∨

𝑃𝑛𝑖(𝑡)

⎛⎜⎜⎝
(
𝑚1∑
𝑠=1

𝑦𝑠

)𝑗𝑛𝑖(𝑡),𝑚1( 𝑛𝑖(𝑡)∑
𝑠=𝑚1+1

𝑦𝑠

)𝑑𝑛𝑖(𝑡)−𝑗𝑛𝑖(𝑡),𝑚1 ⎞⎟⎟⎠
|||||||.

Proof. For each𝑚 ∈ ℕ, with𝑚 ⩽ 𝑛𝑖 , we have

1 ⩽

||||||𝑃𝑛𝑖
(

𝑛𝑖∑
𝑠=1

𝑦𝑠

)|||||| ⩽
(
𝑑𝑛𝑖 + 1

) 𝑑𝑛𝑖 !

𝑗𝑛𝑖 ,𝑚!
(
𝑑𝑛𝑖 − 𝑗𝑛𝑖,𝑚

) (3.1)

×

|||||||
∨

𝑃𝑛𝑖

⎛⎜⎜⎝
(

𝑚∑
𝑠=1

𝑦𝑠

)𝑗𝑛𝑖 ,𝑚( 𝑛𝑖∑
𝑠=𝑚+1

𝑦𝑠

)𝑑𝑛𝑖−𝑗𝑛𝑖 ,𝑚⎞⎟⎟⎠
|||||||

for some 𝑗𝑛𝑖,𝑚 ∈ ℕ with 𝑗𝑛𝑖,𝑚 ⩽ 𝑑𝑛𝑖 .
We claim that there exists a𝑚 such that

0 < lim inf
𝑖

𝑗𝑛𝑖 ,𝑚

𝑛𝑖
.

Indeed, if lim inf 𝑖
𝑗𝑛𝑖 ,𝑚

𝑛𝑖
= 0 for all𝑚, then given𝑚 there exists 𝑛𝑖𝑚 > 𝑚 such that

𝑗𝑛𝑖𝑚 ,𝑚

𝑛𝑖𝑚
<
1

𝑚
.
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ENTIRE FUNCTIONS ON BANACH SPACES WITH THE 𝑈-PROPERTY 133

Now, we get

𝛼𝑚 =

⎧⎪⎨⎪⎩𝑒
−

√
𝑛𝑖𝑚

𝑗𝑛𝑖𝑚
,𝑚

𝑖𝑓 𝑗𝑛𝑖𝑚 ,𝑚
≠ 0

1∕𝑚 𝑖𝑓 𝑗𝑛𝑖𝑚 ,𝑚
= 0,

so

lim𝛼𝑚 = 0

lim
𝑚
(𝛼𝑚)

𝑗𝑛𝑖
𝑚
,𝑚

𝑛𝑖𝑚 = lim
𝑚
𝑒
−

√
𝑗𝑛𝑖𝑚

,𝑚

𝑛𝑖𝑚 = 1.

Since the sequence (
∑𝑛𝑖𝑚
𝑠=𝑚+1

𝑦𝑠)𝑚 weakly converges to zero, lim𝑚 ‖𝛼𝑚(∑𝑚
𝑖=1 𝑦𝑖)‖ = 0, and for all

weakly compact subsets𝑊 of 𝐸lim sup𝑛 ‖𝑃𝑛‖1∕𝑛𝑊 = 0; by Lemma 2.2 we have

0 = lim sup
𝑚

(
𝑑𝑛𝑖𝑚

+ 1
) 1
𝑛𝑖𝑚

⎛⎜⎜⎜⎝
𝑑𝑛𝑖𝑚

!

𝑗𝑛𝑖𝑚 ,𝑚
!
(
𝑑𝑛𝑖𝑚

− 𝑗𝑛𝑖𝑚 ,𝑚

)⎞⎟⎟⎟⎠
1
𝑛𝑖𝑚

(3.2)

×

|||||||
∨

𝑃𝑛𝑖𝑚

⎛⎜⎜⎝
(
𝛼𝑚

𝑚∑
𝑠=1

𝑦𝑠

)𝑗𝑛𝑖𝑚 ,𝑚( 𝑛𝑖𝑚∑
𝑠=𝑚+1

𝑦𝑠

)𝑑𝑛𝑖𝑚 −𝑗𝑛𝑖𝑚 ,𝑚⎞⎟⎟⎠
|||||||
1
𝑛𝑖𝑚

.

On the other hand, the inequality (3.1) implies that

(
𝑑𝑛𝑖𝑚

+ 1
) 1
𝑛𝑖𝑚

⎛⎜⎜⎜⎝
𝑑𝑛𝑖𝑚

!

𝑗𝑛𝑖𝑚 ,𝑚
!
(
𝑑𝑛𝑖𝑚

− 𝑗𝑛𝑖𝑚 ,𝑚

)⎞⎟⎟⎟⎠
1
𝑛𝑖𝑚

×

|||||||
∨

𝑃𝑛𝑖𝑚

⎛⎜⎜⎝
(
𝛼𝑚

𝑚∑
𝑠=1

𝑦𝑠

)𝑗𝑛𝑖𝑚 ,𝑚( 𝑛𝑖𝑚∑
𝑠=𝑚+1

𝑦𝑠

)𝑑𝑛𝑖𝑚 −𝑗𝑛𝑖𝑚 ,𝑚⎞⎟⎟⎠
|||||||
1
𝑛𝑖𝑚

= (𝛼𝑚)

𝑗𝑛𝑖𝑚
,𝑚

𝑛𝑖𝑚

(
𝑑𝑛𝑖𝑚

+ 1
) 1
𝑛𝑖𝑚

⎛⎜⎜⎜⎝
𝑑𝑛𝑖𝑚

!

𝑗𝑛𝑖𝑚 ,𝑚
!
(
𝑑𝑛𝑖𝑚

− 𝑗𝑛𝑖𝑚 ,𝑚

)⎞⎟⎟⎟⎠
1
𝑛𝑖𝑚

×

|||||||
∨

𝑃𝑛𝑖𝑚

⎛⎜⎜⎝
(

𝑚∑
𝑠=1

𝑦𝑠

)𝑗𝑛𝑖𝑚 ,𝑚( 𝑛𝑖𝑚∑
𝑠=𝑚+1

𝑦𝑠

)𝑑𝑛𝑖𝑚 −𝑗𝑛𝑖𝑚 ,𝑚⎞⎟⎟⎠
|||||||
1
𝑛𝑖𝑚

⩾ (𝛼𝑚)

𝑗𝑛𝑖𝑚
,𝑚

𝑛𝑖𝑚

and lim sup𝑚(𝛼𝑚)
𝑗𝑛𝑖𝑚

,𝑚

𝑛𝑖𝑚 = 1. This is a contradiction to (3.2).
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134 CARRIÓN V.

We fix𝑚1, satisfying the above condition. Then

0 < 𝛿 ∶= lim inf
𝑖

𝑗𝑛𝑖 ,𝑚1
𝑛𝑖

.

We choose a strictly increasing sequence (𝑖(𝑡)) such that (𝑛𝑖(𝑡)) is strictly increasing

𝑖(1) > 𝑟, 𝑛𝑖(1) > 𝑚1

lim
𝑡

𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)
= lim inf

𝑖

𝑗𝑛𝑖 ,𝑚1
𝑛𝑖

𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)
⩽ 2𝛿, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 = 1, 2, …

As (𝑛𝑖(𝑡)) ⊂ (𝑛𝑖) then for every 𝑡 we have

1 ⩽
(
𝑑𝑛𝑖(𝑡) + 1

)( 𝑑𝑛𝑖(𝑡)
𝑗𝑛𝑖(𝑡),𝑚1

)

×

|||||||
∨

𝑃𝑛𝑖(𝑡)

⎛⎜⎜⎝
(
𝑚1∑
𝑠=1

𝑦𝑠

)𝑗𝑛𝑖(𝑡),𝑚1( 𝑛𝑖(𝑡)∑
𝑠=𝑚1+1

𝑦𝑠

)𝑑𝑛𝑖(𝑡)−𝑗𝑛𝑖(𝑡),𝑚1 ⎞⎟⎟⎠
|||||||.

Now we show that lim𝑡
𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)
< 1. In fact, if lim𝑡

𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)
= 1, then

lim
𝑡

𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)
= 0.

As 𝑑𝑛𝑖(𝑡) ⩽ 𝑛𝑖(𝑡) then we have

lim
𝑡

𝑑𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)
= 0. (3.3)

Equation (3.3) leads to a contradiction. In fact, consider

𝛼𝑡 ∶=

⎧⎪⎨⎪⎩𝑒
−

√
𝑛𝑖(𝑡)

𝑑𝑛𝑖(𝑡)
−𝑗𝑛𝑖(𝑡),𝑚1 𝑖𝑓 𝑑𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1 ≠ 0

1∕𝑡 𝑖𝑓 𝑑𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1 = 0,

then lim𝑡 𝛼𝑡 = 0 and lim𝑡 𝛼

𝑑𝑛𝑖(𝑡)
−𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)

𝑡 = 1. Now, since lim𝑡 ‖𝛼𝑡(∑𝑛𝑖(𝑡)
𝑠=𝑚1+1

𝑦𝑠)‖ = 0 and∑𝑚1
𝑠=1
𝑦𝑠 is

a fix vector of 𝐸, Lemma 2.2 implies that
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ENTIRE FUNCTIONS ON BANACH SPACES WITH THE 𝑈-PROPERTY 135

0 = lim sup
𝑡

(
𝑑𝑛𝑖(𝑡) + 1

) 1
𝑛𝑖(𝑡)

⎛⎜⎜⎜⎝
𝑑𝑛𝑖(𝑡) !

𝑗𝑛𝑖(𝑡),𝑚1 !
(
𝑑𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1

)
!

⎞⎟⎟⎟⎠
1

𝑛𝑖(𝑡)

×

|||||||
∨

𝑃𝑛𝑖(𝑡)

⎛⎜⎜⎝
(
𝑚1∑
𝑠=1

𝑦𝑠

)𝑗𝑛𝑖(𝑡),𝑚1(
𝛼𝑡

𝑛𝑖(𝑡)∑
𝑠=𝑚+1

𝑦𝑠

)𝑑𝑛𝑖(𝑡)−𝑗𝑛𝑖(𝑡),𝑚1 ⎞⎟⎟⎠
|||||||

1
𝑛𝑖(𝑡)

= lim sup
𝑡
𝛼

𝑑𝑛𝑖(𝑡)
−𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)

𝑡

(
𝑑𝑛𝑖(𝑡) + 1

) 1
𝑛𝑖(𝑡)

⎛⎜⎜⎜⎝
𝑑𝑛𝑖(𝑡) !

𝑗𝑛𝑖(𝑡),𝑚1 !
(
𝑑𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1

)
!

⎞⎟⎟⎟⎠
1

𝑛𝑖(𝑡)

×

|||||||
∨

𝑃𝑛𝑖(𝑡)

⎛⎜⎜⎝
(
𝑚1∑
𝑠=1

𝑦𝑖

)𝑗𝑛𝑖(𝑡),𝑚1( 𝑛𝑖(𝑡)∑
𝑠=𝑚1+1

𝑦𝑠

)𝑑𝑛𝑖(𝑡)−𝑗𝑛𝑖(𝑡),𝑚1 ⎞⎟⎟⎠
|||||||

1
𝑛𝑖(𝑡)

⩾ lim sup
𝑡
𝛼

𝑑𝑛𝑖(𝑡)
−𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)

𝑡 = 1,

which is a contradiction. Thus

0 < 𝛿 ∶= lim
𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)
< 1.

Finally, the sequence (𝑑𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1)𝑡 is unbounded. Otherwise

lim
𝑡

(
𝑑𝑛𝑖(𝑡) − 𝑗𝑛𝑖(𝑡),𝑚1

𝑛𝑖(𝑡)

)
= 0

and we have already shown that this equation leads to a contradiction. □

Lemma 3.3. For each 𝑛 ∈ ℕ, let 𝑃𝑛 ∈ 𝑃(𝑛𝐸) be a polynomial. If for all weakly compact subsets𝑊

of 𝐸, lim sup ‖𝑃𝑛‖ 1𝑛𝑊 = 0, then for all weakly unconditionally Cauchy series,
∑
𝑦𝑖 , we have

lim sup
𝑛

||||||𝑃𝑛
(

𝑛∑
𝑠=1

𝑦𝑠

)||||||
1
𝑛

= 0.

Proof. We will show the existence of subsequences (𝑃𝑛𝑖𝑘(𝑡) )𝑡 (𝑘 = 1, 2, …) of the sequence of poly-
nomials (𝑃𝑛), which satisfy some properties. Indeed, using the diagonal process we choose the
sequence (𝑃𝑛𝑖𝑘(𝑘) ), and we obtain a contradiction.
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136 CARRIÓN V.

Suppose that lim sup |𝑃𝑛(∑𝑛
𝑖=1 𝑦𝑖)|1∕𝑛 = 𝜌 > 0. So, taking a subsequence of (𝑃𝑛), if necessary,

and the series 𝜌−1
∑
𝑗 𝑦𝑗, we can suppose that

||||||𝑃𝑛
(

𝑛∑
𝑠=1

𝑦𝑠

)|||||| ⩾ 1
for all 𝑛.
Now, we use a procedure analogous to that given in [7, Theorem 7]: As lim𝑛 𝑛∕(ln(𝑛 + 1)) =

+∞, given 𝑖 ∈ ℕ there exists 𝑛𝑖 ⩾ 𝑖 such that 𝑛𝑖∕(ln(𝑛𝑖 + 1)) ⩾ 𝑖. So we obtain 1∕(𝑛𝑖 + 1) ⩾ 1∕𝑒𝑛𝑖∕𝑖
and therefore

1

(𝑛𝑖 + 1)
1∕𝑛𝑖

⩾
1

𝑒
1
𝑖

>
1

𝑒
, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 = 1, 2, … (3.4)

and ||||||𝑃𝑛𝑖
(

𝑛𝑖∑
𝑠=1

𝑦𝑠

)|||||| ⩾ 1
for every 𝑖.
By Lemma 3.2, there exist a positive integer𝑚1 and strictly increasing sequences (𝑖1(𝑡)), (𝑛𝑖1(𝑡)),

(𝑛𝑖1(𝑡) − 𝑗𝑛𝑖1(𝑡),𝑚1
) with 𝑖1(1) > 1, 𝑛𝑖1(1) > 𝑚1, and

0 ⩽ 𝑗𝑛𝑖1(𝑡),𝑚1
⩽ 𝑛𝑖1(𝑡), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 = 1, 2, …

0 < lim
𝑡

𝑗𝑛𝑖1(𝑡),𝑚1

𝑛𝑖1(𝑡)
∶= 𝛿1 < 1, 𝑤𝑖𝑡ℎ

𝑗𝑛𝑖1(𝑡)
,𝑚1

𝑛𝑖1(𝑡)
< 2𝛿1, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 = 1, 2, …

𝑎𝑛𝑑

1 ⩽
(
𝑛𝑖1(𝑡) + 1

) 𝑛𝑖1(𝑡)!

𝑗𝑛𝑖1(𝑡),𝑚1
!
(
𝑛𝑖1(𝑡) − 𝑗𝑛𝑖1(𝑡),𝑚1

)
!

×

|||||||
∨

𝑃𝑛𝑖1(𝑡)

⎛⎜⎜⎝
(
𝑚1∑
𝑠=1

𝑦𝑠

)𝑗𝑛𝑖1(𝑡),𝑚1( 𝑛𝑖∑
𝑠=𝑚1+1

𝑦𝑠

)𝑛𝑖1(𝑡)−𝑗𝑛𝑖1(𝑡),𝑚1 ⎞⎟⎟⎠
|||||||.

Now we define 𝑑𝑛𝑖1(𝑡),𝑚0 ∶= 𝑛𝑖1(𝑡) and 𝑑𝑛𝑖1(𝑡),𝑚1 ∶= 𝑑𝑛𝑖1(𝑡),𝑚0 − 𝑗𝑛𝑖1(𝑡),𝑚1 . Then we have that

1 ⩽
(
𝑑𝑛𝑖1(𝑡),𝑚0

+ 1
) 𝑛𝑖1(𝑡)!

𝑗𝑛𝑖1(𝑡),𝑚1
!𝑑𝑛𝑖1(𝑡),𝑚1

!

×
|||||
∨

𝑃𝑛𝑖1(𝑡)

(
(𝑞𝑚1𝑦)

𝑗𝑛𝑖1(𝑡)
,𝑚1

(
𝑞
𝑛𝑖1(𝑡)
𝑚1

𝑦
)𝑑𝑛𝑖1(𝑡),𝑚1), |||||

where 𝑞𝑚1𝑦 =
∑𝑚1
𝑠=1
𝑦𝑠 and 𝑞

𝑛𝑖1(𝑡)
𝑚1

(𝑦) =
∑𝑛𝑖1(𝑡)

𝑠=𝑚1+1
𝑦𝑠.
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ENTIRE FUNCTIONS ON BANACH SPACES WITH THE 𝑈-PROPERTY 137

For 𝑡 with 𝑛𝑖1(𝑡) > 𝑚1, consider the polynomial 𝑄 ∶ 𝐸 → ℂ defined by

𝑄𝑡(𝑥) =
(
𝑑𝑛𝑖1(𝑡),𝑚0

+ 1
) 𝑛𝑖1(𝑡)!

𝑗𝑛𝑖1(𝑡),𝑚1
!𝑑𝑛𝑖1(𝑡),𝑚1

!

∨

𝑃𝑛𝑖1(𝑡)

(
(𝑞𝑚1𝑦)

𝑗𝑛𝑖1(𝑡)
,𝑚1 (𝑥)

𝑑𝑛𝑖1(𝑡)
,𝑚1

)
.

Then deg𝑄𝑡(𝑥) = 𝑑𝑛𝑖1(𝑡),𝑚1 ⩽ 𝑛𝑖1(𝑡) and

||||𝑄𝑡(𝑞𝑛𝑖1(𝑡)𝑚1
𝑦
)|||| =

||||||𝑄𝑡
( 𝑛𝑖1(𝑡)∑
𝑠=𝑚1+1

𝑦𝑠

)|||||| ⩾ 1.
As 𝑞𝑚1𝑦 is a fixed vector and, by hypothesis, for every weakly compact subsets𝑊 ⊂ 𝐸, we have

lim sup𝑛 ‖𝑃𝑛‖1∕𝑛𝑊 = 0, by Lemma 2.2, we have that for every weakly compact subsets𝑊 ⊂ 𝐸

lim sup
𝑡

‖‖𝑄𝑡‖‖ 1
𝑛𝑖1(𝑡)

𝑊
= 0.

Since the sequence (𝑑𝑛𝑖1(𝑡),𝑚1)𝑡 is strictly increasing, by Lemma 3.2, there exists a positive integer
𝑚2 > 𝑚1, and strictly increasing sequences (𝑖2(𝑡)), (𝑛𝑖2(𝑡)), (𝑑𝑖2(𝑡) − 𝑗𝑛𝑖2(𝑡),𝑚2) with

(𝑖2(𝑡)) ⊂ (𝑖1(𝑡)), 𝑖2(1) > 2, 𝑛𝑖2 (1) > 𝑚2,

0 ⩽ 𝑗𝑛𝑖2(𝑡),𝑚2
⩽ 𝑑𝑛𝑖2(𝑡),𝑚1

⩽ 𝑛𝑖2(𝑡), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 = 1, 2, …

0 < lim
𝑗𝑛𝑖2(𝑡),𝑚2

𝑛𝑖2(𝑡)
= 𝛿2 < 1

𝑗𝑛𝑖2(𝑡),𝑚2

𝑛𝑖2(𝑡)
⩽ 2𝛿2, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 = 1, 2, …

and

1 ⩽
(
𝑑𝑛𝑖2(𝑡),𝑚1

+ 1
) 𝑑𝑛𝑖2(𝑡),𝑚1

!

𝑗𝑛𝑖2(𝑡),𝑚2
!
(
𝑑𝑛𝑖2(𝑡),𝑚1

− 𝑗𝑛𝑖2(𝑡),𝑚2

)
!

×
||||∨𝑄𝑡(𝑞𝑚2𝑚1𝑦)𝑗𝑛𝑖2(𝑡),𝑚2(𝑞𝑛𝑖2(𝑡)𝑚2

𝑦
)𝑑𝑛𝑖2(𝑡),𝑚1−𝑗𝑛𝑖2(𝑡),𝑚2 ||||

or

1 ⩽
(
𝑑𝑛𝑖2(𝑡),𝑚1

+ 1
) 𝑑𝑛𝑖2(𝑡),𝑚1

!

𝑗𝑛𝑖2(𝑡),𝑚2
!
(
𝑑𝑛𝑖2(𝑡),𝑚1

− 𝑗𝑛𝑖2(𝑡),𝑚2

)
!

×
(
𝑑𝑛𝑖2(𝑡),𝑚0

+ 1
) 𝑛𝑖2(𝑡)!

𝑗𝑛𝑖2(𝑡),𝑚1
!𝑑𝑛𝑖2(𝑡),𝑚1

!

×
|||||
∨

𝑃𝑛𝑖2(𝑡)

(
(𝑞𝑚1𝑦)

𝑗𝑛𝑖2(𝑡)
,𝑚1

(
𝑞
𝑚2
𝑚1
𝑦
)𝑗𝑛𝑖2(𝑡),𝑚2(𝑞𝑛𝑖1(𝑡)𝑚2

𝑦
)𝑑𝑛𝑖2(𝑡),𝑚1−𝑗𝑛𝑖2(𝑡),𝑚2)|||||,
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138 CARRIÓN V.

this is,

1 ⩽
(
𝑑𝑛𝑖2(𝑡),𝑚0

+ 1
)(
𝑑𝑛𝑖2(𝑡),𝑚1

+ 1
)

(3.5)

×
𝑛𝑖2(𝑡)!

𝑗𝑛𝑖2(𝑡),𝑚1
!𝑗𝑛𝑖2(𝑡),𝑚2

!
(
𝑑𝑛𝑖2(𝑡),𝑚1

− 𝑗𝑛𝑖2(𝑡),𝑚2

)
!

×
|||||
∨

𝑃𝑛𝑖2(𝑡)

(
(𝑞𝑚1𝑦)

𝑗𝑛𝑖2(𝑡)
,𝑚1

(
𝑞
𝑚2
𝑚1
𝑦
)𝑗𝑛𝑖2(𝑡),𝑚2(𝑞𝑛𝑖2(𝑡)𝑚2

𝑦
)𝑑𝑛𝑖2(𝑡),𝑚2)|||||,

where 𝑑𝑛𝑖2(𝑡),𝑚2 = 𝑑𝑛𝑖2(𝑡),𝑚1 − 𝑗𝑛𝑖2(𝑡),𝑚2 . Observe that 𝑖2(1) > 2 implies 𝑖2(2) > 𝑖2(1) > 2.
Proceeding inductively we find

(i) a strictly increasing sequence (𝑚𝑖)𝑖⩾1 of positive integer,
(ii) strictly increasing sequences (𝑖𝑘(𝑡))𝑡, (𝑘 = 1, 2, …) of positive integers such that every 𝑘(

𝑖𝑘+1(𝑡)
)
⊂ (𝑖𝑘(𝑡)),

𝑖𝑘(𝑘)>𝑘,

𝑛𝑖𝑘 (1)>𝑚𝑘,

(iii) sequences (𝑗𝑛𝑖𝑘(𝑡) ,𝑚𝑘 )𝑡 (𝑘 = 1, 2, …) of positive integers with

0 < lim
𝑡

𝑗𝑛𝑖𝑘(𝑡),𝑚𝑘

𝑛𝑖𝑘(𝑡)
= 𝛿𝑘 < 1, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑘 = 1, 2, …

𝑗𝑛𝑖𝑘(𝑡)
,𝑚𝑘

𝑛𝑖𝑘(𝑡)
< 2𝛿𝑘, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 = 1, 2, … .

and

1 ⩽

𝑘∏
𝑠=1

(
𝑑𝑛𝑖𝑘(𝑡),𝑚𝑠−1

+ 1
)
.

𝑛𝑖𝑘(𝑡)!

𝑑𝑛𝑖𝑘(𝑡),𝑚𝑘
!

𝑘∏
𝑠=1

𝑗𝑛𝑖𝑘(𝑡),𝑚𝑠
!

(3.6)

×

||||||
∨

𝑃𝑛𝑖𝑘(𝑡)

(
𝑘∏
𝑠=1

(
𝑞
𝑚𝑠
𝑚𝑠−1

𝑦
)𝑗𝑛𝑖𝑘(𝑡),𝑚𝑠(𝑞𝑛𝑖𝑘(𝑡)𝑚𝑘

𝑦
)𝑑𝑛𝑖𝑘(𝑡),𝑚𝑘)||||||,

where 𝑑𝑛𝑖𝑘(𝑡),𝑚𝑘 ∶= 𝑑𝑛𝑖𝑘(𝑡),𝑚𝑘−1 − 𝑗𝑛𝑖𝑘(𝑡),𝑚𝑘 ⩽ 𝑑𝑛𝑖𝑘(𝑡),𝑚𝑘−1 ⩽ 𝑛𝑖𝑘(𝑡) and (𝑑𝑛𝑖𝑘(𝑡),𝑚𝑘 )𝑡 are strictly creasing,
for 𝑘 = 1, 2, …
We observe that (𝑖𝑘(𝑡)) ⊂ (𝑖𝑠(𝑡)) for 𝑘 ⩾ 𝑠 and therefore

lim
𝑡

𝑗𝑛𝑖𝑘(𝑡)
,𝑚𝑠

𝑛𝑖𝑘(𝑡)
= 𝛿𝑠, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑘 = 𝑠, 𝑠 + 1,…
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ENTIRE FUNCTIONS ON BANACH SPACES WITH THE 𝑈-PROPERTY 139

𝑗𝑛𝑖𝑘(𝑡)
,𝑚𝑠

𝑛𝑖𝑘(𝑡)
< 2𝛿𝑠, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑘 = 𝑠, 𝑠 + 1,… 𝑎𝑛𝑑 𝑡 = 1, 2, …

Now, we show that the sequence (𝛿𝑘) is summable. Indeed, as

0 ⩽

𝑘∑
𝑠=1

𝑗𝑛𝑖𝑘(𝑡)
,𝑚𝑠 ⩽ 𝑛𝑖𝑘(𝑡),

it is

0 ⩽

𝑘∑
𝑠=1

𝑗𝑛𝑖𝑘(𝑡)
,𝑚𝑠

𝑛𝑖𝑘(𝑡)
⩽ 1

for all 𝑡 = 1, 2, … and 𝑘 = 1, 2, …. Then we have

𝑘∑
𝑠=1

𝛿𝑠 = lim𝑡

𝑗𝑛𝑖𝑘(𝑡),𝑚1

𝑛𝑖𝑘(𝑡)
+ lim

𝑡

𝑗𝑛𝑖𝑘(𝑡),𝑚2

𝑛𝑖𝑘(𝑡)
+⋯ + lim

𝑡

𝑗𝑛𝑖𝑘(𝑡),𝑚𝑘

𝑛𝑖𝑘(𝑡)

= lim
𝑡

(
𝑗𝑛𝑖𝑘(𝑡),𝑚1

𝑛𝑖𝑘(𝑡)
+
𝑗𝑛𝑖𝑘(𝑡),𝑚2

𝑛𝑖𝑘(𝑡)
+⋯ +

𝑗𝑛𝑖𝑘(𝑡),𝑚𝑘

𝑛𝑖𝑘(𝑡)

)
⩽ 1.

Since 𝑘 is arbitrary, we obtain that
∑∞
𝑘=1 𝛿𝑘 ⩽ 1.

Consider (𝛼𝑖) ∈ 𝑐0 such that

Π∞
𝑖=1
𝛼
𝛿𝑖
𝑖
= 2. (3.7)

Since
𝑗𝑛𝑖𝑘(𝑡)

,𝑚𝑠

2𝑛𝑖𝑘(𝑡)
< 𝛿𝑠 < 1, for every 𝑘 ⩾ 𝑠, 𝑡 = 1, 2, … and lim𝑠 𝛼𝑠 = 0 we can suppose that

Π𝑘
𝑠=1
𝛼

𝑗𝑛𝑖𝑘(𝑘)
,𝑚𝑠

𝑛𝑖𝑘(𝑘)

𝑠 > Π𝑘
𝑠=1
𝛼
2𝛿𝑠
𝑠 .

Now, by the inequality (3.6) we obtain that

𝐺𝑘(𝑦) ∶=

⎛⎜⎜⎝
𝑛𝑖𝑘(𝑘)!

𝑑𝑛𝑖𝑘(𝑘),𝑚𝑘
!Π𝑘
𝑠=1
𝑗𝑛𝑖𝑘(𝑘),𝑚𝑠

!

⎞⎟⎟⎠
1

𝑛𝑖𝑘(𝑘)

×
|||||
∨

𝑃𝑛𝑖𝑘(𝑘)

(
Π𝑘
𝑠=1

(
𝛼𝑠𝑞

𝑚𝑠
𝑚𝑠−1

𝑦
)𝑗𝑛𝑖𝑘(𝑘),𝑚𝑠(𝑞𝑛𝑖𝑘(𝑘)𝑚𝑘

𝑦
)𝑑𝑛𝑖𝑘(𝑘),𝑚𝑘)|||||

1
𝑛𝑖𝑘(𝑘)

= Π𝑘
𝑠=1
𝛼

𝑗𝑛𝑖𝑘(𝑘)
,𝑚𝑠

𝑛𝑖𝑘(𝑘)

𝑠

⎛⎜⎜⎝
𝑛𝑖𝑘(𝑘)!

𝑑𝑛𝑖𝑘(𝑘),𝑘
!Π𝑘
𝑠=1
𝑗𝑛𝑖𝑘(𝑘),𝑚𝑠

!

⎞⎟⎟⎠
1

𝑛𝑖𝑘(𝑘)
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140 CARRIÓN V.

×
|||||
∨

𝑃𝑛𝑖𝑘(𝑘)

(
Π𝑘
𝑠=1

(
𝑞
𝑚𝑠
𝑚𝑠−1

𝑦
)𝑗𝑛𝑖𝑘(𝑘),𝑚𝑠(𝑞𝑛𝑖𝑘(𝑘)𝑚𝑘

𝑦
)𝑑𝑛𝑖𝑘(𝑘),𝑚𝑘)|||||

1
𝑛𝑖𝑘(𝑘)

⩾ Π𝑘
𝑠=1
𝛼
2𝛿𝑠
𝑠

1

Π𝑘
𝑠=1

(
𝑑𝑛𝑖𝑘(𝑘),𝑚𝑠−1

+ 1
)1∕𝑛𝑖𝑘(𝑘) .

Now by 3.4, as 𝑖𝑘(𝑘) ⩾ 𝑘, for every 𝑘 = 1, 2, …, we have

1

Π𝑘
𝑠=1

(
𝑑𝑛𝑖𝑘(𝑘),𝑚𝑠−1

+ 1
)1∕𝑛𝑖𝑘(𝑘) ⩾ 1

Π𝑘
𝑠=1

(
𝑛𝑖𝑘(𝑘) + 1

)1∕𝑛𝑖𝑘(𝑘) ⩾ 1

𝑒
𝑘

𝑖𝑘(𝑘)

⩾
1

𝑒
.

Thus,

𝐺𝑘(𝑦) ⩾
1

𝑒
Π𝑘
𝑠=1
𝛼
2𝛿𝑠
𝑠 ,

and by (3.7), we have

lim sup
𝑘
𝐺𝑘(𝑦) ⩾ lim sup

𝑘

1

𝑒
Π𝑘
𝑠=1
𝛼
2𝛿𝑠
𝑠 = 4∕𝑒. (3.8)

On the other hand, as
∑
𝑗=1 𝑦𝑗 is a weakly unconditionally Cauchy series, then the series∑∞

𝑖=1

∑𝑚𝑖
𝑗=𝑚𝑖−1+1

𝑦𝑖 is also weakly unconditionally Cauchy and therefore the series

𝛼1

(
𝑚1∑
𝑘=1

𝑦𝑖

)
+ 𝛼2

(
𝑚2∑

𝑘=𝑚1+1

𝑦𝑖

)
+⋯ + 𝛼𝑘

(
𝑚𝑘∑

𝑘=𝑚𝑘−1+1

𝑦𝑖

)
+⋯

is unconditionally convergent in norm and the sequence

(
𝑞
𝑛𝑖𝑘(𝑘)
𝑚𝑘

(𝑦)
)
𝑘
=

⎛⎜⎜⎝
𝑛𝑖𝑘(𝑘)∑
𝑠=𝑚𝑘+1

𝑦𝑠

⎞⎟⎟⎠𝑘
weakly converges to zero. Then the set

𝑊 =

{
𝑘∑
𝑠=1

𝛼𝑠𝜃𝑠𝑞
𝑚𝑠
𝑚𝑠−1

(𝑦) + 𝜃𝑘+1.𝑞
𝑛𝑖𝑘(𝑘)
𝑚𝑘

(𝑦) ∶ ||𝜃𝑠|| = 1, 𝑘 ⩾ 1, 𝑚0 ∶= 0
}

is relatively weakly compact. So by [12, Corollary 7.10],

𝐺𝑘(𝑦) ⩽ sup|||𝜃𝑗|||=1
⎧⎪⎨⎪⎩
||||||𝑃𝑛𝑖𝑘(𝑘)

(
𝑘∑
𝑠=1

𝛼𝑠𝜃𝑠𝑞
𝑚𝑠
𝑚𝑠−1

𝑦 + 𝜃𝑘+1.𝑞
𝑛𝑖𝑘(𝑘)
𝑚𝑘

𝑦

)||||||
1

𝑛𝑖𝑘(𝑘)
⎫⎪⎬⎪⎭

⩽
‖‖‖𝑃𝑛𝑖𝑘(𝑘)‖‖‖

1
𝑛𝑖𝑘(𝑘)

𝑊
,
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ENTIRE FUNCTIONS ON BANACH SPACES WITH THE 𝑈-PROPERTY 141

where𝑊 is the weak closure of𝑊. Now, by assumption, we have

lim sup
𝑘
𝐺𝑘(𝑦) ⩽ lim sup

𝑘

‖‖‖𝑃𝑛𝑖𝑘(𝑘)‖‖‖
1

𝑛𝑖𝑘(𝑘)

𝑊
= 0.

It is a contradiction to inequality (3.8). □

The following theorem generalizes a result obtained by Dineen in [7] for the space 𝑐0.

Theorem 3.4. Let 𝐸 be a Banach space with the𝑈-property and without a copy of 𝓁1. Then

𝐻𝑏𝑘(𝐸) = 𝐻𝑏(𝐸).

Proof. It is clear that 𝐻𝑏(𝐸) ⊂ 𝐻𝑏𝑘(𝐸). Consider 𝑓 =
∑∞
𝑛=0 𝑃𝑛 ∈ 𝐻𝑏𝑘(𝐸) and suppose that 𝑓 ∉

𝐻𝑏(𝐸), so lim sup ‖𝑃𝑛‖1∕𝑛 = 𝜌 > 0. We can choose a subsequence, if necessary, and we suppose
that ‖𝑃𝑛‖1∕𝑛 ⩾ 𝜌 for all 𝑛 ⩾ 1. Then, by continuity, there exist a sequence (𝑥𝑛) ⊂ 𝐸 with ‖𝑥𝑛‖ = 1
for all 𝑛, such that

||𝑃𝑛(𝑥𝑛)|| 1𝑛 > 𝜌∕2
or |𝑃𝑛( 2𝜌𝑥𝑛)| > 1 for all 𝑛 ⩾ 1. Since 𝐸 does not have a copy of 𝓁1 and the sequence (𝑧𝑛) ∶= ( 2𝜌𝑥𝑛)
is bounded, then by Rosenthal’s Theorem, there exists a weakly Cauchy subsequence (𝑧𝑛𝑖 ) ∶=
( 2
𝜌
𝑥𝑛𝑖 ) ⊂ (𝑧𝑛). As 𝐸 has the 𝑈-property, there is a weakly unconditionally Cauchy series (wuC)∑∞
𝑘=1 𝑦𝑘, such that the sequence (𝑧𝑛𝑖 −

∑𝑛𝑖
𝑘=1

𝑦𝑘)𝑖 converges to zero in the weak topology. Now,
for each 𝑛𝑖 we have, by the Leibniz formula,

𝑃𝑛𝑖

(
𝑧𝑛𝑖

)
=

𝑛𝑖∑
𝑗=0

𝑛𝑖!

𝑗!(𝑛𝑖 − 𝑗)!

∨

𝑃𝑛𝑖

⎛⎜⎜⎝
(
𝑧𝑛𝑖 −

𝑛𝑖∑
𝑘=1

𝑦𝑘

)𝑗( 𝑛𝑖∑
𝑘=1

𝑦𝑘

)𝑛𝑖−𝑗⎞⎟⎟⎠.
So given 𝑛𝑖 there exist 𝑗𝑛𝑖 with 0 ⩽ 𝑗𝑛𝑖 ⩽ 𝑛𝑖 for each 𝑖 such that

1 ⩽
||||𝑃𝑛𝑖(𝑧𝑛𝑖)|||| ⩽ (𝑛𝑖 + 1) 𝑛𝑖!

𝑗𝑛𝑖 !
(
𝑛𝑖 − 𝑗𝑛𝑖

)
!

(3.9)

×

|||||||
∨

𝑃𝑛𝑖

⎛⎜⎜⎝
(
𝑧𝑛𝑖 −

𝑛𝑖∑
𝑘=1

𝑦𝑘

)𝑗𝑛𝑖( 𝑛𝑖∑
𝑘=1

𝑦𝑘

)𝑛𝑖−𝑗𝑛𝑖 ⎞⎟⎟⎠
|||||||.

We define the polynomials 𝑄𝑛𝑖 ∶ 𝐸 → ℂ by

𝑄𝑛𝑖 (𝑥) =
(𝑛𝑖 + 1)𝑛𝑖!

𝑗𝑛𝑖 !
(
𝑛𝑖 − 𝑗𝑛𝑖

)
!

∨

𝑃𝑛𝑖

⎛⎜⎜⎝
(
𝑧𝑛𝑖 −

𝑛𝑖∑
𝑘=1

𝑦𝑘

)𝑗𝑛𝑖
(𝑥)

𝑛𝑖−𝑗𝑛𝑖

⎞⎟⎟⎠, 𝑓𝑜𝑟 𝑖 = 1, 2, …
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142 CARRIÓN V.

As 𝑓 =
∑∞
𝑛=0 𝑃𝑛 ∈ 𝐻𝑏𝑘(𝐸) then for all weakly compact subsets𝑊 of 𝐸 we have lim ‖𝑃𝑛‖1∕𝑛𝑊 = 0,

then by Lemma 2.2, we have

0 = lim sup
𝑖

‖‖‖𝑄𝑛𝑖‖‖‖ 1
𝑛𝑖

𝑊

for all weakly compact subset𝑊 ⊂ 𝐸. By Lemma 3.3, this implies that

0 = lim sup
𝑖

||||||𝑄𝑛𝑖
(

𝑛𝑖∑
𝑘=1

𝑦𝑘

)||||||
1
𝑛𝑖

= lim sup
𝑖

|||||||
(𝑛𝑖 + 1)𝑛𝑖!

𝑗𝑛𝑖 !
(
𝑛𝑖 − 𝑗𝑛𝑖

)
!

∨

𝑃𝑛𝑖

⎛⎜⎜⎝
(
𝑧𝑛𝑖 −

𝑛𝑖∑
𝑘=1

𝑦𝑘

)𝑗𝑛𝑖( 𝑛𝑖∑
𝑘=1

𝑦𝑘

)𝑛𝑖−𝑗𝑛𝑖 ⎞⎟⎟⎠
|||||||
1
𝑛𝑖

,

which is a contradiction by inequality (3.9). □

Corollary 3.5. Let 𝐸 be a Banach space with the𝑈-property and without a copy of 𝑙1. Then for every
Banach space 𝐹 we have

𝐻𝑏𝑘(𝐸, 𝐹) = 𝐻𝑏(𝐸, 𝐹).

Proof. It is clear that𝐻𝑏(𝐸, 𝐹) ⊂ 𝐻𝑏𝑘(𝐸, 𝐹). Consider 𝑓 =
∑∞
𝑛=0 𝑃𝑛 ∈ 𝐻𝑏𝑘(𝐸, 𝐹) and suppose that

𝑓 ∉ 𝐻𝑏(𝐸, 𝐹). Then there exist a sequence (𝑥𝑛) ∈ 𝑆(𝐸) such that lim𝑛→∞ ‖𝑓(𝑥𝑛)‖ = ∞. On the
other hand, we have that for every 𝜙 ∈ 𝐹′, 𝜙◦𝑓 ∈ 𝐻𝑏𝑘(𝐸). Thus, by Theorem 3.4, there is𝑀𝜙 ∈ ℝ

such that for every 𝑥 ∈ 𝑆(𝐸), |𝜙(𝑓(𝑥))| ⩽ 𝑀𝜙. This is, if 𝑦𝑛 = 𝑓(𝑥𝑛) ∈ 𝐹, then for every 𝜙 ∈ 𝐹′,
we have that |𝜙(𝑦𝑛)| ⩽ 𝑀𝜙. By the uniform boundedness principle, we have that sup𝑛 ‖𝑓(𝑥𝑛)‖ =
sup𝑛 ‖𝑦𝑛‖ < ∞. A contradiction. Thus 𝑓 ∈ 𝐻𝑏(𝐸, 𝐹) and therefore𝐻𝑏𝑘(𝐸, 𝐹) = 𝐻𝑏(𝐸, 𝐹). □

We introduce some necessary notation for the next corollary. Let𝐻𝑤(𝐸, 𝐹) denote the space of
all entire functions on 𝐸 into 𝐹 which are weakly continuous on bounded sets of 𝐸. We denote
𝐻𝑤𝑢(𝐸, 𝐹) the space of all entire functions on 𝐸 into 𝐹 which are weakly uniformly continuous on
bounded sets of 𝐸. In [1] Aron, Herves, and Valdivia posed the following question: Is every weakly
continuous function on bounded sets of 𝐸 also weakly uniformly continuous on bounded sets of
𝐸? or is 𝐻𝑤(𝐸, 𝐹) = 𝐻𝑤𝑢(𝐸, 𝐹)? for all Banach space 𝐸? It is clear that the inclusion 𝐻𝑤𝑢(𝐸, 𝐹) ⊂
𝐻𝑤(𝐸, 𝐹) is true. In [1, Example 3.5], they showed that the problem is equivalent to show that the
inclusion 𝐻𝑤(𝐸, 𝐹) ⊂ 𝐻𝑏(𝐸, 𝐹) holds. Since every weakly continuous function on bounded sets
on 𝐸 is bounded in weakly compact sets on 𝐸, Theorem 3.4 implies that when 𝐸 is a Banach space
with the 𝑈-property and without a copy of 𝓁1, then 𝐻𝑤𝑢(𝐸, 𝐹) ⊂ 𝐻𝑤(𝐸, 𝐹). So, for theses spaces
the 𝓁1 problem has a positive answer. Also it is true for all subspace 𝐺 ⊂ 𝐸, since the 𝑈-property
is hereditary.
Let𝐻𝑤𝑠𝑐(𝐸, 𝐹) be the space of all entire functions which apply weakly convergent sequences of

𝐸 into convergent sequences of 𝐹. So 𝐻𝑤𝑢(𝐸, 𝐹) ⊂ 𝐻𝑤(𝐸, 𝐹) ⊂ 𝐻𝑤𝑠𝑐(𝐸, 𝐹). In the next corollary
we give conditions on 𝐸 such that we get equality between these spaces.
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ENTIRE FUNCTIONS ON BANACH SPACES WITH THE 𝑈-PROPERTY 143

Corollary 3.6. Let 𝐸 be a Banach space with the𝑈-property and without a copy of 𝑙1. Then

𝐻𝑤(𝐸, 𝐹) = 𝐻𝑤𝑠𝑐(𝐸, 𝐹) = 𝐻𝑤𝑢(𝐸, 𝐹).

Proof. By [1, Proposition 3.3], 𝐻𝑤(𝐸, 𝐹) = 𝐻𝑤𝑠𝑐(𝐸, 𝐹) and by the remark above we have that
𝐻𝑤(𝐸, 𝐹) = 𝐻𝑤𝑢(𝐸, 𝐹). □

We recall that a Banach space has Dunford–Pettis property and does not contain a copy of 𝓁1,
if only if 𝐸′ is a Schur space. This condition permits us to get the next corollary.

Corollary 3.7. Let 𝐸 be a Banach space with the𝑈-property such that 𝐸′ is a Schur space. Then

𝐻𝑤𝑢(𝐸) = 𝐻𝑤(𝐸) = 𝐻𝑏(𝐸) = 𝐻𝑏𝑘(𝐸).

Proof. Since𝐸′ is Schur, then𝐸 has theDunford–Pettis property and by [13, Proposition 4]we have
that𝐻𝑏𝑘(𝐸) = 𝐻𝑤(𝐸), once 𝐸 does not have a copy of 𝓁1. The corollary follows from Theorem 3.4
and Corollary 3.6 because 𝐸 has the 𝑈-property. □

Now, we give some examples of spaces that satisfy the conditions of Corollary 3.7

Example 3.8. Every𝑀-ideal in its bidual is an Asplund space and therefore does not contain a
copy of 𝓁1. This space has the 𝑈-property, see [9, Theorem 3.8] and [9, Theorem 3.1]). A list of
Banach spaces that are𝑀-ideals in their bidual is given in [9, Example 1.4, p. 105].
The spaces 𝑙2(𝑐0) and ℂ⊕1𝑐0 are examples of Banach spaces without a copy of 𝓁1 with the 𝑈-

property,which are not𝑀-ideal in their bidual. These are examples ofℎ − 𝑖𝑑𝑒𝑎𝑙𝑠. See [8, Examples
5, 6 of Section 4] and [8, final remark of Section 8].
There are spaces 𝐶(𝐾) which are not 𝑀-ideals in their biduals, yet all separable subspaces of

𝐶(𝐾) are isomorphic to subspaces of 𝑐0, in particular this is an Asplund space (see [10, Example
2]). For such space we have that the conclusion of Theorem 3.4 is true. In fact, if 𝑓 ∈ 𝐻𝑏𝑘(𝐶(𝐾))
and 𝑓 ∉ 𝐻𝑏(𝐶(𝐾)), then there exist a bounded sequence (𝑥𝑛) ⊂ 𝐶(𝐾) such that |𝑓(𝑥𝑛)| > 𝑛 for
𝑛. Now, consider 𝐺 = 𝑠𝑝𝑎𝑛(𝑥𝑛) the closed subspace generated by (𝑥𝑛), 𝐹 a closed subspace of
𝑐0, 𝑇 ∶ 𝐹 → 𝐺 the isomorphism, and (𝑎𝑛) ⊂ 𝐹 the bounded sequence in 𝐺 such that 𝑇(𝑎𝑛) = 𝑥𝑛.
Let 𝑖 ∶ 𝐺 → 𝐶(𝐾) be the inclusion operator. Then we have that 𝑓◦𝑖◦𝑇 ∈ 𝐻𝑏𝑘(𝐹). Since 𝐹 ⊂ 𝑐0 we
obtain that 𝑓◦𝑖◦𝑇 ∈ 𝐻𝑏(𝐹), that means (𝑓◦𝑖◦𝑇(𝑎𝑛))𝑛 = (𝑓(𝑥𝑛))𝑛 is bounded. It is a contradiction.
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